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Abstract. The research aims to use the Dynamic Equality Condition Correlation (DECO-GARCH) model 
to test the general movements and conditional relationships regarding the return on investment in a financial 
market. This is distinguished from other models, particularly from the DCC model, as it is based on calculating 
the pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying on the history 
of those assets. This study focused on the returns of US stock market indices, the Chinese stock market index, 
and financial markets in some Middle Eastern countries, (S&P 500, DJI, NASDAQ Composite, Shanghai 
Composite, Saudi General, Dubai General, Bahrain General, Amman General, Iraq Stock Exchange). We 
conduct this research on the grounds of understanding the impact of financial crises on asset returns in these 
markets, the interconnections that govern them, and the extent to which investors can hedge their investments 
in these markets. The results have revealed significant and varying correlations between these indices, with 
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increased equal relationships observed in 2015–2016 and 2020–2021, which corresponding to the dates of the 
European debt crisis, the collapse of the Chinese stock market, and the COVID-19 pandemic. Overall, there 
was noticeable fluctuation in the conditional dynamic equality among the studied indices during the study 
period, thus supporting the hypothesis of contagion effects and emphasizing the importance of considering 
the evolving nature of relationships between these indices when making asset allocation decisions.
Keywords: DECO-GARC, financial contagion, dynamic correlations, financial markets, common movement.

1. Introduction

Financial markets play an important role in national economies as they are extremely useful 
in directing and diversifying domestic savings, converting foreign capital into productive 
investment, and sustaining economic growth and development. Fluctuations in the market 
values of financial instruments represent a major challenge for lawmakers because prevalent 
fluctuations between investment markets not only have significant effects on production 
costs, corporate benefits, and the rate of employment growth, but also lead to variations from 
macroeconomic strategies which encourage development and social welfare, in addition to 
helping to avoid and predict future economic downturns. In recent years, financial markets 
have witnessed significant fluctuations in correlations between different asset classes. Un-
derstanding the dynamic links (relationships) between numerous financial assets is critical 
for investors, portfolio managers, and policymakers, since they have a direct impact on the 
diversification of portfolios, asset allocation techniques, and risk management (Hung, 2021b).

Investors, and even portfolio managers, often monitor reference indicators of financial 
markets because they give a general idea of the movement of the public market and thus 
guide them in their investment decisions (Yilmaz, 2010). Furthermore, the openness and 
financial liberalization processes which led to the abolition of financial restrictions were in 
turn followed by an upward trend in trade interactions between economies. This leads to 
the transfer of bubbles between global financial markets before and during financial crises 
(Zeren & Yilanci, 2019), and the behavior of these bubbles has caused significant fluctu-
ations in financial markets, particularly in asset markets (Ozdemir, 2022), and especially 
in the financial crises that resulted from the Asian financial crisis in 1997, the worldwide 
economic meltdown of 2008, as well as the European debt crisis of 2015–2016, and also 
the difficulties associated with the coronavirus pandemic (COVID-19) of 2020–2021, 
which made the development of world stock markets increasingly important. Given that 
the torrent of shocks felt by financial markets largely emanated from the US markets for 
stocks, the investigation of financial infection consequently became highly relevant when 
financial crises were having worldwide consequences (Cai et al., 2016). 

The motivation behind our study is that the study focuses on exploring contagion effects 
in financial markets and uses the DECO-GARCH model to capture evolving correlations 
during crises. This model is characterized by its ability to capture the shared dynamic 
movements over time for all assets simultaneously. 

This study attempts to conduct a simulation between some developed countries and 
some developing countries in order to achieve an understanding of the equal dynamic 
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movements of the markets of these countries under the conditions of financial globaliza-
tion. The following section discusses the literature review, followed by the methodology, 
the extraction of results, and their discussion. Finally, the conclusions, recommendations, 
and future studies are presented at the end of this paper.

2. Literature review

Understanding the dynamic relationships between different financial assets is critical for 
investors in order for them to make the appropriate decisions and for portfolio managers 
so that they manage their portfolios effectively. Dynamic correlations directly affect port-
folio diversification, risk management, and asset allocation strategies. Previous scholarly 
studies have shown that correlations between various financial market assets can change 
over time and are often influenced by macroeconomic factors, market conditions, and 
investor sentiment. 

Several studies employed different co-integration techniques to emphasize the extent 
of a connection between stock markets in the BRICS nations and the European Union, 
notably, the DECO-GARCH model (Aboura & Chevallier, 2014) This strategy was used 
to study an equal connection of variance throughout marketplaces (stocks, securities, 
foreign exchange rates, or commodities). 

It was discovered (e.g., by Kang et al., 2019) by using the DECO-GARCH model that 
the spillovers shifted from international financial markets to the Southeast Asian region 
(ASEAN-5) are greater than those observed in the markets from ASEAN stocks in the 
Southeast Asian region (ASEAN-5) to international financial markets. Also, we used 
the DECO-GARCH model in order to investigate the common actions and conditioned 
connections between the earnings of the financial markets under study, while using daily 
data from March 20, 2014 to March 12, 2024, in order to identify the relationships in 
financial markets in both developed and developing nations (Diebold & Yilmaz, 2012). 
In a study by (Bouri et al., 2021) the DECO-GARCH model was used to analyze market 
integration amongst 12 main cryptocurrencies, who ended up finding that it is capable of 
handling a wide variety of variables, unlike the previous GARCH models.

A study by (Xiao, 2017) used both the Dynamic Conditional Correlation (DCC-
GARCH) model and the Dynamic Equally Weighted Conditional Correlation (DE-
CO-GARCH) model, concluding that there was a significant increase in conditional 
correlations (contagion) and equal correlations during the global financial crisis between 
the US stock markets and the stock markets of the eight East Asian countries. When 
comparing the DECO-GARCH model and the DCC-GARCH model, it is assumed that 
all paired correlations are equal at all periods, which is a requirement for calculating the 
matrix of equal paired correlations, contrary to the DCC-GARCH model, and the estimates 
of the DECO-GARCH model for US stock return data indicated that equicorrelated models 
are more suitable for these data than the DCC-GARCH model, as the DECO-GARCH 
model shows an improved portfolio selection compared to the unconstrained dynamic 
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correlation model. This was established to reduce the noise in estimating correlations 
(Engle & Kelly, 2012).

A study by (Kregždė & Kišonaitė, 2018) discussed the common movements between 
the Lithuanian stock markets and the European markets. The study used a wave model 
to measure the risk of stock market returns and to understand the common movements 
during the period from 2000 to 2018. The study found that the common movements with 
Poland, the Czech Republic, and Hungary were slightly lower after the European Com-
mission announced the introduction of the Euro in Lithuania. For Lithuanian investors, 
diversification with Central European markets is not beneficial in the long term due to 
the high common movements between their returns.

Many studies have employed the Dynamic Condition Connectivity Model (DCC-
GARCH) to enhance foreign investment portfolios and discover improved (adjusted) 
returns that are dependent on risk rather than standard techniques (Alshenawy & Abdo, 
2023). The study by (Creti et al., 2013) used the Dynamic Conditional Correlation (DCC-
GARCH) model to measure the links between stock and commodity markets’ volatility; 
their study found that the correlations between commodities and stock returns evolve over 
time, and they were highly volatile during the financial crisis of 2008. The results showed 
that some commodities are characterized by speculative behavior, particularly oil, coffee, 
and cocoa, with their correlations increased with the growth of S&P 500 returns during 
times of rising stock prices and diminished during downturns. 

Previous studies have not addressed the interconnectedness of financial markets in 
high-income developed countries such as the United States and China with the financial 
markets of developing countries denoted by medium and low incomes when using modern 
models such as the DECO-GARCH model. Therefore, the present study was conducted to 
examine the equal dynamic movements between the financial markets in the United States 
and China, which are considered high-income advanced countries, and some countries in 
the Middle East, which are regarded as developing countries with medium to low income.

3. Methodology

3.1. Indications and their data

We utilize daily data for 10 financial markets of industrialized and developing nations (US 
stock market, the Chinese stock market index (Shanghai), and financial market indices 
in Saudi Arabia, the United Arab Emirates, Bahrain, Jordan, and Iraq) by relying on data 
for the period from March 20, 2014, to March 12, 2024, as all-time series of indicators 
are converted into logarithmic returns, resulting in 1346 daily views of each indicator, 
while taking into account the corresponding trading days for all markets, the indicators 
used were as follows (Investing, n.d.):

1)	 Standard & Poor’s 500 Index;
2)	 Dow Jones Industrial Average (DJI);
3)	 NASDAQ Composites Index (IXIC);
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4)	 The Shanghai Composite Index (CSI1000I);
5)	 The Saudi General Index (TASI) Saudi Stock Exchange (Tadawul) All Share Index;
6)	 Dubai Financial Market General Index (DFMGI);
7)	 FTSE Abu Dhabi General Index (FTFADGI);
8)	 Bahrain General Index;
9)	 Amman Stock Exchange General Index;
10)	 Iraq Stock Exchange (ISX) Index 60.

3.2. Model Specifications

The DCC-GARCH model was developed by (Engle, 2002). It provides the flexibility to 
model multivariate conditional fluctuations at the same time for stock returns, their var-
ying correlations, and their temporal expectations. Despite its versatility, its estimation 
requires computing the associations of many pairs twice, thus making the understanding 
of correlation data complicated (Kang et al., 2019). 

To address these constraints, we propose the DECO-GARCH models (Engle & Kelly, 
2012) estimating the equal constants of the average of all asset pairs. In other words, in 
this paradigm, the average conditioned correlation is equivalent to the sum of all marital 
connections. Hence, according to (Hung, 2021b), temporal shifts in correlation between 
all important markets are observed over the timeframe from March 20, 2014 to March 12, 
2024. Unlike the usual DCC-GARCH paradigm that we offer, DECO-GARCH is an alternate 
model rather than one that overlaps with DCC-GARCH )Engle, 2002; Engle & Kelly, 2012).

The use of the DECO-GARCH model to measure market return volatility is consid-
ered more advanced than other models, particularly the DCC-GARCH model, as it is an 
improvement over the DCC-GARCH model on the grounds of calculating double corre-
lations in a more flexible and dynamic manner, especially in cases where the change in 
asset returns is unstable. This makes its results more accurate and efficient than the results 
of the DCC-GARCH model (Engle & Kelly, 2012). 

The DECO-GARCH model is characterized by its ability to compute dynamic 
correlations between each pair of asset returns compared to the DCC-GARCH model, 
which reduces the estimation error; the DECO-GARCH model is also distinguished by 
its capability to handle large-scale correlation matrices compared to the DCC-GARCH 
model (Hung, 2021a).

Indeed, DECO-GARCH has some subtle but important features lacking in DCC-
GARCH. One example is that the DECO-GARCH correlation between asset pairs i and j 
depends on the return history of all asset pairs. For the simulated DCC-GARCH specifi-
cation (i.e., when using the same number of parameters), the i, j correlation depends only 
on the history of i and j. In this sense, DECO-GARCH economically exploits a broader 
information set to formulate the per-pair correlation process. To the extent that the true 
correlation is affected by the realizations of all assets, the failure of DCC-GARCH to 
capture the information aggregation aspects of DECO-GARCH may disadvantage DCC-
GARCH as a descriptor of the data-generating process (Engle & Kelly, 2012).
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The DECO-GARCH model is based on the premise that any two sets of stock returns 
are uniformly linked on a particular day; however, this correlation varies over time, sim-
plifying the computation of the logarithmic likelihood of high-dimensional return systems. 
The DECO-GARCH model generates correlations between pairs of returns (𝑟1,𝑡, 𝑟2,𝑡, … , 
𝑟𝑛,𝑡). The (DECO-GARCH) model calculates the correlations between any pair of returns 
(𝑟𝑖,𝑡) and (𝑟𝑗,𝑡) based on past information for all pairs (n) of returns. To obtain similar 
specifications for the (DCC-GARCH) model (with an equal number of parameters), the 
correlation between (𝑟𝑖,𝑡) and (𝑟𝑗,𝑡) is calculated by using only the past information set for 
(𝑟𝑖,𝑡) and (𝑟𝑗,𝑡). Thus, the (DECO-GARCH) model uses more information to calculate the 
dynamic correlations between each pair of returns compared to the (DCC-GARCH) model, 
which reduces estimation errors for the correlations. Additionally, the (DECO-GARCH) 
model remains stable even when the returns are not equally correlated (Engle & Kelly, 
2012). The DECO-GARCH model is compatible with the most accurate daily data of the 
US returns on stocks (DCC-GARCH) model. Furthermore, the DECO-GARCH model 
outperforms the sample model (DCC-GARCH) in portfolio selection (Kang et al., 2019).

We assume that the process of generating data on returns can be described as an auto-
matic regression model of the first degree (AR (1)). The patterns of the present return of 
shares are understood by their postponed returns as the framework (AR (1)) is characterized 
as follows (see Hung et al., 2022; Al-Anezi et al., 2021):
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here, μ is a static vector, whereas εt = (εt–1, t,…, εn) is an array of residues, and (DCC-
GARCH) is used for dynamic conditional correlation (Engle, 2002) This magnitude is 
used to represent the time-dependent dynamical action of conditional variation. The var-
iance conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi 
et al., 2025): 
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         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇

𝑡𝑡−1
 

	 (3)

The Rt matrix represents conditional correlations.
The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a):

8

to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇

𝑡𝑡−1
 

	 (4)

8

to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇

𝑡𝑡−1
 

	 (5)

where C is a matrix (n * 1), and ai or bi are orthogonal matrices (n * n). Equation (2) may 
be circulated by using standardized return, as follows, where 

8

to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇
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8

to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇
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GARCH (1,1) specifications: 

8

to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, … … . . . (𝟏𝟏𝟏𝟏)
𝑇𝑇
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to represent the time-dependent dynamical action of conditional variation. The variance 

conditional matrix (Ht) has been established to be the following (see Ali Al-Anezi et al., 

2025):  

𝑯𝑯𝒕𝒕 = 𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕  … … … (𝟐𝟐)  

where the standard deviation (𝐷𝐷t( matrix represents the diagonal conditional on the structure 

(Ali Al‑Anezi et al., 2025): 

𝑫𝑫𝒕𝒕 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒉𝒉𝟏𝟏𝟏𝟏
𝟏𝟏/𝟐𝟐 , … , 𝒉𝒉𝒏𝒏𝒏𝒏

𝟏𝟏/𝟐𝟐) … … . . . (𝟑𝟑)  

      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = ∁ + 𝜶𝜶𝒊𝒊𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏
𝟐𝟐 + 𝒃𝒃𝒊𝒊𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕−𝟏𝟏 … … … (𝟒𝟒)  

𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕 = 𝝆𝝆𝒊𝒊𝒊𝒊√𝒉𝒉𝒊𝒊𝒊𝒊,𝒕𝒕𝒉𝒉𝒋𝒋𝒋𝒋,𝒕𝒕, 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏, 𝒏𝒏̅̅ ̅̅ ̅ … … … (𝟓𝟓) 

where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 

circulated by using standardized return, as follows, where 𝜺𝜺𝒕𝒕=𝑫𝑫𝒕𝒕
𝟐𝟐, 𝜺𝜺𝒕𝒕:  

𝑬𝑬𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, = 𝑫𝑫𝒕𝒕

−𝟏𝟏𝑯𝑯𝒕𝒕𝑫𝑫𝒕𝒕
−𝟏𝟏 = 𝑹𝑹𝒕𝒕 = [𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕] … … . . (𝟔𝟔) 

          It proposes (Engle, 2002) intermediate conditional conditions with the following 

GARCH (1,1) specifications:   

𝝆𝝆𝒊𝒊𝒊𝒊,𝒕𝒕 =
𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕

√𝒒𝒒𝒊𝒊𝒊𝒊,𝒕𝒕𝒒𝒒𝒋𝒋𝒋𝒋,𝒕𝒕
… … … (𝟕𝟕) 

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆̅𝝆𝒊𝒊𝒊𝒊(𝟏𝟏 − 𝛂𝛂 − 𝛃𝛃) + 𝛂𝛂 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏 + 𝛃𝛃 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭−𝟏𝟏 … … … (𝟖𝟖) 

where 𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭  represents the conditioned relationship among 𝒆𝒆𝒊𝒊,𝒕𝒕−𝟏𝟏 and 𝒆𝒆𝒋𝒋,𝒕𝒕−𝟏𝟏. The corresponding 

variables (α) and (β) have to meet the following requirements: 

𝛂𝛂 ≥ 𝟎𝟎, 𝜷𝜷 ≥ 𝟎𝟎, 𝒂𝒂𝒂𝒂𝒂𝒂 𝜶𝜶 + 𝜷𝜷 < 𝟏𝟏 

         When (α+β) approaches one, conditional deviation is highly continuous. In the matrix 

format (cf. Bauwens & Xu, 2019): 

Q𝒕𝒕 = Q̅(𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷) + 𝜶𝜶(𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏
, ) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟗𝟗) 

where Q̅ = 𝒄𝒄𝒄𝒄𝒄𝒄[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
, ] = 𝑬𝑬[𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

, ] is the unconditional covariance for standardized errors, Q, 

which may be calculated as follows:  

Q̅ = 1
𝑇𝑇 ∑ 𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕
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      The 𝑅𝑅t matrix represents conditional correlations. 

         The GARCH (1,1) description for each conditioned variation is as follows (Hung, 

2021a): 
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where ∁ is a matrix (n * 1), and 𝒂𝒂𝒊𝒊or 𝒃𝒃𝒊𝒊 are orthogonal matrices (n * n). Equation (2) may be 
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      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
, 𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑲𝑲𝒏𝒏 − 𝒏𝒏) = 𝟐𝟐

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) ∑ ∑
𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭
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𝒏𝒏−𝟏𝟏
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where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
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where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 
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where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 
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between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

 represents the unrestricted covariance matrix for 

9

      𝑅𝑅t is then obtained by (Bauwens & Xu, 2023): 

𝑹𝑹𝒕𝒕 = (𝐐𝐐𝒕𝒕
∗)𝟏𝟏/𝟐𝟐𝐐𝐐𝒕𝒕(𝐐𝐐𝒕𝒕

∗)𝟏𝟏/𝟐𝟐 … … … (𝟏𝟏𝟏𝟏) 

where 𝐐𝐐𝒕𝒕
∗ = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{Q𝒕𝒕} 

      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
, 𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑲𝑲𝒏𝒏 − 𝒏𝒏) = 𝟐𝟐

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) ∑ ∑
𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭

√𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭𝐪𝐪𝐣𝐣𝐣𝐣,𝐭𝐭
… … … (𝟏𝟏𝟏𝟏)

𝒏𝒏

𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟏𝟏
 

where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝜶𝜶𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏𝜺𝜺𝒋𝒋,𝒕𝒕−𝟏𝟏 − 𝝆𝝆𝒕𝒕

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) + 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 − 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)    (𝟏𝟏𝟏𝟏) 

where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 

𝑹𝑹𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝟏𝟏 − 𝝆𝝆𝒕𝒕)𝑰𝑰𝒏𝒏 + 𝝆𝝆𝒕𝒕𝑲𝑲𝒏𝒏 … … (𝟏𝟏𝟏𝟏) 

where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

.
It has been proposed by (Engle & Kelly, 2012) to use the model (ρt). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Qt, then select 
the average of its-Qatari components, as specified by DECO-GARCH, to decrease the 
estimate time, and the corresponding correlation may be stated as follows (Aboura & 
Chevallier, 2017):

9

      𝑅𝑅t is then obtained by (Bauwens & Xu, 2023): 

𝑹𝑹𝒕𝒕 = (𝐐𝐐𝒕𝒕
∗)𝟏𝟏/𝟐𝟐𝐐𝐐𝒕𝒕(𝐐𝐐𝒕𝒕

∗)𝟏𝟏/𝟐𝟐 … … … (𝟏𝟏𝟏𝟏) 

where 𝐐𝐐𝒕𝒕
∗ = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{Q𝒕𝒕} 

      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
, 𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑲𝑲𝒏𝒏 − 𝒏𝒏) = 𝟐𝟐

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) ∑ ∑
𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭

√𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭𝐪𝐪𝐣𝐣𝐣𝐣,𝐭𝐭
… … … (𝟏𝟏𝟏𝟏)

𝒏𝒏

𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟏𝟏
 

where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝜶𝜶𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏𝜺𝜺𝒋𝒋,𝒕𝒕−𝟏𝟏 − 𝝆𝝆𝒕𝒕

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) + 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 − 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)    (𝟏𝟏𝟏𝟏) 

where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 

𝑹𝑹𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝟏𝟏 − 𝝆𝝆𝒕𝒕)𝑰𝑰𝒏𝒏 + 𝝆𝝆𝒕𝒕𝑲𝑲𝒏𝒏 … … (𝟏𝟏𝟏𝟏) 

where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

	
(13)
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where: 

9

      𝑅𝑅t is then obtained by (Bauwens & Xu, 2023): 

𝑹𝑹𝒕𝒕 = (𝐐𝐐𝒕𝒕
∗)𝟏𝟏/𝟐𝟐𝐐𝐐𝒕𝒕(𝐐𝐐𝒕𝒕

∗)𝟏𝟏/𝟐𝟐 … … … (𝟏𝟏𝟏𝟏) 

where 𝐐𝐐𝒕𝒕
∗ = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{Q𝒕𝒕} 

      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
, 𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑲𝑲𝒏𝒏 − 𝒏𝒏) = 𝟐𝟐

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) ∑ ∑
𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭

√𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭𝐪𝐪𝐣𝐣𝐣𝐣,𝐭𝐭
… … … (𝟏𝟏𝟏𝟏)

𝒏𝒏

𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟏𝟏
 

where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝜶𝜶𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏𝜺𝜺𝒋𝒋,𝒕𝒕−𝟏𝟏 − 𝝆𝝆𝒕𝒕

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) + 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 − 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)    (𝟏𝟏𝟏𝟏) 

where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 

𝑹𝑹𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝟏𝟏 − 𝝆𝝆𝒕𝒕)𝑰𝑰𝒏𝒏 + 𝝆𝝆𝒕𝒕𝑲𝑲𝒏𝒏 … … (𝟏𝟏𝟏𝟏) 

where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

	 (14)

where K is a vector of units (qij,t) of elements (i,j) of a matrix (Qt) After the model (DCC-
GARCH), we use (

9

      𝑅𝑅t is then obtained by (Bauwens & Xu, 2023): 

𝑹𝑹𝒕𝒕 = (𝐐𝐐𝒕𝒕
∗)𝟏𝟏/𝟐𝟐𝐐𝐐𝒕𝒕(𝐐𝐐𝒕𝒕

∗)𝟏𝟏/𝟐𝟐 … … … (𝟏𝟏𝟏𝟏) 

where 𝐐𝐐𝒕𝒕
∗ = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{Q𝒕𝒕} 

      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
, 𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑲𝑲𝒏𝒏 − 𝒏𝒏) = 𝟐𝟐

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) ∑ ∑
𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭

√𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭𝐪𝐪𝐣𝐣𝐣𝐣,𝐭𝐭
… … … (𝟏𝟏𝟏𝟏)

𝒏𝒏

𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟏𝟏
 

where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝜶𝜶𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏𝜺𝜺𝒋𝒋,𝒕𝒕−𝟏𝟏 − 𝝆𝝆𝒕𝒕

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) + 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 − 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)    (𝟏𝟏𝟏𝟏) 

where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 

𝑹𝑹𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝟏𝟏 − 𝝆𝝆𝒕𝒕)𝑰𝑰𝒏𝒏 + 𝝆𝝆𝒕𝒕𝑲𝑲𝒏𝒏 … … (𝟏𝟏𝟏𝟏) 

where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

) to record a conditional correlation matrix:

9

      𝑅𝑅t is then obtained by (Bauwens & Xu, 2023): 

𝑹𝑹𝒕𝒕 = (𝐐𝐐𝒕𝒕
∗)𝟏𝟏/𝟐𝟐𝐐𝐐𝒕𝒕(𝐐𝐐𝒕𝒕

∗)𝟏𝟏/𝟐𝟐 … … … (𝟏𝟏𝟏𝟏) 

where 𝐐𝐐𝒕𝒕
∗ = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{Q𝒕𝒕} 

      However, Aielli (2013) claims that, when calculating the matrix of covariance, Q_t is 

inconsistent since E{𝑹𝑹𝒕𝒕} ≠ E{Q𝒕𝒕}. The next consistent model demonstrates the correlation 

routing method. 

Q𝒕𝒕 = (𝟏𝟏 − 𝜶𝜶 − 𝜷𝜷)𝖘𝖘∗ + 𝜶𝜶(𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐𝒆𝒆𝒕𝒕−𝟏𝟏𝒆𝒆𝒕𝒕−𝟏𝟏

, 𝐐𝐐𝒕𝒕−𝟏𝟏
∗𝟏𝟏/𝟐𝟐) + 𝜷𝜷Q𝒕𝒕−𝟏𝟏 … … … (𝟏𝟏𝟏𝟏) 

here, 𝖘𝖘∗ represents the unrestricted covariance matrix for 𝐐𝐐𝒕𝒕
∗𝟏𝟏/𝟐𝟐𝜺𝜺𝒕𝒕. 

           It has been proposed by (Engle & Kelly, 2012) to use the model (𝝆𝝆𝒕𝒕). The correlation 

routing procedure is used to create the conditioned matrix of correlation, Q𝒕𝒕, then select the 

average of its-Qatari components, as specified by DECO-GARCH, to decrease the estimate 

time, and the corresponding correlation may be stated as follows (Aboura & Chevallier, 

2017): 

𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = 𝟏𝟏

𝒏𝒏(𝒏𝒏 − 𝟏𝟏) (𝑲𝑲𝒏𝒏
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… … … (𝟏𝟏𝟏𝟏)

𝒏𝒏

𝒋𝒋=𝒊𝒊+𝟏𝟏

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟏𝟏
 

where:  

𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 = 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝜶𝜶𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝜺𝜺𝒊𝒊,𝒕𝒕−𝟏𝟏𝜺𝜺𝒋𝒋,𝒕𝒕−𝟏𝟏 − 𝝆𝝆𝒕𝒕

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) + 𝜷𝜷𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭 − 𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)    (𝟏𝟏𝟏𝟏) 

where K is a vector of units (𝐪𝐪𝐢𝐢𝐢𝐢,𝐭𝐭) of elements (i,j) of a matrix (Q𝒕𝒕) After the model (DCC-

GARCH), we use (𝝆𝝆𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫) to record a conditional correlation matrix: 

𝑹𝑹𝒕𝒕
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝟏𝟏 − 𝝆𝝆𝒕𝒕)𝑰𝑰𝒏𝒏 + 𝝆𝝆𝒕𝒕𝑲𝑲𝒏𝒏 … … (𝟏𝟏𝟏𝟏) 

where 𝑰𝑰𝒏𝒏 is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 

demanding and simpler to estimate computationally, while also demonstrating the link 

between multiple groups and a single DCC-GARCH coefficient. This involves calculating the 

pairwise correlations of assets (joint return volatilities) at one time for all assets, while relying 

on the history of those assets (Cai et al., 2016). 

4. Results and Discussion 

4.1. Descriptive statistics indicators of financial markets returns 

           Here, we first examine the descriptive data of the return of the financial sectors under 

consideration in order to get an idea of the salient facts of the time series of returns, as we 

note through Table 1 that there is a significant fluctuation of the market returns. This indicates 

	 (15)

where In is the unit matrix of dimensions n. Thus, DECO-GARCH modeling is less 
demanding and simpler to estimate computationally, while also demonstrating the link 
between multiple groups and a single DCC-GARCH coefficient. This involves calculating 
the pairwise correlations of assets (joint return volatilities) at one time for all assets, while 
relying on the history of those assets (Cai et al., 2016).

4. Results and Discussion

4.1. Descriptive statistics indicators of financial markets returns

Here, we first examine the descriptive data of the return of the financial sectors under 
consideration in order to get an idea of the salient facts of the time series of returns, as 
we note through Table 1 that there is a significant fluctuation of the market returns. This 
indicates the relative instability of these markets, as we note that the average market re-
turns were positive except for the returns from RDFMGI, Ramman, and RISX60, where 
the Saudi financial market (TASI) achieved the highest average return at a rate of 9.8146, 
while the Amman Stock Exchange (Aman) achieved the lowest average return at a rate 
of -7.8923,while the standard deviations of the unconditional fluctuations of the time 
series studied yielded a difference ranging from 0.003472% for the returns of RBAX to 
0.010642% for the returns of RCSI1000I, whereas the distortion coefficients (skewedness) 
suggest that the time series of returns are not normally distributed. We also note the prob-
lem of the thickness of the tails, where the Kurtosis statistics were greater than the three 
involved in the normal distribution, as the distribution gathers more around the average, 
which means that the chains of market returns deviate from the normal distribution. This 
is further confirmed by the Jarque-Bera statistics test, which rejects the zero hypotheses of 
the normal situation. This means an increase in the volatility of financial market returns, 
as shown in Table 1.

We also investigate, through Table 1, the returns of the studied markets more deeply 
in terms of whether they are appropriate for volatility modelling; more specifically, we 
investigate whether there is a subjective connection in quadratic returns, as well as the 
(arch) impacts of differentiated time series. We see the Significant results of the Ljung-
Box test performed on the square yield up to 10 delays (Q210), so that to reject the zero 
hypothesis for the absence of serial correlation, which provides evidence of a large subjec-
tive correlation between the markets, while the arch Lagrangian Factor (LM) tests refute 
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the zero hypothesis, which indicates the existence of large (arch) effects. In addition, we 
verified the stability of the studied market returns according to the Enhanced Dickie Fuller 
(ADF) root unit tests. It was found that the dynamic correlation model (DECO-GARC) 
is suitable for the analysis of correlations to the returns of the financial markets in the 
study sample. The Jarque-Bera tests also demonstrate the use of the multidimensional 
(DECO-GARCH). They were used to assess the distinctions and dependent relationships 
(correlations) between markets, where there is a strong correlation between most of the 
returns of the studied markets. Meanwhile, the average distribution of financial market 
returns provides an initial picture of the spread of these returns, allowing for subsequent 
tests to determine the correlations between these returns, as shown in Figure 1.

11

          We also investigate, through Table 1, the returns of the studied markets more deeply in 

terms of whether they are appropriate for volatility modelling; more specifically, we 

investigate whether there is a subjective connection in quadratic returns, as well as the (arch) 

impacts of differentiated time series. We see the Significant results of the Ljung-Box test 

performed on the square yield up to 10 delays (Q210), so that to reject the zero hypothesis for 

the absence of serial correlation, which provides evidence of a large subjective correlation 

between the markets, while the arch Lagrangian Factor (LM) tests refute the zero hypothesis, 

which indicates the existence of large (arch) effects. In addition, we verified the stability of 

the studied market returns according to the Enhanced Dickie Fuller (ADF) root unit tests. It 

was found that the dynamic correlation model (DECO-GARC) is suitable for the analysis of 

correlations to the returns of the financial markets in the study sample. The Jarque-Bera tests 

also demonstrate the use of the multidimensional (DECO-GARCH). They were used to assess 

the distinctions and dependent relationships (correlations) between markets, where there is a 

strong correlation between most of the returns of the studied markets. Meanwhile, the average 

distribution of financial market returns provides an initial picture of the spread of these 

returns, allowing for subsequent tests to determine the correlations between these returns, as 

shown in Figure 1. 

 
Figure 1. Results of testing the normal distribution of market returns 

Source: Prepared by the researchers based on the Ox-Metrics software 

 

       Figure 1 depicts the outcomes of the examination of the average distribution series of 

returns for the markets analyzed, indicating that they are somewhat unstable. This result is 

confirmed by Figure 2, which illustrates the daily returns of financial markets necessitating 

Figure 1. Results of testing the normal distribution of market returns
Source: Prepared by the researchers based on the Ox-Metrics software

Figure 1 depicts the outcomes of the examination of the average distribution series of 
returns for the markets analyzed, indicating that they are somewhat unstable. This result is 
confirmed by Figure 2, which illustrates the daily returns of financial markets necessitating 
the use of an advanced model, particularly the DECO-GARCH model.

The daily movements of the financial market return in the study sample can be 
examined in depth, revealing that they somewhat harmonize with each other’s fluctua-
tions. This indicates the existence of correlations between the returns of these markets, 
as illustrated in Figure 2. The application of natural logarithms to the indicators and 
calculation of their daily returns helps us to adjust the potential and lost outliers and 
achieve stability of variance, as these conversions allow us to focus on changes in the 
indicators instead of their absolute levels. Figure 3 shows the graphs of the returns for 
the markets under study. 



Wisam H. Ali Al-Anezi et al. Dynamic Equal Co-movements Measurement for Volatility of Returns in Financial Markets

33 12

the use of an advanced model, particularly the DECO-GARCH model.

 
Figure 2. The movement of daily returns of the markets 

Source: Prepared by the researchers based on the Ox-Metrics software 

           The daily movements of the financial market return in the study sample can be 

examined in depth, revealing that they somewhat harmonize with each other’s fluctuations. 

This indicates the existence of correlations between the returns of these markets, as illustrated 

in Figure 2. The application of natural logarithms to the indicators and calculation of their 

daily returns helps us to adjust the potential and lost outliers and achieve stability of variance, 

as these conversions allow us to focus on changes in the indicators instead of their absolute 

levels. Figure 3 shows the graphs of the returns for the markets under study.  

 
Figure 3. Charts of time series of market returns 

Source: Prepared by the researchers based on the Ox-Metrics software 

Figure 2. The movement of daily returns of the markets
Source: Prepared by the researchers based on the Ox-Metrics software
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the use of an advanced model, particularly the DECO-GARCH model.

 
Figure 2. The movement of daily returns of the markets 

Source: Prepared by the researchers based on the Ox-Metrics software 

           The daily movements of the financial market return in the study sample can be 

examined in depth, revealing that they somewhat harmonize with each other’s fluctuations. 

This indicates the existence of correlations between the returns of these markets, as illustrated 

in Figure 2. The application of natural logarithms to the indicators and calculation of their 

daily returns helps us to adjust the potential and lost outliers and achieve stability of variance, 

as these conversions allow us to focus on changes in the indicators instead of their absolute 

levels. Figure 3 shows the graphs of the returns for the markets under study.  

 
Figure 3. Charts of time series of market returns 

Source: Prepared by the researchers based on the Ox-Metrics software 

Figure 3. Charts of time series of market returns
Source: Prepared by the researchers based on the Ox-Metrics software

By considering Figure 3, we find that the visual impression indicates that there are 
varying degrees of volatility and distinct periods of prominent price movements. It is 
apparent that huge returns are likely to be accompanied by large returns in the other 
markets, whereas small returns typically result in near low returns in the other markets. 
Statistically, the combination of fluctuations indicates a strong subjective correlation in 
the quadratic return.

4.2. DECO-GARCH model estimation results

Here, we record the time-varying connections between the analyzed markets, utilizing a 
multidimensional ARMA-GARCH model within a DECO-GARCH framework, which 
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was estimated by using the Student distribution for a lack of normal distribution for 
market returns. In Table 2, the intervals were established based on the lowest possible 
values of information criteria (AIC) and Schwartz (sic), resulting in ARMA (1,0)-GARCH 
(1,1) models suited for all analyzed market data series. The first column (A) of Table 2 
demonstrates that both the (arch) or (GARCH) indices for all examined marketplaces are 
of statistical significance at the 1% level. All series are near to one and statistically sig-
nificant, thereby demonstrating that the conditional associations of fluctuation continue to 
exist across time. The DECO-GARCH model results are reported in section B of Table 2.

The dynamic coefficient of correlation is statistically highly meaningful (0.143664), 
thus indicating a modest degree of market integration. In a nutshell, the coefficient of 
variation (a DECO-GARCH) is positive and substantial, indicating the relevance of 
cross-market innovations. Likewise, the coefficient (b DECO-GARCH) shows statistical 
significance in all cases, which indicates high correlation and the impossibility of the 
stability of fluctuations between markets. In other words, equal relations depend greatly 
on previous relations for the financial markets of the study sample. In addition, the total 
estimations of (a DECO-GARCH) or (b DECO-GARCH) are approximately equal to 
one, indicating that there is an ongoing equilibrium between each of the financial markets 
indicator for the study sample; in other words, it becomes clear that the changes in the 
first variable quickly follow the changes in the second variable and vice versa, and so the 
system becomes balanced and stable as financial markets indicators are equally affected 
by the indicate changes of the other financial market. This, therefore, indicates that the 
dynamic correlation is strong between these indicators; moreover, the significance of the 
two variables emphasizes the suitability of the DECO-GARCH model, and thus we can 
confirm that the DECO-GARCH variables lie within the range of the normal standard 
estimates derived from the models used in GARCH (1,1). This suggests that the compa-
rable position (correlations) throughout the market segments (variables) considered will 
be constant. These findings are in accord with the research conducted by Aboura and 
Chevallier (2014), Kang et al. (2019) and Li et al. (2020).

The diagnostic tests, as well as the Ljung-Box test results for the normalized square 
residues, are presented in Table 2 section C. These tests fail to dismiss the idea of a null 
hypothesis (H0) since there is no serial tracking for every scenario, which implies that the 
residuals do not reflect any sequential tracking. In addition, we performed the ARCH-LM 
univariate testing on the remainders to determine if the arch effect continued to exist in 
the model. During the research period, we observed that the arch effect caused no issues 
for any of the couples. The findings of the Hosking, McLeod, and Li tests likewise sup-
port the null hypothesis (H0), as there are no consecutive connections in the conditioned 
variations calculated by using the DECO-GARCH model.

Figure 4 describes the dynamic equal correlation between the volatility of the studied 
market returns. The line graph indicates a change over time, with a maximum association 
level of 5% to 35%. It is also clear that the volatility of the daily index returns experienced 
significant changes over time between highs and lows, which further emphasizes the 
need for a dynamic approach to managing international investment portfolios, because 
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variations in the yield correlation can have a major infl uence on portfolio risk evaluation 
and the possibility of risk reduction through diversifi cation. More importantly, we note a 
sharp rise in equal relations (correlations) during times of fi nancial crisis and turmoil, such 
as the European economic crisis and the fall of the Shanghai Composite (Chinese stock 
market) in 2015–2016, and the Corona epidemic catastrophe (COVID-19) in 2020–2021.
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This means that the transmission of infection between fi nancial markets, and the reason 
for this, is that, during major crises, investors increase their interaction with fi nancial mar-
kets, which results in a rapid exchange of information and increased international trading, 
and that the political and economic decisions taken by central banks and governments 
during crises can aff ect all fi nancial markets simultaneously; therefore, the interdepend-
ence between them increases signifi cantly. In addition, it is the increasing movement of 
investors in times of crisis towards assets that are considered safe or resistant to risks, 
such as gold and government bonds, which results in a simultaneous motion in the stock 
market, and a reform, which, in turn, leads to a rise in the dynamically equal conditional 
relationship between the earnings of fi nancial economies. Overall, the fl uid conditioned 
equality between the investigated markets fl uctuated substantially during the time frame 
of study, These fi ndings lend credence to the notion of the infl uence of infection, which 
has been defi ned as a considerable rise in the connection between the stock markets in 
diff erent nations during times of crisis and economic instability (Hung, 2020); (Kang et al., 
2019). Figure 5 confi rms the high common volatility of the yields of the studied indicators.

Looking at Figure 5, we can understand the reasons for the presence of dynamic equal 
conditioned correlation between indicators of Arab fi nance markets, which is the closeness 
of their responses to regional and international situations. Arab fi nancial markets are linked 
to each other by increasing trade exchange among them, as well as to Arab political, eco-
nomic, and fi nancial decisions potentially having an impact on the performance of their 
fi nancial markets, such as through interest policies, monetary measures, and economic 
measures. Similarly, the increase of dynamic equal conditional correlations over time 
between the indicators of developed countries is due to the similarity of their responses 
to regional and international conditions.
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Figure 5. Dynamic conditional covariance between market returns

Source: Prepared by the researchers based on the Ox-Metrics software
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As for the correlations between yield fl uctuations and the common movement ap-
parent between certain Arab fi nancial market indices, US stock market indices and the 
Chinese Shanghai index were aff ected by global political and economic events, such as 
the worldwide fi nancial crisis, or changes in commodities, such as oil prices, which have 
a signifi cant impact on fi nancial market performance. In addition, developments in the 
fi nancial technology (fi nancial globalization) and the increasing integration of global 
fi nancial markets have increased the speed of the transfer of fi nancial information. This, 
in turn, infl uences capital fl ows, and hence the performance of the global stock market as 
a whole, because the economic and fi nancial events that occur today in one country will 
quickly aff ect fi nancial markets in other countries.

To highlight the uniform (equally dynamic) conditional and residual diff erences be-
tween the returns of the studied markets, we present the following fi gures:

18

increased the speed of the transfer of financial information. This, in turn, influences capital 

flows, and hence the performance of the global stock market as a whole, because the economic 

and financial events that occur today in one country will quickly affect financial markets in 

other countries. 

        To highlight the uniform (equally dynamic) conditional and residual differences between 

the returns of the studied markets, we present the following figures: 

 
Figure 6. Dynamic equal conditional differences between market returns 

Source: Prepared by the researchers based on the Ox-Metrics software 
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4.3. Correlation and prediction matrix 

         Here, we estimate the dynamic equilibrium correlation matrix with the objective to 

examine whether fluctuations arising from a change in the return of one market can cause 

fluctuations in the returns of other markets. This is achieved by imposing a positive 

determination of the main diagonal elements in the correlation matrix; Table 3 illustrates this 

as follows: 
Table 3. Estimation of the correlation matrix for market returns 

Figure 6. Dynamic equal conditional diff erences between market returns
Source: Prepared by the researchers based on the Ox-Metrics software
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4.3. Correlation and prediction matrix

Here, we estimate the dynamic equilibrium correlation matrix with the objective to ex-
amine whether fluctuations arising from a change in the return of one market can cause 
fluctuations in the returns of other markets. This is achieved by imposing a positive 
determination of the main diagonal elements in the correlation matrix; Table 3 illustrates 
this as follows:

Table 3. Estimation of the correlation matrix for market returns
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alignment and strong correlation, as well as the parallel movement among the American 
financial markets with each other. 

The results showed that the equal common dynamic correlations are positive between 
the returns of advanced global financial markets (the United States and China) and the 
returns of financial markets in Middle Eastern countries, and that fluctuations in the returns 
of American and Chinese financial markets are similarly reflected in the movements of 
returns in the financial markets of Middle Eastern countries. This result is consistent with 
such studies as Engle and Kelly (2012) and Diebold and Yilmaz (2012). 

The equally dynamic conditional correlations over time between these markets can 
be explained by the similarity of their responses to regional and international conditions. 
The apparent positive correlations between the returns of Arab financial markets can also 
be explained by the similarity of their responses to regional and international conditions 
such as fluctuations in oil prices, fluctuations in global economic growth rates, as well as 
their implementation of extensive liberalization processes, which expanded the horizon 
for Arab investors to invest in financial instruments traded in the financial markets in the 
region, not to mention their economic openness, which exposes them to external shocks 
and the contagion of financial crises. Therefore, these processes lead them to taking a role 
in the joint movement in the market return fluctuations.

We also note that there are positive correlations of 42% between the returns of the 
Saudi Stock Exchange Index (RTASI) and the returns of the RS&P500 and DJI indices. 
Similarly, the correlations between the returns of financial market indices in the UAE 
and those of the US stock market indices were high and positive This result is consistent 
with a previous study (Aboura & Chevallier, 2014). The reason for this increase could be 
the significant impact of international capital flows between these countries (international 
investment effects). Global liquidity is also an essential factor in the linkages between 
financial markets. When there is a large flow of liquidity that positively affects financial 
markets, in addition, the role of technology and the media increases the possibility of 
investors following news and developments at the same time, and, therefore, this leads 
to the spread of effects on financial markets faster.

The negative correlation between the markets apparent in Table 3, which indicates that 
the returns of each of the two markets, including a negative correlation, tend to move in 
opposite directions and to different degrees. This link may allow investors to expand their 
portfolios while reducing the total risk. The difficulties experienced by the Arab nations 
in keeping up with changes in financial globalization are the causes of the poor positive 
correlations between their indicators and those of industrialized countries.

The projections of the DECO-GARCH model provide us with the expected dynamic 
equal conditional correlations over a period of 365 days, with the first and last matrices 
of the expected correlation being presented herein, as shown in the following tables:
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Table 4. Expectations of the first correlation matrix 
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Table 5. Recent correlation matrix projections
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We note from Tables 4 and 5, which show us the expected correlation matrices for 
the expected changes in the relations (correlations) between the studied markets over the 
next 365 days, that the correlations in the first forecast are very similar to those in the 
second forecast that follows. However, the correlations in the last forecast have changed 
slightly, and therefore investors can use these expectations to predict the possible changes 
in the relations (correlations) between the study sample markets, while adjusting their 
portfolios accordingly, in order to achieve optimal diversification and risk management. 
It should be noted that these expectations are subject to a degree of uncertainty, and that 
actual correlations may differ from the expected values.

Based on the results we have obtained, financial investors in international financial 
markets can benefit from these findings in building their investment portfolios and avoid-
ing the risks of fluctuations in these markets, as it has been shown that all international 
financial markets are positively correlated, which makes the transmission of crises between 
them significant and balanced. Therefore, no investor can make any of these markets a 
safe haven for their investment in other markets.
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5. Conclusion

This study utilized the Dynamical Equivalent Connectivity (DECO-GARCH) model to 
confirm the combined movement (correlations) between the earnings of the stock mar-
ket. It differs from previous models, especially from the DCC model, in the sense that 
it uses the historical data on assets to compute the pairwise correlations of assets (joint 
return volatilities) for all assets at once as represented by the returns of US stock markets 
(RS&P500, RDJI, RIXIC), the Chinese market for shares (Shanghai) (RCS1000I), and 
the volatility of the Saudi market (RTASI), with the returns of the financial markets in 
the United Arab Emirates represented by the those of the Dubai market (RDFMGI) and 
the FTSE for the Abu Dhabi market (RFTFADGI), as well as the returns of the markets 
of Bahrain, Jordan, and Iraq (RBAX, RAMMAN, RISX60), respectively, and based on 
daily data recorded during the period from 20 March 2014 to 12 March 2024. 

The results showed that, at 96%, the returns of Market RDJI and Market RS&P500 had 
the strongest association, whilst the returns of Market RIXIC and Market RS&P500 had 
a 95% correlation. Eighty-six percent of the returns of Market RDJI and Market RIXIC 
were correlated. The returns of the RS&P 500 and DJI indices and the returns of the Saudi 
Stock Exchange Index (RTASI) have a 42% positive association. and it demonstrates that 
low positive connections between the Arab indices and those of industrialized countries 
are a result of the Arab countries’ struggles to keep up with changes in financial globali-
zation. Likewise, there were strong and positive correlations between the results of the 
US stock market indices and those of the UAE financial market indices. This outcome is 
in line with a previous study (Aboura & Chevallier, 2014), as the results demonstrated 
that there are considerable time-varying associations between these markets. We detected 
a rise in equal relationships (correlations) between the 2015–2016 and 2019–2020 time-
frames, which are the dates coinciding with the European financial crisis, the demise of 
the Chinese stock market, and the COVID-19 pandemic problem.

Generally, the state of conditional equivalency between the analyzed marketplaces 
changed substantially over the research period. These findings corroborate the notion 
of the impact of infection, which highlights the importance of considering the evolving 
nature of correlations between these markets when making asset allocation decisions. 
By using the future conditional correlation matrix, investors can modify their investment 
portfolios based on the kinds of assets they have in their portfolios and the changes in 
the returns of the worldwide financial markets over a period of 365 days. Therefore, 
investors in international financial markets and global financial decision-makers should 
consider the movements of asset returns in these markets and their impact on the global 
financial economy, as well as make their investment decisions and choose the financial 
assets through which the optimal investment portfolio is formed. Thus, it is necessary to 
hedge against future crises by investing in other markets whose asset returns are inversely 
related to the returns of assets in these markets.

Our results provide a basis for future research, which would aim to deepen our un-
derstanding of the factors and reasons that lead to increased correlations between asset 
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classes and their effects on international portfolio management, by incorporating structural 
change tests that can lead to an improved accuracy of estimated correlations and forecast-
ing performance. Incorporation of these statistical recommendations into future research 
could contribute to a more robust analysis of correlations between different asset classes 
(financial and commodity), thus developing clearer and more effective strategies for as-
set allocation in the ever-changing financial markets. Future studies can be conducted to 
be applied to financial and commodity markets in countries that share unified economic 
policies, especially in the European Union countries, ASEAN countries, MENA countries, 
and BRICS countries by using the DECO-GARCH model.

Further study could investigate the influence of macroeconomic variables and com-
modities market indicators on equivalent dynamic correlations, as well as the applicability 
of the DECO-GARCH models to additional asset classes, and the creation of innovative 
methods for improving the foreign investment portfolios based on time-varying correla-
tions. Furthermore, the inclusion of other markets – particularly commodity markets like 
those for gold and oil – as well as real estate markets in addition to financial markets is 
intended to give investors a better picture so they can build their investment portfolios in 
a way that maximizes returns and minimizes risks.

Author contributions

Wisam H. Ali Al-Anezi: formal analysis.
Ali Y. Abdullah Al-Joaani: methodology.
Abdulrazaq Shabeeb: writing – original draft.
Faisal Ghazi Faisal: writing – review and editing.

References

Aboura, S., & Chevallier, J. (2014). Volatility equicorrelation: A cross-market perspective. Economics Letters, 
122(2), 289–295. https://doi.org/10.1016/j.econlet.2013.12.008

Aboura, S., & Chevallier, J. (2017). A new weighting-scheme for equity indexes. International Review of 
Financial Analysis, 54, 159–175. https://doi.org/https://doi.org/10.1016/j.irfa.2016.11.004

Aielli, G. P. (2013). Dynamic Conditional Correlation: On Properties and Estimation. Journal of Business & 
Economic Statistics, 31(3), 282–299. https://doi.org/10.1080/07350015.2013.771027

Al-Anezi, W. H. A., Mohammed, M. T., & Asaad, B. (2021). The Impact of Financial Liberalization on the Value 
of the Bank: An Applied Study on Private Iraqi Banks for the Period 2011-2017. Webology, 18(Special 
Issue 3), 462–476. https://doi.org/10.14704/WEB/V18SI03/WEB18108

Al-Anezi, W. H., Ali Y. Abdullah Al-Joaani, Shabeeb, A., Srayyih, F. H., & Faisal, F. G. (2025). The Rela-
tionship between the Wheat Market and the Financial Market in Malaysia Using a Dynamic Conditional 
Correlation Model (DCC-GARCH). Research on World Agricultural Economy, 6(1), 367–380. https://
doi.org/10.36956/rwae.v6i1.1480

Al‑Anezi, W. H. A., Al-Joaani, A. Y. A., Faisal Ghazi Faisal, Bha Aldan Abdulsattar Faraj, & Shabeeb, A. 
(2025). Measuring the Correlations between Stock Market Returns and Commodity Returns in the United 
States Using GARCH‑M Models. Research on World Agricultural Economy, 6(2), 410–421. https://doi.
org/10.36956/rwae.v6i2.1638

Alshenawy, F., & Abdo, D. A. (2023). Using Multivariate Dynamic Conditional Correlation GARCH model 
to analysis financial market data. Journal Of Business Research, 45(4), 34–64. https://doi.org/10.21608/
zcom.2023.213791.1258



Wisam H. Ali Al-Anezi et al. Dynamic Equal Co-movements Measurement for Volatility of Returns in Financial Markets

43

Bauwens, L., & Xu, Y. (2019). DCC-HEAVY: A multivariate GARCH model based on realized variances and 
correlations. Université Catholique de Louvain.

Bauwens, L., & Xu, Y. (2023). DCC- and DECO-HEAVY: Multivariate GARCH models based on realized 
variances and correlations. International Journal of Forecasting, 39(2), 938–955. https://doi.org/10.1016/j.
ijforecast.2022.03.005

Cai, X. J., Tian, S., & Hamori, S. (2016). Dynamic correlation and equicorrelation analysis of global financial 
turmoil: evidence from emerging East Asian stock markets. Applied Economics, 48(40), 3789–3803. https://
doi.org/10.1080/00036846.2016.1145349

Creti, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. 
Energy Economics, 37, 16–28. https://doi.org/10.1016/j.eneco.2013.01.005

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of 
volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijfore-
cast.2011.02.006

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive 
conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20(3), 339–350. 
https://doi.org/10.1198/073500102288618487

Engle, R., & Kelly, B. (2012). Dynamic Equicorrelation. Journal of Business & Economic Statistics, 30(2), 
212–228. https://doi.org/10.1080/07350015.2011.652048

Hung, N. T. (2020). An analysis of CEE equity market integration and their volatility spillover effects. 
European Journal of Management and Business Economics, 29(1), 23–40. https://doi.org/10.1108/
EJMBE-01-2019-0007

Hung, N. T. (2021a). Bitcoin and CEE stock markets: fresh evidence from using the DECO-GARCH model 
and quantile on quantile regression. European Journal of Management and Business Economics, 30(2), 
261–280. https://doi.org/10.1108/EJMBE-06-2020-0169

Hung, N. T. (2021b). Directional Spillover Effects Between BRICS Stock Markets and Economic Policy Un-
certainty. Asia-Pacific Financial Markets, 28(3), 429–448. https://doi.org/10.1007/s10690-020-09328-y

Hung, N. T., Nguyen, L. T. M., & Vo, X. V. (2022). Exchange rate volatility connectedness during Covid-19 
outbreak: DECO-GARCH and Transfer Entropy approaches. Journal of International Financial Markets, 
Institutions and Money, 81(October 2021), 101628. https://doi.org/10.1016/j.intfin.2022.101628

Investing. (n.d.). https://sa.investing.com/markets
Kang, S. H., Uddin, G. S., Troster, V., & Yoon, S. M. (2019). Directional spillover effects between ASEAN 

and world stock markets. Journal of Multinational Financial Management, 52–53, 100592. https://doi.
org/10.1016/j.mulfin.2019.100592

Kregždė, A., & Kišonaitė, K. (2018). Co-Movements of Lithuanian and Central European Stock Markets 
Across Different Time Horizons: a Wavelet Approach. Ekonomika, 97(2), 55–69. https://doi.org/10.15388/
ekon.2018.1.11786

Li, R., Li, S., Yuan, D., & Yu, K. (2020). Does economic policy uncertainty in the U.S. influence stock markets 
in China and India? Time-frequency evidence. Applied Economics, 52(39), 4300–4316. https://doi.org/1
0.1080/00036846.2020.1734182

Ozdemir, O. (2022). Foreign Exchange Volatility and the Bubble Formation in Financial Markets: Evidence 
From The COVID-19 Pandemic. Ekonomika  101(1), 142–161. https://doi.org/10.15388/Ekon.2022.101.1.8

Xiao, J. (2017). Dynamic correlation among East Asian stock markets and time-varying interdependence 
between East Asian stock markets and the prices of oil and gold. Kobe University Repository.

Yilmaz, T. (2010). Improving Portfolio Optimization by DCC And DECO GARCH : Evidence from Istanbul 
Stock Exchange. Munich Personal RePEc Archive.

Zeren, F., & Yilanci, V. (2019). Are there Multiple Bubbles in the Stock Markets? Further Evidence from 
Selected Countries. Ekonomika,0 98(1), 81–95. https://doi.org/10.15388/Ekon.2019.1.5


	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Indications and their data
	3.2. Model Specifications

	4. Results and Discussion
	4.1. Descriptive statistics indicators of financial markets returns
	4.2. DECO-GARCH model estimation results
	4.3. Correlation and prediction matrix

	5. Conclusion
	Author contributions
	References



