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Abstract. This paper delves into the fundamental reasons behind the non-stationary behavior of Housing Prices 
(HP) in different regions of Türkiye, which have witnessed an intensified surge fueled by recent aggressive 
fluctuations. The primary objective is to ascertain whether the driving force behind the escalating HP stems from 
a housing bubble, or if it can be predominantly attributed to the unprecedented levels of inflation that Türkiye 
has been experiencing in recent times. This study adopted a comprehensive approach by employing advanced 
panel PANICCA and GSADF cointegration test techniques to identify the presence of common factors between 
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that the observed stationarity in HPI predominantly originates from the influence of common factors. More 
importantly, it has been revealed that disregard of the relevant common variables in the standard factor model 
may lead to misleading conclusions, such as the misidentification of housing bubbles. This underscores the 
significance of accurately accounting for the impact of common factors in order to avoid potential distortions 
in assessing market dynamics and potential risks.
Keywords: Price bubbles, house prices, inflation, panel GSADF, PANICCA.

Received: 23/12/2024. Revised: 26/05/2025. Accepted: 26/05/2025 
Copyright © 2025 Mustafa Kevser, Merve Altaylar, Ufuk Bi̇ngöl, Zaim Reha Yaşa. Published by Vilnius University Press. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

Contents lists available at Vilnius University Press

*  Correspondent author.

http://www.journals.vu.lt/ekonomika
https://doi.org/10.15388/Ekon.2025.104.3.3
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/
https://www.journals.vu.lt/


Mustafa Kevser et al. Inflation or Speculative Bubbles?

45

1. Introduction

Fluctuations in asset prices have systematically been a critical subject in economics. Re-
searchers consider extraordinary price rises to be speculative asset bubbles, characterized 
by irrational optimism and market overvaluation (Hommes et al., 2008; Gürkaynak, 2008). 
Economists have analyzed the mechanisms underlying such bubbles, while questioning 
the rationality of market participants and assessing the causes and consequences of sudden 
price surges. Beyond speculative phenomena, modern economies are facing numerous 
macroeconomic challenges, with inflation is as one of the most critical aspects. Most 
countries have adopted stringent monetary policies to combat inflation, often involving 
interest rate hikes to curtail consumption and dampen demand. In contrast, Türkiye rep-
resents an exceptional case, prioritizing economic growth through low-interest policies 
despite enduring chronic inflationary pressures.

A higher inflation disrupts economies by eroding purchasing power and exacerbating 
uncertainty. Its adverse effects are particularly acute in essential sectors such as food 
and housing, where price bubbles and imbalances can jeopardize basic human needs. 
Persistent inflation challenges societal stability, as individuals struggle with diminished 
access to affordable housing and face significant uncertainty in the market. This issue 
demands urgent attention, as price imbalances in the Housing Market (HM) often result 
from structural economic problems and can become long-term constraints on welfare.

This paper aims to identify the dominant forces shaping Türkiye’s HPs and to evalu-
ate whether inflationary pressures or speculative bubbles are the primary drivers. Unlike 
previous studies, this research integrates the PANICCA and GSADF tests to analyze the 
intricate relationship between HP and inflation in Türkiye. While these techniques are 
widely used, their application to a market characterized by extreme volatility offers unique 
insights, thereby distinguishing this study from the already existing literature by testing 
two hypotheses: (1) Inflation predominantly drives HP increases, (2) mitigation of inflation 
can stabilize the HM. Türkiye provides a compelling case study due to its sustained high 
inflation rates, reaching 85% in 2022, which is relatively higher than that of the U.S. and 
Eurozone. This chronic issue necessitates an in-depth analysis of the Turkish HM in order 
to determine whether the observed price increases are cyclical or permanent. The findings 
reveal that price increases in the Turkish HM are a direct consequence of inflation rather 
than speculative bubbles. 

This study consists of five sections. Following the introduction, the second section 
examines the existing literature. The third section presents the data and methodology em-
ployed, and shares the findings. Section four discusses the results of this research. Finally, 
the conclusion presents an evaluation of the findings and avenues for future research.

2. Literature Review

There is an extensive research on asset and HP bubbles, encompassing various markets 
and employing diverse methodologies (Gürkaynak, 2008; Ren et al., 2012; Dreger & 
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Kholodilin, 2013; Scherbina & Schlusche, 2014; Bourassa et al., 2019). These studies 
highlight the characteristics of bubbles. For instance, Ren et al. (2012) applied rational 
expectations hypothesis to the Chinese HM but found no evidence of a bubble, while Jang 
et al. (2018) demonstrated that speculative investments and rental price spillovers drive 
housing bubbles in South Korea. Vogiazas and Alexiou (2017) revealed that credit-driven 
economies trigger the propagation of real estate bubbles in OECD economies.

Macroeconomic variables play a critical role in shaping HP dynamics. Factors such as 
inflation, interest rates, credit availability, and economic growth often interact to influence 
prices (Case & Shiller, 2003; Tsatsaronis & Zhu, 2004). Malmendier and Wellsjo (2023) 
found that inflation expectations significantly drive HP, with homeowners viewing real 
estate as a hedge against inflation. Similarly, Balli et al. (2019) reported a positive cor-
relation between inflation and house price increases, noting that larger regions are more 
sensitive to shocks.

Some researchers argue that inflation may not always lead to HP increases. Katrakilidis 
and Trachanas (2012) suggest that rising inflation can deter real estate investments by 
increasing nominal costs, while Oikarinen (2009) contends that low inflation can encourage 
housing demand due to money illusion and tilt effects. Cohen and Karpavičiūtė (2017) 
even assert that inflation is not causally linked to HPs, thus emphasizing the multifaceted 
nature of these relationships.

In the Turkish context, Coskun and Jadevicius (2017) and Coskun et al. (2020) found 
no evidence of bubbles in Türkiye’s HM, by attributing price increases to lax credit regula-
tions and macroeconomic conditions. Kırca and Canbay (2022) and Akça (2023) identified 
inflation, exchange rates, and housing loans as key drivers of HP, while Korkmaz (2020) 
highlighted bidirectional causality between HP and inflation; likewise, Muddasir and 
Dondaş (2023) revealed significant correlations between HP and factors such as the GDP 
growth, interest rates, and inflation, providing insights into the economic determinants of 
HM dynamics in Türkiye. Yıldırım and Ivrendi (2021) demonstrated that monetary pol-
icy and housing demand shocks significantly influence prices. Similarly, Akpolat (2024) 
revealed that real effective exchange rates symmetrically affect housing prices.

Beyond Türkiye, researchers have explored the role of speculative bubbles and credit 
expansion in driving price increases. Jordà et al. (2020) emphasized how loose lending 
standards and credit availability encourage speculative behavior, leading to unsustainable 
HP growth. Hoffman and Schnabl (2011) linked credit expansion to price bubbles, while 
Glaeser and Nathanson (2017) demonstrated a strong correlation between credit easing 
and HP appreciation in the U.S.

There is a growing body of research in recent years on HPs for emerging markets. For 
instance, Chenguang (2025) investigates the presence of housing bubbles across six cities 
in China. The study concludes that price bubbles are observed only in the smaller cities, 
based on a classification of the cities according to their level of economic development. 
In addition to inflation, factors such as the housing demand, economic growth outlook, 
exchange rate volatility, stock market fluctuations, credit expansion, and depreciation 
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of local currencies have also been identified as key triggers of HP bubbles in emerging 
markets (Mahmoudinia et al., 2022; Chee Yin et al., 2024; Doruk, 2024). 

Collectively, these studies underscore the complex and multifaceted nature of HP dy-
namics, shaped by macroeconomic factors, speculative behavior, and policy interventions. 
This study contributes to the literature by focusing on the interplay between inflation and 
HPs in Türkiye, offering insights into how inflationary pressures shape market dynamics 
and drive price imbalances.

3. Methodology and Data

3.1. Panel unit root tests and panel right-tailed test

3.1.1. The PANICCA test process

The Data Generation Process (DGP) for the interest variable yi,t is supposed to follow a 
Common Factor (CF hereafter) model shown as (Reese and Westerlund, 2016):

Beyond Türkiye, researchers have explored the role of speculative bubbles and credit 
expansion in driving price increases. Jordà et al. (2020) emphasized how loose lending 
standards and credit availability encourage speculative behavior, leading to unsustainable HP 
growth. Hoffman and Schnabl (2011) linked credit expansion to price bubbles, while Glaeser 
and Nathanson (2017) demonstrated a strong correlation between credit easing and HP 
appreciation in the U.S. 

There is a growing body of research in recent years on HPs for emerging markets. For 
instance, Chenguang (2025) investigates the presence of housing bubbles across six cities in 
China. The study concludes that price bubbles are observed only in the smaller cities, based on 
a classification of the cities according to their level of economic development. In addition to 
inflation, factors such as the housing demand, economic growth outlook, exchange rate 
volatility, stock market fluctuations, credit expansion, and depreciation of local currencies have 
also been identified as key triggers of HP bubbles in emerging markets (Mahmoudinia et al., 
2022; Chee Yin et al., 2024; Doruk, 2024).  

Collectively, these studies underscore the complex and multifaceted nature of HP 
dynamics, shaped by macroeconomic factors, speculative behavior, and policy interventions. 
This study contributes to the literature by focusing on the interplay between inflation and HPs 
in Türkiye, offering insights into how inflationary pressures shape market dynamics and drive 
price imbalances. 

3. Methodology and Data 

3.1. Panel unit root tests and panel right-tailed test 

3.1.1. The PANICCA test process 

The Data Generation Process (DGP) for the interest variable 𝑦𝑦𝑖𝑖,𝑡𝑡 is supposed to follow a 
Common Factor (CF hereafter) model shown as (Reese and Westerlund, 2016): 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑎𝑎𝑖𝑖′𝐷𝐷𝑡𝑡,𝑝𝑝 + 𝜆𝜆𝑖𝑖′𝐹𝐹𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡 (3.1) 

where 𝐷𝐷𝑡𝑡,𝑝𝑝 is a polynomial trend structure; 𝜆𝜆𝑖𝑖 is the corresponding vector of factors; 𝐹𝐹𝑖𝑖 is an rx1 
dimensional vector of CFs, and 𝑒𝑒𝑖𝑖,𝑡𝑡 is an İdiosyncratic Error (IE hereafter). The 𝐷𝐷𝑡𝑡,𝑝𝑝 element 
involves that constant where p = 0, whereas the other element is a constant and trend where p 
= 1. With the rising findings of co-movements among HPI and major macroeconomic variables 
such as the inflation rate, exchange rate (e.g., Katrakilidis and Trachanas, 2012; Christou et al., 
2019; Xu and Zhang, 2023), this approach seems emphatically acceptable then to allow for 
additional variables (in other words, covariate), as proposed by Reese and Westerlund (2016). 
Hence, a vector of covariates demonstrated as 𝑥𝑥𝑖𝑖,𝑡𝑡 is described with the following DGP: 

𝑥𝑥𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖′𝐷𝐷𝑡𝑡,𝑝𝑝 + 𝛿𝛿𝑖𝑖′𝐹𝐹𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡 (3.2) 

where 𝑥𝑥𝑖𝑖,𝑡𝑡 is an m×1 dimensional vector of covariates; 𝑢𝑢𝑖𝑖,𝑡𝑡 is an m×1 dimensional vector of IE. 
Eventually, 𝑥𝑥𝑖𝑖,𝑡𝑡 is supposed to share the CFs of 𝑦𝑦𝑖𝑖,𝑡𝑡, and then the DGP for the mixed variables 
demonstrates:  

𝑧𝑧𝑖𝑖,𝑡𝑡 = В𝑖𝑖′𝐷𝐷𝑡𝑡,𝑝𝑝 + 𝜑𝜑𝑖𝑖
′𝐹𝐹𝑡𝑡 + 𝜈𝜈𝑖𝑖,𝑡𝑡 (3.3) 

	 (3.1)
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Here, Вi = (ai βi); φt,p = (λi δi) following the rx(m+1) matrix dimension and, νi,t = (ei,t; ui,t)′. 
Reese and Westerlund (2016) suggest that, since the first differenced interest variable, 
which removes any uncertainty concerning its order of integration, is employed in the 
estimation procedure, then, any proposed method for CF models can be applied to estimate 
Eq. (3.3). Reese and Westerlund (2016) also estimated 

Here, В𝑖𝑖
  =(𝑎𝑎𝑖𝑖

 𝛽𝛽𝑖𝑖); 𝜑𝜑𝑡𝑡,𝑝𝑝 = (λ𝑖𝑖𝛿𝛿𝑖𝑖) following the rx(m+1) matrix dimension and, 𝜈𝜈𝑖𝑖,𝑡𝑡=(𝑒𝑒𝑖𝑖,𝑡𝑡; 𝑢𝑢𝑖𝑖,𝑡𝑡)′. 
Reese and Westerlund (2016) suggest that, since the first differenced interest variable, which 
removes any uncertainty concerning its order of integration, is employed in the estimation 
procedure, then, any proposed method for CF models can be applied to estimate Eq. (3.3). Reese 
and Westerlund (2016) also estimated 𝑒̂𝑒𝑖𝑖,𝑡𝑡 = 𝜌𝜌𝑒̂𝑒𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 and 𝐹̂𝐹𝑡𝑡 = 𝜌𝜌𝐹̂𝐹𝑡𝑡 + 𝜖𝜖𝑡𝑡 with the null 
hypothesis of 𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌𝑘𝑘 = 1. Three test statistics are suggested by the unit root test of 
𝑒̂𝑒𝑖𝑖,𝑡𝑡 each for 𝑝𝑝 = 0, and 𝑝𝑝 = 1 are demonstrated as 𝑃𝑃𝑎𝑎,𝑝𝑝, 𝑃𝑃𝑏𝑏,𝑝𝑝, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 (Panel Modified 
Sargan–Bhargava) tests. When 𝑝𝑝 = 0 (in Equations 3.4 and 3.5): 

𝑃𝑃𝑎𝑎,𝑝𝑝=0 = √𝑁𝑁𝑁𝑁(𝜌̂𝜌0
+−1)

√2𝜑̂𝜑𝜀𝜀4

𝜔̂𝜔𝜀𝜀4

; 𝑃𝑃𝑏𝑏,𝑝𝑝=0 = √𝑁𝑁𝑁𝑁(𝜌̂𝜌0
+−1)

√
𝜑̂𝜑𝜀𝜀4

[𝜔̂𝜔𝜀𝜀𝑁𝑁−1𝑇𝑇−2 ∑ (𝑒̂𝑒𝑖𝑖,−1
0 )𝑁𝑁

𝑖𝑖=1  ′𝑒̂𝑒𝑖𝑖,−1
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(3.7) 

where, 𝜌̂𝜌0
+ and 𝜌̂𝜌1

+ are AR(1) coefficients, respectively, computed as  𝜌̂𝜌0
+ = 𝜌̂𝜌0 +

𝜏̂𝜏𝜀𝜀
𝑁𝑁𝑁𝑁−1 ∑ (𝑒̂𝑒𝑖𝑖,−1

0 )′𝑁𝑁
𝑖𝑖=1 𝑒̂𝑒𝑖𝑖,−1
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+ = 𝜌̂𝜌1 + 3𝜎̂𝜎𝜀𝜀2

𝑇𝑇𝜔̂𝜔𝜀𝜀2
 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 

∆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝑐𝑐𝑖𝑖𝑦̅𝑦𝑡𝑡−1 + 𝑑𝑑𝑖𝑖∆𝑦̅𝑦𝑡𝑡 + 𝑢𝑢𝑖𝑖𝑖𝑖 (3.8) 
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𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 
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Here, В𝑖𝑖
  =(𝑎𝑎𝑖𝑖

 𝛽𝛽𝑖𝑖); 𝜑𝜑𝑡𝑡,𝑝𝑝 = (λ𝑖𝑖𝛿𝛿𝑖𝑖) following the rx(m+1) matrix dimension and, 𝜈𝜈𝑖𝑖,𝑡𝑡=(𝑒𝑒𝑖𝑖,𝑡𝑡; 𝑢𝑢𝑖𝑖,𝑡𝑡)′. 
Reese and Westerlund (2016) suggest that, since the first differenced interest variable, which 
removes any uncertainty concerning its order of integration, is employed in the estimation 
procedure, then, any proposed method for CF models can be applied to estimate Eq. (3.3). Reese 
and Westerlund (2016) also estimated 𝑒̂𝑒𝑖𝑖,𝑡𝑡 = 𝜌𝜌𝑒̂𝑒𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 and 𝐹̂𝐹𝑡𝑡 = 𝜌𝜌𝐹̂𝐹𝑡𝑡 + 𝜖𝜖𝑡𝑡 with the null 
hypothesis of 𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌𝑘𝑘 = 1. Three test statistics are suggested by the unit root test of 
𝑒̂𝑒𝑖𝑖,𝑡𝑡 each for 𝑝𝑝 = 0, and 𝑝𝑝 = 1 are demonstrated as 𝑃𝑃𝑎𝑎,𝑝𝑝, 𝑃𝑃𝑏𝑏,𝑝𝑝, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 (Panel Modified 
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 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 
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unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
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(Panel Modified Sargan–Bhargava) tests. When p = 0 (in Equations 3.4 and 3.5):
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Here, В𝑖𝑖
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(3.7) 

where, 𝜌̂𝜌0
+ and 𝜌̂𝜌1

+ are AR(1) coefficients, respectively, computed as  𝜌̂𝜌0
+ = 𝜌̂𝜌0 +

𝜏̂𝜏𝜀𝜀
𝑁𝑁𝑁𝑁−1 ∑ (𝑒̂𝑒𝑖𝑖,−1

0 )′𝑁𝑁
𝑖𝑖=1 𝑒̂𝑒𝑖𝑖,−1

0  and 𝜌̂𝜌1
+ = 𝜌̂𝜌1 + 3𝜎̂𝜎𝜀𝜀2

𝑇𝑇𝜔̂𝜔𝜀𝜀2
 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 

∆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝑐𝑐𝑖𝑖𝑦̅𝑦𝑡𝑡−1 + 𝑑𝑑𝑖𝑖∆𝑦̅𝑦𝑡𝑡 + 𝑢𝑢𝑖𝑖𝑖𝑖 (3.8) 
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𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 
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 𝛽𝛽𝑖𝑖); 𝜑𝜑𝑡𝑡,𝑝𝑝 = (λ𝑖𝑖𝛿𝛿𝑖𝑖) following the rx(m+1) matrix dimension and, 𝜈𝜈𝑖𝑖,𝑡𝑡=(𝑒𝑒𝑖𝑖,𝑡𝑡; 𝑢𝑢𝑖𝑖,𝑡𝑡)′. 
Reese and Westerlund (2016) suggest that, since the first differenced interest variable, which 
removes any uncertainty concerning its order of integration, is employed in the estimation 
procedure, then, any proposed method for CF models can be applied to estimate Eq. (3.3). Reese 
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 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 
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+ and 𝜌̂𝜌1

+ are AR(1) coefficients, respectively, computed as  𝜌̂𝜌0
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0  and 𝜌̂𝜌1
+ = 𝜌̂𝜌1 + 3𝜎̂𝜎𝜀𝜀2

𝑇𝑇𝜔̂𝜔𝜀𝜀2
 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 
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of a unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, 
Pb,p, and PMSBp test statistics.
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the i.th cross-section is described as follows:
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 𝛽𝛽𝑖𝑖); 𝜑𝜑𝑡𝑡,𝑝𝑝 = (λ𝑖𝑖𝛿𝛿𝑖𝑖) following the rx(m+1) matrix dimension and, 𝜈𝜈𝑖𝑖,𝑡𝑡=(𝑒𝑒𝑖𝑖,𝑡𝑡; 𝑢𝑢𝑖𝑖,𝑡𝑡)′. 
Reese and Westerlund (2016) suggest that, since the first differenced interest variable, which 
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 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖,𝑡𝑡−1

𝑁𝑁
𝑖𝑖=1 , and 𝛥𝛥𝑦̅𝑦𝑡𝑡 = (1

𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 
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where, 𝜌̂𝜌0
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𝑇𝑇𝜔̂𝜔𝜀𝜀2
 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 
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through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
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√𝜑̂𝜑𝜀𝜀4

3

(3.5) 

and, when 𝑝𝑝 = 1 (in Equations 3.6 and 3.7): 

𝑃𝑃𝑎𝑎,𝑝𝑝=1 = √𝑁𝑁𝑁𝑁(𝜌̂𝜌1
+ − 1)

√36𝜎̂𝜎𝜀𝜀
4𝜑̂𝜑𝜀𝜀

4

5𝜔̂𝜔𝜀𝜀
8

; 𝑃𝑃𝑏𝑏,𝑝𝑝=1 = √𝑁𝑁𝑁𝑁(𝜌̂𝜌1
+ − 1)

√ 6𝜎̂𝜎𝜀𝜀
4𝜑̂𝜑𝜀𝜀

4

[5𝜔̂𝜔𝜀𝜀
6𝑁𝑁−1𝑇𝑇−2 ∑ (𝑒̂𝑒𝑖𝑖,−1

0 )𝑁𝑁
𝑖𝑖=1 ′𝑒̂𝑒𝑖𝑖,−1

0 ]

; (3.6) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝=1 =
√𝑁𝑁 (𝑁𝑁−1𝑇𝑇−2 ∑ (𝑒̂𝑒𝑖𝑖,−1

0 )′𝑒̂𝑒𝑖𝑖,−1
0 − 𝜔̂𝜔𝜀𝜀

2

6
𝑁𝑁
𝑖𝑖=1 )

√𝜑̂𝜑𝜀𝜀
4
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(3.7) 

where, 𝜌̂𝜌0
+ and 𝜌̂𝜌1

+ are AR(1) coefficients, respectively, computed as  𝜌̂𝜌0
+ = 𝜌̂𝜌0 +

𝜏̂𝜏𝜀𝜀
𝑁𝑁𝑁𝑁−1 ∑ (𝑒̂𝑒𝑖𝑖,−1

0 )′𝑁𝑁
𝑖𝑖=1 𝑒̂𝑒𝑖𝑖,−1

0  and 𝜌̂𝜌1
+ = 𝜌̂𝜌1 + 3𝜎̂𝜎𝜀𝜀2

𝑇𝑇𝜔̂𝜔𝜀𝜀2
 .  The null hypothesis, which posits the presence of a 

unit root in the idiosyncratic components across all panels, is tested by using the Pa,p, Pb,p, and 
PMSBp test statistics. 

3.1.2.CIPS panel unit root test process 

Pesaran (2007) developed a new approach to cope with the issue of cross-section dependence 
(CSD) and considered a one-factor structure with heterogeneous loading factors for residual 
series. On the other hand, the test extends the classic Augmented Dickey-Fuller (ADF) 
regression with the CSD mean of lagged levels, and first-differences of the series (Dickey & 
Fuller, 1979). If residual series are not serially correlated, the model used for the i.th cross-
section is described as follows: 

∆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝑐𝑐𝑖𝑖𝑦̅𝑦𝑡𝑡−1 + 𝑑𝑑𝑖𝑖∆𝑦̅𝑦𝑡𝑡 + 𝑢𝑢𝑖𝑖𝑖𝑖 (3.8) 

where 𝑦̅𝑦𝑡𝑡−1 = (1
𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖,𝑡𝑡−1

𝑁𝑁
𝑖𝑖=1 , and 𝛥𝛥𝑦̅𝑦𝑡𝑡 = (1

𝑁𝑁) ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . 𝑡𝑡𝑖𝑖 (𝑁𝑁, 𝑇𝑇) statistics are calculated 

through 𝜌𝜌𝑖𝑖 in Equation (3.8). Pesaran (2007) unit root test is based on the individual cross-
sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also truncated 
version of this statistic, denoted by CADF*) works as follows: 

. ti (N,T) statistics are calculated 
through ρi in Equation (3.8). Pesaran (2007) unit root test is based on the individual 
cross-sectionally ADF statistics (CADF). CADF statistic (let us remark that there is also 
truncated version of this statistic, denoted by CADF*) works as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	
(3.9)
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Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes.

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li 
et al., 2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root 
test contributed to the development of GSADF. As emphasized by Khan et al. (2021); El 
Montasser et al. (2018); Bettendorf & Chen (2013), the GSADF test does not lose power 
when the time series analyzed is long, even in the case of multiple bubble scenarios. This 
is critical in the long period adopted in this study. The GSADF test (time series format) 
procedure is defined as follows (Phillips et al., 2015; Caspi, 2017; Hu & Oxley, 2018):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	 (3.10)

In Eq. (3.10), r0 is the min. length of the Test Window (TW); r1 is the start point of TW; 
r2 is the end point of TW, and ADF is the standard ADF test statistic value. The test sta-
tistic’s value takes into account not only the change at the test’s endpoint but also various 
starting points for TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases 
when the GSADF statistic crosses the critical values obtained by Bootstrap methods or 
MC simulations. If the GSADF test statistic falls below the obtained critical value, there 
is no significant evidence for rejecting the null hypothesis of the absence of bubbles. In 
case bubbles are detected within the analyzed feature, the next step involves utilizing the 
backward SADF (BSADF) test to pinpoint the date when these bubbles emerged. This 
process is also explained in (Phillips et al., 2015), and the calculation way for the presently 
mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and Oxley, 2018):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	 (3.11)

What regards the part of this research which is related to prices bubbles, the investiga-
tion of the individual 26 HPI series for the analyzed aspects, the bubble analysis was also 
conducted for the panel data format, and the technique for detecting and date-stamping 
bubbles was employed. The value of the panel BSADF (abbreviated as PBSADF here-
after) test statistic and the value of the panel GSADF test (PGSADF hereafter) statistic, 
employed to identify the temporal occurrence of price bubbles, for N individual series 
were defined as follows, respectively (Vasilopoulos et al., 2020):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	
(3.12)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	 (3.13)

The following method is suggested to calculate the r0 value in (3.10), (3.11), (3.12), 
and (3.13) (Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022):
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝑁𝑁 ∑ 𝑡𝑡𝑖𝑖(𝑁𝑁, 𝑇𝑇)

𝑁𝑁

𝑖𝑖=1
(3.9) 

Pesaran (2007) proposed simulated critical values of CIPS for various sample sizes. 

3.1.3. Panel generalized supremum ADF (GSADF) right tailed test 

To catch price bubbles, we employ the GSADF procedure proposed by Phillips et al. (2015) 
since GSADF was a more effective process in an attempt to identify multiple bubbles (Li et al., 
2020; Su et al., 2020). The Supremum ADF (SADF) and standard ADF unit root test contributed 
to the development of GSADF. As emphasized by Khan et al. (2021); El Montasser et al. (2018); 
Bettendorf & Chen (2013), the GSADF test does not lose power when the time series analyzed 
is long, even in the case of multiple bubble scenarios. This is critical in the long period adopted 
in this study. The GSADF test (time series format) procedure is defined as follows (Phillips et 
al., 2015; Caspi, 2017; Hu & Oxley, 2018): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1],𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.10) 

In Eq. (3.10), 𝑟𝑟0is the min. length of the Test Window (TW); 𝑟𝑟1is the start point of TW; 𝑟𝑟2 is the 
end point of TW, and ADF is the standard ADF test statistic value. The test statistic’s value 
takes into account not only the change at the test’s endpoint but also various starting points for 
TW (Su et al., 2020; Potrykus, 2023). Price bubbles arise in cases when the GSADF statistic 
crosses the critical values obtained by Bootstrap methods or MC simulations. If the GSADF 
test statistic falls below the obtained critical value, there is no significant evidence for rejecting 
the null hypothesis of the absence of bubbles. In case bubbles are detected within the analyzed 
feature, the next step involves utilizing the backward SADF (BSADF) test to pinpoint the date 
when these bubbles emerged. This process is also explained in (Phillips et al., 2015), and the 
calculation way for the presently mentioned test is as outlined in Eq. 3.11 (Caspi, 2017; Hu and 
Oxley, 2018): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟2(𝑟𝑟0) = sup
𝑟𝑟1∈[0,𝑟𝑟2−𝑟𝑟0]

  𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟1
𝑟𝑟2  (3.11) 

What regards the part of this research which is related to prices bubbles, the investigation of the 
individual 26 HPI series for the analyzed aspects, the bubble analysis was also conducted for 
the panel data format, and the technique for detecting and date-stamping bubbles was employed. 
The value of the panel BSADF (abbreviated as PBSADF hereafter) test statistic and the value 
of the panel GSADF test (PGSADF hereafter) statistic, employed to identify the temporal 
occurrence of price bubbles, for N individual series were defined as follows, respectively 
(Vasilopoulos et al., 2020): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2 (𝑟𝑟0) = 1
𝑁𝑁 ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑟𝑟2

𝑁𝑁

𝑖𝑖=1
(𝑟𝑟0)

(3.12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟0) = sup
𝑟𝑟2∈[𝑟𝑟0,1]

  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟2
 (𝑟𝑟0)  (3.13) 

The following method is suggested to calculate the 𝑟𝑟0 value in (3.10), (3.11), (3.12), and (3.13) 
(Phillips et al., 2015; Caspi, 2017; Vasilopoulos et al., 2022): 

𝑟𝑟0 = (0.01 + 1.8
√𝑇𝑇

) ∗ 𝑇𝑇 (3.14) 

	
(3.14)

where T is the time dimensional (number of observations).

3.2. Panel cointegration analysis

Pedroni (1999, 2004) developed a residual-based cointegration test for the null hypothesis 
of cointegration relationship for dynamic panels with multiple features in which the long-
run coefficients and the short-run dynamics are permitted to be non-homogenous across 
groups (individuals). This cointegration test allows for individual heterogeneous Fixed 
Effects (FEs) and trend (deterministic), while no exogeneity restrictions are imposed on 
the features of the cointegrating equations. This test requires residual estimation from the 
cointegrating long-run relation for yit (Pedroni, 1999, 2004; Barbieri, 2009):

where T is the time dimensional (number of observations). 

3.2. Panel cointegration analysis 

Pedroni (1999, 2004) developed a residual-based cointegration test for the null hypothesis of 
cointegration relationship for dynamic panels with multiple features in which the long-run 
coefficients and the short-run dynamics are permitted to be non-homogenous across groups 
(individuals). This cointegration test allows for individual heterogeneous Fixed Effects (FEs) 
and trend (deterministic), while no exogeneity restrictions are imposed on the features of the 
cointegrating equations. This test requires residual estimation from the cointegrating long-run 
relation for 𝑦𝑦𝑖𝑖𝑖𝑖 (Pedroni, 1999, 2004; Barbieri, 2009): 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑡𝑡 + 𝛽𝛽1𝑖𝑖𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝑥𝑥2𝑖𝑖𝑖𝑖 + ⋯ + 𝛽𝛽𝐾𝐾𝐾𝐾𝑥𝑥𝐾𝐾𝐾𝐾𝐾𝐾 + 𝑒𝑒𝑖𝑖𝑖𝑖  ; i=1,…,N ; t=1,…,T and k=1,…,K (3.15) 

where T is the time dimensional, N is the number of individuals, and K is the number of 
independent variables 𝑦𝑦𝑖𝑖𝑖𝑖, whereas 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘 is assumed to be first-degree integrated for each 
individual of the panel, and under the null hypothesis of no cointegration. Also, in the equation, 
𝑎𝑎𝑖𝑖 and 𝛿𝛿𝑖𝑖 are FEs and individuals-based linear deterministic trend, respectively, and 𝛽𝛽𝑘𝑘𝑘𝑘 
parameters are the slopes. In this test, Pedroni (1999, 2004) employs seven statistics. Four of 
these are based on within-dimension (panel) statistics: the panel t-statistic (nonparametric), the 
panel t-statistic (parametric), the panel ρ-statistic, and the panel v-statistic. The remaining three 
statistics are based on between-dimension (group) statistics: the group t-statistic 
(nonparametric), the group t-statistic (parametric), and the group ρ-statistic.   

3.3. Data description 

This study evaluates the behavior of HPIs in Türkiye with the monthly data from January 
2010 to January 2023. The HPIs data were collected from the Turkish Central Bank (CBRT) 
Electronic Data Delivery System (EVDS) (Table 1). 

Table 1. Information about data 

Variables Number of Regions Abbreviation Transformation Data Sources 

Housing Prices Index 26 HPI Raw (Non-inflation 
adjustment) EVDS 

Real Housing Prices 
Index 26 RHPI Inflation 

Adjustment EVDS 

Real Hedonic New 
Housing Prices Index 3 RHNHPI Inflation 

Adjustment By authors 

Real Hedonic Non-new 
Housing Prices Index 3 RHNNHPI Inflation 

Adjustment By authors 

Hedonic New Housing 
Prices Index 3 HNHPI Raw (Non-inflation 

adjustment) EVDS 

Hedonic Non-New 
Housing Prices Index 3  HNNHPI Raw (Non-inflation 

adjustment) EVDS 

Consumer Prices Index Non-regional CPI Raw EVDS 

The HPI value (2010=100), as provided by EVDS, is divided into hedonic and non-
hedonic HPI. The non-hedonic HPI is available for all 26 regions in Türkiye (please see the 
metadata). 

The hedonic HPI is divided into two subcategories: new dwellings and existing 
dwellings. It is available only for the three larger cities in Türkiye, namely Istanbul, Ankara, 
and Izmir. The general HPI covering 26 regions and the hedonic new HPI covering three 

;
i = 1,…,N; t = 1,…,T and k = 1,…,K	 (3.15)

where T is the time dimensional, N is the number of individuals, and K is the number 
of independent variables yit, whereas xkit is assumed to be first-degree integrated for 
each individual of the panel, and under the null hypothesis of no cointegration. Also, 
in the equation, ai and δi are FEs and individuals-based linear deterministic trend, re-
spectively, and βki parameters are the slopes. In this test, Pedroni (1999, 2004) employs 
seven statistics. Four of these are based on within-dimension (panel) statistics: the panel 
t-statistic (nonparametric), the panel t-statistic (parametric), the panel ρ-statistic, and the 
panel v-statistic. The remaining three statistics are based on between-dimension (group) 
statistics: the group t-statistic (nonparametric), the group t-statistic (parametric), and the 
group ρ-statistic.  

3.3. Data description

This study evaluates the behavior of HPIs in Türkiye with the monthly data from Janu-
ary 2010 to January 2023. The HPIs data were collected from the Turkish Central Bank 
(CBRT) Electronic Data Delivery System (EVDS) (Table 1).

The HPI value (2010=100), as provided by EVDS, is divided into hedonic and non-he-
donic HPI. The non-hedonic HPI is available for all 26 regions in Türkiye (please see 
the metadata).

The hedonic HPI is divided into two subcategories: new dwellings and existing dwell-
ings. It is available only for the three larger cities in Türkiye, namely Istanbul, Ankara, and 
Izmir. The general HPI covering 26 regions and the hedonic new HPI covering three prov-
inces and the hedonic non-new HPI were adjusted for inflation. In this process, adjustment 
techniques similar to those employed in Glaeser and Nathanson (2017)’s study1 were used. 

1	  The real price index is calculated by using the inflation-adjusted nominal price index.

https://www.tcmb.gov.tr/wps/wcm/connect/b4628fa9-11a7-4426-aee6-dae67fc56200/KFE-Metaveri.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-b4628fa9-11a7-4426-aee6-dae67fc56200-pknSQXN
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Table 1. Information about data

Variables Number of 
Regions

Abbreviation Transformation Data Sources

Housing Prices Index 26 HPI
Raw (Non-inflation 

adjustment)
EVDS

Real Housing Prices Index 26 RHPI Inflation Adjustment EVDS
Real Hedonic New 
Housing Prices Index

3 RHNHPI Inflation Adjustment By authors

Real Hedonic Non-new 
Housing Prices Index

3 RHNNHPI Inflation Adjustment By authors

Hedonic New Housing 
Prices Index

3 HNHPI
Raw (Non-inflation 

adjustment)
EVDS

Hedonic Non-New Housing 
Prices Index

3 HNNHPI
Raw (Non-inflation 

adjustment)
EVDS

Consumer Prices Index
Non-

regional
CPI Raw EVDS

4. Results

Table 2 illustrates a summary of the variables. The peaks of HPIs and inflation coincide 
with the latter stages of the current period without exception. Furthermore, the HPIs and 
the max. and min. points ​​of inflation in Türkiye changed significantly.

Table 2. Descriptive statistics

Variables Observation (NxT) Mean Median St. Deviation Maximum Minimum
HPI 4.082 (26x157) 127.6137 92.4000 120.7135 1072 36
RHPI 4.082 (26x157) 61.8202 52.9161 64.4403 756.2908 -271.562
CPI 157 (1x157) 364.8669 261.76 220.8546 1203.48 174.07
RHNNHPI 471 (3x157) 57.9476 50.3116 59.5608 603.2897 -258.964
RHNHPI 471 (3x157) 60.2455 51.2691 62.0965 573.5661 -253.511
HNHPI 471 (3x157) 129.4932 90.30 140.4061 854.10 35.9
HNNHPI 471 (3x157) 121.1724 90.50 119.4296 717.60 35.9

Before proceeding with the panel right tailed test (panel GSADF test for explosive 
behaviors), we investigate the stationarity of variables, and the CIPS and PANICCA for 
exploring unit roots are utilized. The core superiority of the second generation tests is 
that they are able to allow for CSD. CSD between series can lead these tests to overreject 
the null hypothesis of a unit root (O’Connell, 1998), and we examine the significance 
of CSD by utilizing the Breusch and Pagan (1980)’s LM test before employing panel 
unit root tests.
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Table 3. Cross-section dependence (CSD) test results

Variables LM Test Statistics p-value
HPI 50728.76*** 0.0000
RHPI 49226.52*** 0.0000
RHNNHPI 457.6091*** 0.0000
RHNHPI 465.6886*** 0.0000
HNHPI 468.5942*** 0.0000
HNNHPI 468.8020*** 0.0000

Note. *** indicates significance level for 0.01.

LM test results provide compelling evidence of a significant CSD in HPI across regions 
in Türkiye in Table 3. The results imply that HPs across all 26 regions are interconnected, 
thus suggesting that price fluctuations in one region influence those in others. CSD demon-
strates the absence of independence between regions and highlights the potential for price 
movements to propagate across the HM. CSD emerges as a result of shared economic 
factors, regional linkages, or the transmission of macroeconomic shocks nationwide. 
The LM test result demonstrates a strong interdependence among the HPI of the regions, 
reflecting the interconnected nature of the HM. Therefore, second generation panel unit 
root tests should be employed in the rest of the analysis in order to avoid the tendency to 
overreject the unit root hypotheses.

4.1. Stationary analysis and bubble detection

We first apply a conventional second generation panel unit root test (i.e., CIPS) for the 
HPIs, as presented in Table 4. The CIPS test is employed to evaluate the stationarity pro-
cess of both inflation-adjusted and non-inflation-adjusted HP indices, aiming to identify 
their mean reverting behaviors or deviations from the mean over time. Such behaviors are 
critical, as non-mean reverting movements may correspond to the unit root process, but 
they can also imply an explosive root behavior associated with speculative price bubbles. 
Rejection of the null hypothesis indicates a stationary process, where bubble dynamics 
are not significant. However, failure to reject the null hypothesis suggests that the process 
may either exhibit unit root characteristics, or potentially include explosive root behaviors.

Table 4. Panel unit root test results

Variables CIPS Statistics (Level) CIPS Statistics (I. Difference)
Intercept Intercept & Trend Intercept Intercept & Trend

HPI -1.216 -1.386 -5.714*** -5.893***
RHPI -5.342*** -5.940*** - -
RHNNHPI -5.967*** -6.420*** - -
RHNHPI -5.443*** -5.699*** - -
HNHPI -1.050 -0.253 -6.190*** -6.420***
HNNHPI      -0.918         -1.865 -6.189*** -6.355***

Note. i. *** indicates a significance level for 0.01.
ii. ‘-’ indicates variables for which the difference operation is not applied (i.e., it is not required).
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The findings based on the CIPS test demonstrate that the RHPI, RHNNHPI, and 
RHNHPI, which represent the HPI adjusted for inflation, are stationary, while the varia-
bles HPI, HNHPI, and HNNHPI, which are not adjusted for inflation, are non-stationary 
(I(1)). This finding is extremely critical because all inflation-adjusted HPIs move under a 
stationary process, and it clearly reveals that inflation significantly directs the uncertainty 
level of HPIs. 

Table 5. Panel GSADF test results

Variables t Statistics Sieve Bootstrap 
CV 90

Sieve Bootstrap 
CV 95

Sieve Bootstrap 
CV 99 Ongoing

HPI  24.9810*** 0.4828 0.5354 0.6330 Yes
RHPI -0.1500 0.0476 0.0573 0.0936 -
RHNNHPI  0.1588 0.3438 0.4589 0.7574 -
RHNHPI  0.5216 0.5522 0.6951 0.9617 -
HNHPI  6.2284** 5.0735 5.9653 9.6983 Yes
HNNHPI  5.1207** 3.8683 4.4891 6.3443 Yes

 Note. ** and *** indicate significance levels 0.05 and 0.01, respectively.
 
The panel GSADF test is a recently developed method to identify explosive behaviors 

and price bubbles in the panel data operating under the null hypothesis of no speculative 
bubbles. A main advantage of the panel GSADF test is its ability to detect multiple bubbles 
over time while accounting for dependency between regions, which makes it particularly 
appropriate for interconnected markets, such as Türkiye’s 26 regions where interdepend-
ence has been detected. Moreover, the test effectively captures both the emergence and 
persistence of speculative price behaviors, providing findings into Türkiye’s HM.

The results of the panel GSADF test for HPIs provide strong evidence that there is 
no presence of any rational price bubble in inflation-adjusted HPIs, while, in non-infla-
tion-adjusted indices, they indicate the existence of an ongoing price bubble. The findings 
are parallel to expectations since the ongoing inflation problem in Türkiye is also reflected 
in the HPIs through the market.

Table 6 demonstrates the findings of the Pedroni2 panel cointegration analysis. It is 
clearly observed from both the panel and the group statistics that there is cointegration 
between non-inflation-adjusted indices and inflation. Therefore, HPIs and inflation possess 
common factors. To robustly check out the findings and make the analysis as detailed as 
possible, we employ tests based on common factors and idiosyncratics.

Once we have established that inflation and HPIs share common factors (see Table 6), 
we proceed to apply the PANICCA test by Reese and Westerlund (2016). This test allows 
us to conduct separate stationary analyses of the CFs and ICs.

2	  Reese and Westerlund (2016) recommend that the variable to be assigned as a covariate in the PANICCA test 
should be determined by the Pedroni panel cointegration test.



ISSN 1392-1258   eISSN 2424-6166   Ekonomika. 2025, vol. 104(3)

54

Ta
bl

e 
6.

 P
an

el
 c

oi
nt

eg
ra

tio
n 

te
st

 re
su

lts
 

H
PI

-C
PI

H
N

H
PI

-C
PI

H
N

N
H

PI
-C

PI
Pa

ne
l 

St
at

ist
ic

s
St

at
ist

ic
s

G
ro

up
 

St
at

ist
ic

s
St

at
ist

ic
s

Pa
ne

l 
St

at
ist

ic
s

St
at

ist
ic

s
G

ro
up

 
St

at
ist

ic
s

St
at

ist
ic

s
Pa

ne
l 

St
at

ist
ic

s
St

at
ist

ic
s

G
ro

up
 

St
at

ist
ic

s
St

at
ist

ic
s

v
-3

.0
54

**
*

ρ 
(rh

o)
5.

78
0*

**
v

1.
85

6
ρ 

(r
ho

)
3.

09
6*

**
v

-1
.1

28
ρ 

(rh
o)

3.
82

9*
**

ρ 
(rh

o)
4.

62
3*

**
t

8.
39

3*
**

ρ 
(r

ho
)

2.
76

6*
*

t
6.

12
2*

**
ρ 

(rh
o)

2.
72

9*
*

t
8.

81
6*

**
t

6.
61

0*
**

AD
F

6.
55

3*
**

t
4.

50
1*

**
AD

F
5.

84
2*

**
t

6.
07

1*
**

AD
F

6.
33

5*
**

AD
F

5.
04

9*
**

AD
F

4.
44

1*
**

AD
F

4.
01

0*
**

N
ot

e.
 i.

**
 a

nd
 *

**
 in

di
ca

te
 si

gn
ifi

ca
nc

e 
le

ve
ls

 0
.0

5 
an

d 
0.

01
, r

es
pe

ct
iv

el
y.

 
ii.

  C
rit

ic
al

 v
al

ue
s a

t t
he

 0
.0

5 
an

d 
0.

01
 si

gn
ifi

ca
nc

e 
le

ve
ls

 a
re

 1
.9

60
 a

nd
 2

.5
76

, r
es

pe
ct

iv
el

y.
 

Ta
bl

e 
7.

 P
A

N
IC

C
A

 p
an

el
 u

ni
t r

oo
t t

es
ts

 re
su

lts

Pa
ne

l A
. W

ith
ou

t C
ov

ar
ia

te
 

H
N

H
PI

H
PI

H
N

N
H

PI
C

om
m

on
 

Fa
ct

or
s

St
at

ist
ic

s
Id

io
sy

nc
ra

tic
C

om
po

ne
nt

s
St

at
ist

ic
s

C
om

m
on

 
Fa

ct
or

s
St

at
ist

ic
s

Id
io

sy
nc

ra
tic

C
om

po
ne

nt
s

St
at

ist
ic

s
C

om
m

on
 

Fa
ct

or
s

St
at

ist
ic

s
Id

io
sy

nc
ra

tic
C

om
po

ne
nt

s
St

at
ist

ic
s

A
D

F
12

.2
75

2
P_

a
-0

.8
79

A
D

F
11

.4
37

8
P_

a
-1

.9
33

**
A

D
F

10
.9

00
3

P_
a

0.
34

3
P_

b
-0

.9
43

P_
b

-1
.4

27
P_

b
0.

55
6

PM
SB

0.
22

4
PM

SB
-0

.5
92

PM
SB

2.
31

6
N

ot
e.

 *
* 

in
di

ca
te

s s
ig

ni
fic

an
ce

 le
ve

ls
 0

.0
5.

Pa
ne

l B
. I

nfl
at

io
n 

as
 C

ov
ar

ia
te

H
N

H
PI

H
PI

H
N

N
H

PI
C

om
m

on
 

Fa
ct

or
s

St
at

ist
ic

s
Id

io
sy

nc
ra

tic
C

om
po

ne
nt

s
St

at
ist

ic
s

C
om

m
on

 
Fa

ct
or

s
St

at
ist

ic
s

Id
io

sy
nc

ra
tic

C
om

po
ne

nt
s

St
at

ist
ic

s
C

om
m

on
 

Fa
ct

or
s

St
at

ist
ic

s
Id

io
sy

nc
ra

tic
C

om
po

ne
nt

s
St

at
ist

ic
s

M
Q

_c
-1

8.
71

3*
**

P_
a

-1
.8

36
**

M
Q

_c
8.

72
2*

**
P_

a
-8

.0
23

**
M

Q
_c

-1
9.

59
4*

**
P_

a
-1

.4
84

*

M
Q

_f
-4

.8
87

**
*

P_
b

-1
.6

65
**

M
Q

_f
-4

.6
61

**
*

P_
b

-2
.7

18
**

M
Q

_f
  -

8.
40

8*
**

P_
b

-1
.1

41
PM

SB
-0

.6
14

PM
SB

-1
.0

51
PM

SB
-0

.5
02

N
ot

e.
 *

* 
an

d 
**

* 
in

di
ca

te
 si

gn
ifi

ca
nc

e 
le

ve
ls

 0
.0

5 
an

d 
0.

01
, r

es
pe

ct
iv

el
y.



Mustafa Kevser et al. Inflation or Speculative Bubbles?

55

Table 7 Panel A presents the findings of the PANICCA test for non-inflation-adjusted 
HPI. Notably, the test procedure refrains from including a common factor. The findings 
robustly indicate that the null hypothesis, which posits the presence of a unit root, remains 
unassailable for both hedonic HPI and the HPI.

Table 7 Panel B demonstrates the findings of the PANICCA test for non-inflation-ad-
justed HPI. However, a notable distinction is made this time by incorporating inflation, 
which has been proofed as a common factor through the Pedroni Panel Cointegration 
Test (PPCT) into the test procedure. The findings unequivocally reject the null hypothesis, 
positing the presence of the unit root for both hedonic HPI and the HPI (both for common 
factors and idiosyncratic components). These results foreground the stationarity of HPIs. 
Hence, the significant finding of stationarity resulting from the inclusion of inflation as 
a common factor demonstrates that the predictability of HPI can be possible by taking 
inflation into account. This underscores the importance of considering inflationary factors 
when analyzing and forecasting HM dynamics.

5. Discussion

The findings of the LM cross-section dependence test, the CIPS panel unit root test, the 
panel GSADF explosive behavior test, PPCT, and the PANICCA unit root test provide 
six critical insights, as follows. 

Firstly, the LM statistics present strong evidence, indicating the presence of CSD in 
HPIs, irrespective of whether they are adjusted for inflation or not. Therefore, it is imper-
ative to acknowledge and into take account this identified dependence among Türkiye’s 
regions when conducting tests for stationarity and investigating price bubbles. Such 
considerations can only be effectively addressed through the application of advanced 
panel data analysis techniques. This research distinguishes itself by employing the panel 
GSADF test, which does not ignore this CSD issue, particularly in its exploration of the 
presence of price bubbles.

Secondly, in the examination of HPIs behavior, the study initially employed the CIPS 
panel unit root test, revealing strong evidence that inflation-adjusted HPIs are stationary, 
while non-adjusted indexes are non-stationary. This observation highlights the influence 
of inflation on occurring uncertainty into HPIs. Regarding the important question of 
whether housing bubbles do actually exist, the study turned to the panel GSADF test, 
which, under the assumption of CSD (with the sieve bootstrap), can detect multiple bubble 
formations. The panel GSADF statistics demonstrate the persistent presence of multiple 
bubble formations in non-adjusted HPI. However, when the inflation effect is removed 
from the HPI, the GSADF statistics fail to provide any substantiation of bubble formation 
throughout the examined period. This finding stands as a significant contribution of this 
study, as it highlights that inflation not only adds uncertainty but also creates the illusion 
of an explosive behavior with its pronounced and aggressive surges.

Thirdly, the findings obtained thus far have demonstrated the need to scrutinize infla-
tion. Thus, in the subsequent phase, we investigated the presence of a common component Ta
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between inflation and HPI (non-adjusted indexes) through the employment of the PPCT 
(it was used to determine the variable to be assigned as a covariate in the PANICCA test). 
Both the group and panel statistics of the test yielded mutually reinforcing outcomes, 
indicating the existence of shared factors between inflation and all non-adjusted HPI.

Fourthly, where there are not any covariates, the findings demonstrate that nonsta-
tionarity behavior in non-inflation adjustment HPIs of Türkiye’s regions is due to both 
the common factors (ADF and its probability) and idiosyncratic components as all the 
statistics (P_a, P_b, and PMSB) are not statistically significant. 

Fifthly, the addition of common factors alters the findings of the test for all data samples 
(according to regions). This result is a robustness check against alternative possibilities 
when evaluating the PANICCA test. These new pieces of evidence provided from the in-
clusion of common factors demonstrate that the nonstationarity behavior of HPI is linked 
to common factors. Furthermore, these findings demonstrate a remarkable alignment with 
the results acquired from the comparatively less complex CIPS test (see Table 4, where 
adjusted HPI series were stationary).

While inflation is widely recognized as the primary driver of HP fluctuations, other 
macroeconomic factors, such as interest rates (Kuttner & Shim, 2016), credit availability 
(Favara & Imbs, 2015), and demographic shifts (Zavisca & Gerber, 2016), also exert signif-
icant influence. For example, access to affordable credit can stimulate the housing demand, 
whereas demographic changes might reshape the long-term patterns of HPs. Although 
these factors are beyond the immediate focus of this study, their potential interactions 
with inflationary dynamics highlight valuable avenues for exploration in future research.

As a conclusion based on these new pieces of evidence, an attempt at ignoring the 
covariate(s) (as a macroeconomic indicator of inflation) in the panel unit root examining 
processes of regional HPIs may lead to misleading inferences. 

Conclusion 

Economic and social transformations have led to diversification of the factors influencing 
HPs. However, particularly in the context of emerging economies, it remains a subject 
of debate whether the current trends in HPs reflect the formation of a speculative bubble 
or a consequence of the broader global inflationary environment. The reason behind the 
rationale of the argument that direct inflation is the primary driver of HPs in this research 
is that Türkiye has been facing chronic inflation since its establishment. Thus, demand 
in the Turkish HM is linked directly to inflation and is utilized as a hedging tool by peo-
ple. Demand shifts caused by inflation trigger price anomalies in the market, leading to 
volatility. Our findings suggest the presence of ongoing price bubbles; however, these 
were largely attributed to the inflation effect. After purging the HP indices of inflation, no 
evidence of bubbles was found, either regionally or nationally. It shows that the observed 
price increases are driven by inflation rather than speculative behavior.

The findings align with studies such as Coskun et al. (2020) and Coskun and Jadevicius 
(2017), which also found no evidence of bubbles in Türkiye’s HM, instead attributing 
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price increases to fundamental economic factors like credit regulations, demand, and con-
struction costs. Similarly, Akça (2023) emphasizes inflation, exchange rates, and housing 
loans as key drivers of housing inflation in Türkiye. The study also corroborates results 
obtained in Yıldırım and Ivrendi (2021) and Akpolat (2024), which explore the role of 
monetary policy and macroeconomic asymmetries in shaping HPs. The assumption that 
inflation expectations directly determine or influence HPs is consistent with the findings 
of Malmendier and Wellsjo (2023). Similarly, recent research by Kırca and Canbay (2022) 
focusing on the Turkish context reached comparable conclusions. In this regard, the ex-
isting literature supports our argument that inflation stands out as a major determinant of 
HPs, particularly in developing countries, such as Türkiye. These comparisons strengthen 
the argument that Türkiye’s HM is influenced more by structural economic factors than 
by speculative bubbles. In contrast to the findings of Cohen and Karpavičiūtė (2017), 
differences might be explained by the level of socio-economic development between 
countries. Moreover, the paradigm shift like political and financial crises, uncertainties, 
population growth, changes in consumer behaviors, as discussed in Katrakilidis and Tra-
chanas (2012) and Oikarinen (2009), provide a rationale for these observed differences. 
Distinctively, this research underscores the amplifying role of speculative behavior in 
inflation-driven price surges, resonating with findings from Abildgren et al. (2018) and 
Case and Shiller (2003). However, unlike studies that focus on broader macroeconomic 
factors or sector-specific impacts (e.g., tourism in Balli et al., 2019), this study prioritizes 
inflation as the central explanatory variable. 

While our findings indicate the absence of speculative bubbles at the aggregate level, it 
is essential to acknowledge that this may lead to the possibility of micro-level speculative 
activities or short-term price fluctuations. Investigating these dynamics would necessitate 
access to high-frequency or transaction-level data, which were not available for this study. 
Future research could delve into these micro-level phenomena in order to offer a more 
detailed understanding of speculative behaviors in HMs.

The data for the study from the EVDS provides reliable and consistent macroeconomic 
indicators. Nevertheless, the dataset does not capture informal housing transactions or 
region-specific disparities, thereby potentially limiting the comprehensiveness of the 
findings. Future research could overcome these limitations by incorporating data from 
alternative and/or supplementary sources.

The analysis is restricted to Türkiye and the January 2010 to January 2023 period, 
thus limiting the generalizability of findings to other contexts or longer-term trends. Com-
parative cross-country analyses could yield valuable insights into whether these findings 
reflect universal trends or are specific to particular economic contexts.

The findings underscore the need for targeted inflation control strategies to stabilize 
the HM. Policymakers should focus on inflation mitigation by implementing monetary 
policies aimed at reducing inflation so that to address HM imbalances and price volatility. 
With this perspective, it is essential that CBRT should manage the money supply and credit 
volume through commercial banks, acting within the framework of their independence 
and their role as lenders of last resort. Implementation of higher interest rates on housing 
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loans can suppress demand in the HM, thereby contributing to a decline in prices. How-
ever, it is equally vital for policymakers to consider broader macroeconomic balances 
and support the housing supply through complementary fiscal measures. In this context, 
the coordinated use of both monetary and fiscal policy instruments is crucial to ensure 
effective and sustainable market outcomes. Additionally, development of forecasting mod-
els by incorporating inflationary trends into predictive models contributes to improving 
HM forecasts and policy planning. Housing affordability can be achieved by introducing 
subsidies, tax incentives, and affordable housing programs to mitigate the adverse effects 
of inflation on low- and middle-income households. Zoning reforms, by enhancing the 
housing supply elasticity through streamlined zoning regulations and public-private part-
nerships with the objective to increase housing availability, may be of use. 

 This study opens the way for further research on HP dynamics. The relationship be-
tween house prices and inflation is most likely bidirectional. While this study is interested 
in the impact of inflation on house prices, it must be noted that rising house prices can 
also cause inflation through their impact on household wealth and consumption. Future 
research could use structural modelling to explore these dynamics further. Additionally, 
future studies could investigate the role of migration patterns, rental price increases, and 
the total factor productivity in HMs. They may apply the methodology used in this study 
to other countries or regions with varying macroeconomic and HM conditions. These 
future studies may also explore the long-term impacts of inflationary pressures on housing 
affordability and ownership trends in emerging and developed economies. 
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