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ESTIMATION OF DEFAULT PROBABILITY
FOR LOW DEFAULT PORTFOLIOS

Laima Dzidzeviciate"
Vilnius University, Lithuania

Abstract. This article presents several approaches to estimating the probabilities of default for low default
portfolios, their advantages and disadvantages, and provides exemplary calculations using data of one exter-
nal credit register of Lithuania. The results show that three approaches seem to be most appropriate: those of
K. Pluto and D. Tasche (2005) without correlation, and those of N. M. Kiefer (2006) and A. Forrest (2005) without
correlation. The first one could be easily implemented by banks; however, if the ordinal ranking of obligors is in-
correct, then the monotony of probabilities of default is not ensured. The same problem exists with the second
approach. The A. Forrest (2005) approach without correlation ensures the monotony of default probabilities
and allows estimating conservative PDs; however, it requires programming skills, otherwise iterative recalcula-
tion will be very time-consuming.
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Introduction

According to the New Capital Adequacy Directive, banks applying the internal-rating-
based approach have to estimate their own probabilities of default (thereinafter PDs) for
their obligors. However, in practice a substantial part of bank assets often consists of low
default portfolios. This impedes not only the development of a statistical scoring model,
but also the estimation of PDs and other credit risk parameters, as well as the validation
process. The key concern for regulators is that credit risk might be underestimated
because of data scarcity. Supervisory requirements (Basel 11, New Capital Adequacy
Directive and local supervisory regulations) provide no excuse or relief for low default
portfolios (thereinafter LDP). To avoid excluding LDPs from the internal ratings based
approach, it is recommended to use some data-enhancing tools. Banks should put more
emphasis on alternative data sources, apply alternative methods with more emphasis
on qualitative tools. At the same time, the Basel Committee on Banking Supervision
(BCBS, 2005b) has advised to use larger margins of conservatism if an uncertainty in
PDs estimated for LDPs remains.
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Defining LDP is not a straightforward task. Different authors and supervisory
institutions have used different definitions of LDP (see BBA, LIBA, ISDA 2004; 2005;
FSA 2005; CEBS 2006; Bank of Lithuania 2006a). For example, the Bank of Lithuania
defines LDP as a portfolio with only few actual defaults, or a portfolio free from any
actual defaults. As all these definitions have the drawback of being judgmental and
introduce the question of degree, the FSA (2006) proposed using a concrete number of
defaults in order to define LDP without taking into account the total portfolio size. It was
proposed to use 20 defaults on the rating level; this definition will be used further in this
article.

Till now, the problem of LDPs has not been analysed by Lithuanian researchers.
L. Dzidzevicituté (2010b) only mentioned the LDP problem in the context of statistical
scoring model development.

Even though there is a range of statistical techniques available to choose from,
there is no consensus on the best technique to estimate PDs for LDPs. Various authors
have proposed the approaches related to rating transition matrices and bootstrapping,
the distribution of numbers of defaults and simulation, the CAP and ROC curves,
macroeconomic variables, etc. The purpose of this article is to analyze various approaches
to PD estimation for LDPs, their advantages and disadvantages, to provide a comparative
analysis and exemplary calculations. The LDP problem has an effect on the statistical
scoring model development, the estimation of credit risk parameters and their validation.
The Basel II determines three credit risk parameters needed to calculate risk-weighted
assets and expected loss amount; these are the probability of default (PD), loss-given
default (LGD) and exposure at default (EAD). The article focuses on the estimation of
only one risk parameter — PD.

Part 1 of the article shows the spheres of the LDP problem, approaches to PD estimation
for LDPs, and Part 2 presents exemplary calculations with data of one external credit
register of Lithuania, defining LDP as a rating having no more than 20 actual defaults.

1. Comparative analysis of PD estimation approaches to LDPs
1.1. The spheres of LDP problem

Often, the insufficiency of defaults impedes the development of statistical scoring models.
However, if obligors are assigned to ratings based on the result of expert scoring models,
the LDP problem is not actual (see Fig. 1). When obligors are already assigned to ratings,
banks applying the internal ratings based approach for capital adequacy calculation
purposes have to estimate PD for each rating (Directive, 2006). To estimate the rating
PD is recommended even for banks that not apply internal ratings based approach
(Dzidzeviciuté, 2010b). Rating PD may be estimated applying various methods (see
Table 1).
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FIG. 1. LDP problem
Source: compiled by the author.

The LDP problem is actual only when estimating rating PD from long-run averages
of one-year default rates (i. e. PD(4)). If bank assigns obligors to ratings based on the
score of the expert scoring model or on the score of the statistical scoring model not
allowing to estimate individual PDs (e.g., discriminant analysis), PD(4) is the only
possible method of PD estimation. As very often in better ratings the number of actual
defaults is too low, banks have to find the way how to solve the LDP problem.

Statistical scoring models are not very popular among the banks of Lithuania. The
survey related to commercial banks and branches of foreign banks operating in Lithuania
has shown that statistical scoring models are applied only in four banks, and only one
bank applies statistical scoring models allowing to estimate individual PD (logistic
most appropriate method to estimate PDs for ratings is PD(4) (see Table 1).

Further in this article, the LDP problem is analyzed only as regards PD (4)
estimation.

1.2. Approaches based on rating transition matrices and bootstrapping

PDs for ratings can be estimated from upgrades and downgrades to other ratings during a
certain period of time. There are two ways to estimate migration matrices (Schuermann,
Hanson, 2004): the cohort and the duration approaches. In simple terms, the cohort
approach just takes observed proportions from the beginning of a year to the end (for

the case of annual migration matrices) as estimates of migration probabilities; any
movements within a year are not accounted for, i.e.: Pi]. = —I/, where Pl.j 1S migration

i
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TABLE 1. Methods to estimate PDs for ratings

Method Formula Comments
n
_ >.PD,
imple i
P PD(I) rating = p
average of n
PDs PD; is individual PD of obligor i assigned to that rating;
nis number of obligors assigned to that rating Methods may be
PDQ), . = PDypper+ PDigyer used only applying
Arithmetical rating 2 statistical scoring

average of PD
PD interval

model allowing to
estimate individual
PD (e.g., logistic,
probit regression

upper— UPPEr PD boundary of individual PD interval defined for
that rating;

boundaries PD .~ lower PD boundary of individual PD interval defined for

that rating
Geometrical etc)
average of _ -
PD interval PD(3)rating - \/(PDupper PD/ower)
boundaries
Individual PD

> PD,
PD(4) _i=l Method may be
rating — .

Average of n used applying
one-year PD. = number_of _defaults_during_the_year statistical and /
default rates " number_of _obligors_at_the_beginning_of _the_ year| or expert scoring

PD; - rating’s default rate for year j; models

n - number of years used to estimate PD

Source: Dzidzeviciaté (2010b).

probability from rating i to rating j during a year, N; is the total number of transitions
from rating i to rating j during a year, and N, is the number of obligors at the beginning
of a year.

The duration approaches, on the contrary, count all rating changes during a year. The
probabilities to migrate to default status estimated applying duration approaches may
be used as PDs for capital requirements calculation purposes. Lando and Skedeberg
(2002) propose two duration approaches: parametric, based on time-homogeneity, and
nonparametric, based on time non-homogeneity. Applying one of duration approaches,
it is possible to get migration probabilities even for ratings without actual defaults
and use them as PDs, so both duration approaches are recommended for LDPs. The
research of Y. Jafry and T. Schuermann (2004) has shown that even the second estimator
imposes fewer assumptions on the data generating process by allowing for time non-
homogeneity while fully accounting for all movements within a year; both approaches
yield statistically indistinguishable transition matrices. However, computationally, the
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second, non-parametric, estimator is more intensive than the first one, so the authors
recommend the first duration approach.

Meanwhile, applying the cohort approach we will not get PDs for zero defaults;
in this approach, the probability to migrate to a default status is equal to the actual
default rate. Schuermann and Hanson (2004), Christensen et al. (2004) propose to apply
bootstrapping to obtain confidence sets for estimated migration probabilities. In such a
case, it is possible to get PDs for ratings with no actual defaults even applying the cohort
approach, using the upper boundary of a set. Confidence sets may also be calculated
analytically, using the Wald interval; however, this is not recommended by the authors
as PD bands are too wide (see Schuermann, Hanson, 2004).

In this research, the information about rating transitions during a year and the exact
time of default was not received from the external credit register, so it was impossible to
apply approaches based on rating transition matrices and bootstrapping in Part 2.

1.3. Approaches based on CAP and ROC curves

M. V. Burgt (2007) proposes an alternative way how to derive the CAP curve:

1—exp ™

y(x) = o

I—exp
where x is the cumulative part of obligors, y(x) is the proportion of defaults, in x, and
k is the concavity parameter defining the slope of the CAP curve; when k converges to
0, the CAP curve converges to a diagonal line (more about CAP and ROC curves, see
BCBS, 2005a).

PDs can be derived from the CAP curve, using the following equations, when AR
1s > 60% (or AUC > 80%):

k-D 2 1
PD, =——-exp(—kxp); k =~ ck~ ;
R e R Y S Tyre

l—expfk
_ZN+ZN+1+"'+ZR*1+(ZR/2)
Xp = Z 5

where x, is ;. cumulative percentage of obligors in the rating R, D is the average observed
default rate for the whole portfolio in question; AR is the accuracy ratio, AUC is the area
under curve measure, z is the total number of obligors, z, is the number of obligors in
rating R, z,; is the number of obligors in the worst rating, and z the is total number of
obligors.

The formulas above imply that CAP curve approach needs at least some defaults, i.e.
it cannot be applied when there are no defaults in the whole portfolio (but it is enough to
have defaults in at least one rating).
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D. Tasche (2009) proposes the two-parametric ROC curve approach described below.
The ROC curve may be derived using the following equations:

R, y(Fy ()= ®(a+b-® 7 (Fy(s)iue(0l);b=—2 q=LV KD
[e)

D Op
Fy(s)= —P[{S 1<i sD}ﬂ N]

E}

where R, ,(F\(s)) is the cumulative proportion of defaults till rating s, D is an average
observed default rate for the whole portfolio in question, F,(s) is a false alarm rate
till rating s, i.e. the cumulative proportion of non-defaulters till rating s that were
treated as defaulted. The numerator is calculated as the product of two probabilities,
i.e. the probability that the rating is lower than or equal to s (if lower ratings indicate
a higher risk) and the cumulative probability of non-default till rating s, p o, are the
mean and standard deviations of non-defaulters’ ratings, p,,c,, are mean and standard
deviation of defaulters’ ratings, ®() is a cumulative normal distribution function for
a standard normal random variable; it is possible to calculate it with the MS Excel
function = NORMSDIST(); @ !() is the inverse cumulative distribution function for a
standard normal random variable; it is possible to calculate it with MS Excel function
= NORMSINV().
PD for ratings may be derived as presented below:

P&)|S = s]= DRy (Fy(s))

@(a+b® " (Fy(s))
DR, (Fy(s)+1-D’ ’

PO~ (Fy ()
where ¢() is a standard normal density; it is possible to calculate it using MS Excel
function = NORMDIST(x; 0; 1; false).

R (Fy(s)=b

1.4. Approaches based on the distribution of default numbers and simulation

A. Forrest (2005) proposes two types of PD estimation approaches for LDPs: without
correlation (see Table 2) and with correlation. The basic idea is that for each chosen
confidence level the interval of PDs is derived (not one concrete PD value). The author
recommends taking conservative PDs from this interval.

When there are no actual defaults in several ratings in succession, we are interested
in conservative combinations of PDs on the dashed line (FIG. 2). As for several LDP
ratings, even for each chosen confidence level, many conservative combinations of PDs
are derived, the question is how to choose only one combination. The author recommends
using the combination of PDs giving the maximum risk-weighted assets.

When there are several defaults in several ratings in succession, the minimum and
maximum values of PDs are found separately in the same way as for a single LDP rating,
adding all defaults and obligors up to that rating, for example, for rating A (see Fig. 3):
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TABLE 2. Approaches without correlation

L(PD) - likelihood, i.e. probability of obtaining data
actually observed on the subjects in the study as a
function of the unknown parameters in the model.
In the LDP context, the only parameter is PD

ML — maximum likelihood, i.e. the largest value of
likelihood among all relevant combinations of the
model parameters. As in this case, the actual default
rate (DR) =0, ML =1.

N - the number of obligors in rating.

Description | Formulas Comments

Single LDP L(PD) N To get conservative PD, equa-
rating, no LR(PD)= ML L(PD)=(1-PD) tion of likelihood ratio LR(PD) is
actual _ N solved iteratively for hypothetical
defaults ML=(1-DR) PD, recalculating until the value

reaches a 100%-confidence level.
For example, if we choose the 95%
confidence level, we have to find
the PD giving LR(PD) equal to 0.05.
PD may be also calculated using
MS Excel formula

= BETAINV(confidence level;1;N)

ML =DR P4(1—DR N ~P4- DR P5(1 — DRy)NE~PB

Single LDP LR(PD) is rescaled as a positive

rating, LR(PD)= % L(PD)= pD". (1- PD)NfD quantity expressed as

several D VoD -2In LR(PD). As the value of -2In

actual ML=DR" -(1-DR) LR(PD) is expected to be

defaults MIN PD< DR< MAX PD chi-squared distributed, the

D - number of actual defaults in rating conservative PD is the higher of
DR - actual default rate of rating two PDs for which -2In(LR(PD))

equals to the inverse of the one-
tailed probability of the
chi-square distribution that may
be calculated with MS Excel
function = CHIINV using the the
100% confidence level and
1 degree of freedom as there’is
only one LDP rating

Several LDP | L(PD) = (1 — PD )M * NB(for rating A) Maximum values of PD, and

ratings, no | L(PD) = (1 — PDy)® (for rating B) PDg are found iteratively where

actual NA, NB - numbers of obligors in ratings A and B, respective L(PD) equals to (100%-

defaults respectively. confidence level). Conservative
combinations of PDs are on the
dashed line (see Figure 2).

Several LDP L(PD) Conservative combination of PDs

. LR(PD) = )

ratings, has to comply with three

several L(PD)=PD PA(1 — PD VA~DA- pD DE(1 — PD VB~ DB conditions: a) PD,, < PDg; b) -2In

actual (LR(PD)) = CHIINV((100%

defaults confidence level);2);

¢) combination of PDs has to be on
the most distant line of the graph
(see Fig. 3)

The number of degrees of
freedom has to be equaled to the
number of LDP ratings in
succession.

Source: compiled by the author in accordance with A. Forrest (2005).
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FIG. 2. Estimation of PDs for several LDP ratings with no actual defaults
Source: A. Forrest (2005).

LR(PD) = - L(PD) = PDADA+DB(1_PDA)NA+NB—DA—DB

L(PD)
M

DA+DB NA+NB-DA-DB
ML= DRPORTFOLIO (I_DRPORTFOLIO)

For rating B:

; L(PD) = PD,"" (1- PD )" P8

LR(PD) = LE‘ZD )

ML= DRg"? (1- DR, )"EPE

The number of degrees of freedom iteratively searching for the minimum and
maximum PDs for both ratings will be 2 in this example because we have two LDP
ratings in succession. However, choosing the maximum PDs for both ratings would be
over-conservative (see Fig. 3, the point where the lines of MAX PD, and MAX PD,
intersect).

The dark lines restrict the conservative region of PD, within which -2In (LR(PD))
<=CHIINV((100% confidence level);2). From all conservative combinations on the
most distant line, only one giving maximum risk-weighted assets should be chosen.

If A. Forrest’s (2005) approach is modified introducing correlations, the conservative
regions of PDs are ceteris paribus wider than without correlations; the values of
conservative PDs are bigger. So, further in Part 2 only the approach without correlations
will be applied.
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FIG. 3. Estimation of PDs for several LDP ratings with several actual defaults

Source: A. Forrest (2005).

Pluto and Tasche (2005) have proposed three ways to get most prudent estimates of
PDs for LDPs: 1) without correlation, 2) with correlation, and 3) a multi-period case.
If there are no actual defaults in single LDP rating, the approach without correlation
is identical to A. Forrest’s (2005) approach without correlation. However, if there are
several LDP ratings in succession with no actual defaults, Pluto and Tasche (2005)
propose using the extreme values of PDs (see MAX PD, and MAX PDy in Fig. 2). If
there are actual defaults in LDP ratings, the authors assume that the number of defaults
in the portfolio is binomially distributed as long as the default events are independent.
For example, for three LDP ratings (A, B and C), the most prudent PD estimates are
calculated using the expressions below. The right-hand side of the equations shows the
probability of observing not more than DA + DB + DC defaults, not more than DB + DC
defaults and not more than DC defaults, respectively:

DA+DB+DC| [ NA+NB+NC . )
1—'Y= ( J'PDAZ ‘(I—PDA)NA+NB+NC_Z :
i=0 i
DB+DC| ( NB+NC . .
I-y= H J-PDB’ ~(1—PDB)NB*NCI}
i=0 i

i

1-y= DZCHNC)PDC" -<1—PDC>NC-'},
i=0
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" n!
=ck-__—_—

k k!(n—k)!

total number of # observations; y is chosen at the confidence level.

where: = ( i. e. the number of possible £ combinations from the

The tail of a binomial distribution can be expressed in terms of an appropriate beta
distribution function. PDs may be calculated using MS Excel formula = BETAINV
(confidence level; D + 1; N-D).

If a correlation is introduced, analogically as in A. Forrest’s (2005) approach, most
prudent estimates of PDs are ceferis paribus higher than without correlations. In the
multi-period case, authors introduce an additional correlation measure, i.e. an inter-
temporal correlation. An unrealistic assumption is made that only the number of obligors
N, in the first year is known and the portfolio is closed for new obligors, so that N,= N,.
Besides, PDs seem to be too low if compared to the approach without correlation. Most
prudent estimates of annual PDs are derived for the whole period. Taking into account
that in this article the LDP problem is discussed only as regards the estimation of PDs
for rating from long run averages of one-year default rates (i.e. PD(4)), the multi-period
case will not be further analyzed in this article. In Part 2, only Pluto and Tasche’s (2005)
approach without correlations will be applied.

N. M. Kiefer (2006) uses the Bayes rule to estimate PDs for LDPs. PD is estimated
7, e), describing

as the posterior expectation 8 = £(@ |r,e). The posterior distribution p(0
the uncertainty about 0 given observation of r, actual defaults in rating with n obligors
and having expert informatikon, e is expressed:

_ prp.e): ple)

Pl p(rle)

0, e) is the distribution of r defaults given that PD (i. e. the probability of
success on each trial) is 0 and expert information e is availalle. Using the Bernoulli

were p(r

scheme, the right-hand side of the equation below shows the probability of observing
defaults in rating with n obligors:

p(r0.e) = U 0"(1-6)"".

This distribution may be calculated as the values of probability mass function applying
MS Excel function = BINOMDISTY().

p(0e) is the prior distribution of 0. The challenging step is to represent the expert’s
assessments with a statistical distribution. As the usual approach is to fit a parametric
form, the author proposes using the beta distribution. The probability density function of
the two-parameter beta distribution for the random variable 6€[0.1] is

F(OC+B) o-1 B-1
Olo,p)=—7"77756 1-6 ,
p®lo.B) FT(B) (1-96)
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where I(n) is gamma function (if # is a positive integer, then /(n) = (n —1)!); parameters
o, p may be estimated by the method of moments to fit the parametric probability
statements:

0(1-06)

%

i=0 =0 pypoa- 6)(9(1_9) .

where 6 is the sample mean and v is the sample variance.

The p(r| e) is the unconditional distribution of the number of defaults. For the two-
prameter beta family, the exact functional form can be calculated:

C(r+o)C(n—r+ P)C(a+ B)L(n+1)
C(r+DI(n—r+ DI (n+a+p)

prle) =

N. M. Kiefer suggests using the four-parameter beta distribution that allows flexibility
within the PD range [a, b], but in some situations it may be too restrictive. Also, the seven-
parameter distribution is discussed. However, the approach becomes more complicated,
it is difficult to derive an unconditional distribution of the number of defaults p(r| e).

This author has also proposed further modifications of his approach (see Kiefer 2007;
2008).

1.5. Other approaches

Wildeand Jackson (2006) proposed to estimate PDs analytically by calibrating CreditRisk+
to the Merton model of default behaviour. The approach is most advantageous where
there are data of five or more years; it is possible to get PDs even when there are no
defaults in the whole portfolio. However, PDs seem to be too big, even bigger than
applying the Pluto and Tasche (2005) approach with a correlation.

G. Sabato (2006) proposed to relate the estimation of PDs with unemployment rates
in a particular age or education category. This approach is appropriate only for the
estimation of PDs for physical persons. Of course, it is possible to modify the approach
making it appropriate for companies, for example, to use common variables of different
economic sectors etc.; however, this wouldn’t allow deriving reasonable PDs because
companies in the same sector may represent different levels of risk. Besides, the approach
is appropriate only to derive PDs for specific sub-groups of age, education, etc., but not
for ratings.

Besides, the problem occurs not only when choosing the most appropriate methodology
to estimate PDs for LDPs. If banks choose the methodology themselves, in different banks
PDs derived for LDP ratings having the same number of obligors and the same number of
defaults may be very different, i.e. banks may choose not only different methodologies,
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but also different parameters of the same methodology (confidence levels, values of
correlation, etc.). Thus, the supervisors would face the problem of fair comparability.
Supervisors could use the approach proposed by the Financial Services Authority (FSA,
2006). In their approach, banks compare their PDs with the so-called “look-up PDs” in
the supervisory table. If the weighted average PD is less than the look-up PD, the bank
adjusts it upwards until the weighted average PD is equal to or above the look-up PD.
Look-up PDs are derived by the supervisor using one of the approaches discussed above,
for example, the Pluto and Tasche (2005) approach without correlations. In such a way,
PDs for LDP ratings with a similar risk in different banks would be comparable.

2. Estimation of PD for LDPs using data of one external credit register
of Lithuania

For the purpose of this chapter, following the FSA definition, LDP shall be treated as a
rating with the total number of defaults not more than 20.

10404 “company-years” at three scoring dates were assigned to nine ratings according
to individual PDs estimated by the statistical scoring model of Lithuanian companies,
companies from all economic sectors for 2005-2008 were obtained from the external loan
register JSC Creditinfo Lietuva. It is possible to say that the data sample used to develop
the model represents all the companies of Lithuania. An additional validation sample
consisting of 10404 “company-years” was used to test the suitibility of LDP approaches.

The first rating indicates the lowest risk of companies and the 9 the highest risk.
Rating PDs were estimated for the point of 31 December 2007 (see PD(4) in Table 3).
Data about defaults in 2008 were used for validation purposes.

PD(4) was calculated as a simple average of annual default rates in 2006 and 2007,
respectively. One could notice that in ratings 1-3, both in 2006 and 2007, there are no
more than 20 defaults. In 2007, also rating 7 should be treated as an LDP rating (as there
are only 9 defaults). An especially severe problem is the rating 1 as there are no defaults
either in 2006 or in 2007. Therefore, PD(4) for ratings 1-3 and 7 should be recalculated
using one of the proposed approaches (see Table 4):

e M. Burgt’s (2007) CAP curve approach;

e D. Tasche’s (2009) ROC curve approach;

e A. Forrest’s (2005) approach without correlation;

e K. Pluto and D. Tasche’s (2005) approach without correlation;

e N. M. Kiefer (2006) Bayes’ approach.

M. Burgt (2007) CAP curve and D. Tasche (2009) ROC curve approaches. Even
though both approaches ensure the monotony of PDs, they seem to be too low (see
marked PDs in Tables 5 and 6).
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One could notice that for better ratings PDs are significantly lower than the actual
default rates, especially in D. Tasche’s (2009) ROC curve approach. In both years this
approach gives too low PDs for ratings 1 and 2, even if compared with M. Burgt’s (2007)
CAP curve approach. For example, for rating 2, the actual default rate in 2006 is 1.03 per
cent (see Table 3), M. Burgt’s (2007) CAP curve approach gives 0.37 per cent, meanwhile
D. Tasche’s (2009) ROC curve approach gives 0.18 per cent. So, the values seem to be
too low if compared with other approaches (see Table 4).

For worse ratings PDs are not too low (see rating 7 in Table 6), but usually in practice
a low number of defaults is an issue for better ratings. Besides, both approaches are
very sensitive to the discriminatory power of the scoring model. As in 2007 the model
discriminates better (the accuracy ratio is 73.85 per cent and in 2006 only 63.21 per
cent), PDs for better ratings in 2007 are comparatively lower. The other three approaches
(see Table 4) give higher PDs for ratings 1, 2 and 3 in 2007 than in 2006, and this seems
to be reasonable because ratings 1, 2 and 3 are riskier in 2007 than in 2006. M. Burgt’s
(2007) CAP curve and D. Tasche’s (2009) ROC curve approaches, on the contrary, give
lower PDs for ratings 1, 2 and 3 in 2007 than in 2006; thus, these PDs don’t fully reflect
the riskiness of ratings.

The Pluto and Tasche (2005) approach without correlation. Table A.1 in Appendix
provides the PDs for LDP ratings applying this approach with various confidence levels.
PDs for ratings 1, 2 and 3 are derived on the cumulative basis adding all defaults and all
obligors up to this rating, i.e. in 2006 for rating 1 the number of defaults will be 3 and the
number of obligors 735; for rating 2, the number of defaults will be 3 and the number of
obligors 636; for rating 3, the number of defaults will be 0 and the number of obligors
344. However, the PD for rating 7 in 2007 was derived on a single basis as rating 7 does
not follow the other LDP ratings. One could notice that PDs in 2006 don’t comply with
the monotony requirement as almost allways the PD for rating 3 is lower than for rating 2
(except only the 99.99% confidence level; however, then PDs are too high). Scaled PDs
were also estimated as proposed by the authors (see Table A.1 in Appendix), i.e.:

SCALED PD, =K - PD,

K = PDPORTFOLIO

Ny + N, + Ny

where PD; is the estimated PD for rating i; K is the scaling factor, and N, is . number of
obligors in rating .

As LDP ratings were excluded from ordinary ratings, the PD was treated as an

portfolio
average PD of the portfolio consisting of only the first three ratings in 2006 (for 2007,
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-2In LR(PD)
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= -2In LR(p)
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N

FIG. 4. Estimation of PD,, for rating 7

Source: calculations of the author.

also rating 7 was added). In 2006, the PDpoprpo 10 18 0.41 per cent (i. e. 3/735), and in
2007 it is 2.24 per cent (i.e. 24/1073). For the final purposes of anglysis, it was decided
to use scaled PDs with the 99.99% confidence level. The estimates comply with the
monotony requirement and are not too high.

A. Forrest (2005) approach without correlation. To estimate the PD,; rating 7 was
treated as a single LDP rating. Graphically (see Fig. 4), the conservative PD,,,, may be
determined where the line of the rescaled likelihood ratio (i.e. -2In LR(PD)) intersects
the cut line of the chosen confidence level on the right side of the graph. A. Forrest
argues that classically the 95% confidence level is chosen. If we choose the confidence
level reccomended by this author, the PD,,, lies between the minimum PD of 12.16 per
cent and the maximum PD of 38.64 per cent. The maximum likelihood is found at 23.68
per cent, i.e. at the actual default rate.

As we are interested in getting a conservative value, we will choose 38.64 per cent.
The cut lines were derived using MS Excel function =CHIINV(100%-chosen confidence
level;1) (see Table 2). The conservative PD,, for rating 7, derived using the 95 per cent
confidence level, seems to be most reasonable and will be used further.

As both in 2006 and 2007, ratings 1, 2 and 3 are LDP ratings and they are in succesion,
PDs for them will be derived together (see Fig. 3). Table 7 provides the minimum and
maximum values of PDs for these ratings.
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TABLE 7. Minimum and maximum values of PDs for ratings (percentages)

2006 2007
Rating Minimum PD Maximum PD Minimum PD Maximum PD
1 0.05 1.45 0.64 2.74
2 0.05 1.68 0.82 3.49
3 0.00 1.13 0.96 7.07

Source: calculations of the author.

As one could see in Fig. 3, combinations of PDs can break through the line of the
minimum PD, so the iterative checking of PDs was started from 0.01 per cent for rating
1, from 0.02 per cent for rating 2 and from 0.03 per cent for rating 3 up to the maximum
PD of a respective rating. From all the conservative combinations of PDs complying
with these three conditions, i.e.

e PD <PD,<PD;,

e -2In(LR(PD)) =CHIINV((100% — 95%);3),

e combination of PDs has to be on the most distant line of the graph,
only one combination was chosen, giving maximum risk-weighted assets. For 2006, this
is a combination of 0.85%/0.879%/0.88% and for 2007 it is 1.49%/1.78%/3.63% (see
Table 4). To compare risk-weighted assets, the formulas applicable for retail exposures
were used:

Risk _weighted _assets (RWA) = RW * EAD;

-1
Risk _weight (RW)=(LGD~(I{CD (PD)+‘/1 RR -CD1(0.999)J—PD-LGD)~12.5-1.06;

V1-R
e

|— o 35PD | — o 35PD
Correlation (R) =0.03- —————+0.16-| | - ———— |,
1— 8735 1- 6735

where LDG is a loss given default; for the sake of comparability, always the value of
45% was used; EAD is exposure at default; for the sake of comparability, always the
value of 100 LTL was used.

It should be noted that the application of this approach starting from three LDP ratings
in succession requires programming skills, otherwise the iterative checking of various
combinations of PDs will be very time-consuming. However, the derived combinations
of PDs comply with the monotony requirement and seem to be very reasonable for the
calculation of capital adequacy.

N. M. Kiefer (2006) Bayes’approach. The first step is to decide upon the representation
of the prior distribution p(0 | e). As N. M. Kiefer (2006) says that the four-parameter beta
distribution in some situations may be too restrictive, in this article we use the two-
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parameter beta distribution. For ratings 1, 2 and 3, in both years hypothetical PDs from
0.01 per cent to 7.00 per cent were used with the step equal to 0.01 per cent. Thus,
parameters o and  are 3 and 79, respectively. However, parameters for rating 7 in 2007
have to be different as the PD for this rating is expected to be significantly higher than
in other three LDP ratings, so hypothetical PDs from 12.00 per cent to 45.00 per cent
were used with the step equal to 0.01 per cent. Thus, parameters o and 3 are 6 and 15,
respectively.

Similarly as in the Pluto and Tasche (2005) approach, PDs for ratings 1, 2 and 3 are
derived on the cumulative basis adding all defaults and all obligors up to that rating.
For rating 7, posterior distribution was derived on a single basis, as this rating is not in
succesion with other LDP ratings.

Figures 5 and 6 show the posterior distributions p(0 | ,e) of PDs. The PD forarespective
rating is derived searching for the maximum value of this posterior distribution.

One could notice that the posterior distribution of PD for rating 3 in 2006 is shifted to
the left as compared with PD distributions for ratings 1 and 2. Thus, PDs in 2006 don’t
comply with the monotony requirement as the PD for rating 3 is lower than for rating 2
and even than for rating 1.

The estimated PDs need to be validated in order to check their suitability. According
to the regulation of the Bank of Lithuania, banks applying the internal ratings based

approach shall carry out a regular (at least annual) validation of the PD quantification

pO®lre)
300

= 2006 rating 1

= 2006 rating 2

200 —— 2006 rating 3
/\ —— 2007 rating 1

150 = 2007 rating 2

AN =

FIG. 5. Posterior distributions of PDs for ratings 1, 2 and 3 in 2006 and 2007

Source: calculations of the author.
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FIG. 6. Posterior distribution of PD for rating 7 in 2007

Source: calculations of the author.

process (Bank of Lithuania, 2006b). Even banks not applying the internal ratings based
approach should mutatis mutandis comply with the regulation on validation (Bank of
Lithuania, 2008). One of the recommended validation methods is the binomial test
(BCBS, 2005a; Bank of Lithuania, 2006b; Tasche, 2006; Burgt, 2007; SAS, 2009).
This method tests whether the estimated PD(4) presented in Table 4 falls within a 95%
confidence level around the PD,_, (i.e. the actual default rate in 2008). The PD
should lie in the interval as presented below:

estimated

1+aj.\/PDreal'(l_PDreal)_

[PDreal_(D_l[ ) N 5

(1 PD -(1-PD
PDreal+q) 1( -;(‘L)\/ real (N real) ]’

where o is the confidence level which is chosen as 95%, and @ is the inverse of the
cumulative standard normal distribution.

Results of the binomial test have shown that only in three approaches the PD ., . .
allways falls into the interval between the lower and the upper boundaries of PD_,, (see
Table 8). So, it is reasonable to reject the other two approaches where this requirement
is not fulfilled. PDs in the Pluto and Tasche (2005) approach without correlation using
scaled PDs with 99.99 per cent confidence level seem to be quite reasonable, they allways
fall into the defined interval. In Forrest’s (2005) approach without correlation and Kiefer

(2006) Bayes’ approach, PDs also fall into the defined interval; besides, they are more
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TABLE 8. Validation of PDs for LDPs

1 rating 2 rating 3 rating 7 rating
Number of obligors by 2007.12.31 369 706 361 50
Defaulted till 2008.12.31 2 10 1 17
PD,.., % 0.54 1.42 3.05 34.00
Lower boundary of PD ;1 ateqr % 0.00 0.54 1.27 20.87
Higher boundary of PD 1 ateq, % 1.29 2.29 4.82 47.13
M. BURGT (2007) CAP CURVE APPROACH
PDgtimateq %o 0.19 0.32 0.70 27.54
Binomial test TRUE FALSE FALSE TRUE
D. TASCHE (2009) ROC CURVE APPROACH
PDegtimatecr % 0.03 0.12 077 30.83
Binomial test TRUE FALSE FALSE TRUE
A.Forrest (2005) approach without correlation
PD.imatea % 117 133 2.26 32.83
Binomial test TRUE TRUE TRUE TRUE
K. PLUTO, D. TASCHE (2005) APPROACH WITHOUT CORRELATION
PD.iimatea % 0.71 0.88 1.67 2217
Binomial test TRUE TRUE TRUE TRUE
N. M. KIEFER (2006) BAYES' APPROACH
PDeimatea % 1.06 1.29 1.68 25.80
Binomial test TRUE TRUE TRUE TRUE

Source: calculation of the author.

conservative than PDs in the approach discussed above. In the Burgt (2007) CAP curve
and the Tasche (2009) ROC curve approaches, the PD
than the lower boundary. For rating 7, all PDs fall into the defined interval; however, the

estimated 10T Tatings 2 and 3 is less
Pluto and Tasche (2005) approach without correlation here gives quite a low value, very
chose to the lower boundary.

Conclusions

The author of this article recommends to apply LDP approaches on the rating (and not on
the portfolio) level, using a concrete number of defaults in order to define LDP without
accounting for the total size of rating or portfolio. For ratings not complying with LDP
definition (having more than 20 defaults), PDs should be calculated in an ordinary way.
If a concrete rating in one year is treated as an LDP and in another doesn’t comply with
the LDP definition, LDP approaches should be applied only for the first year.

The Pluto and Tasche (2005) approach without correlation could be easily
implemented in banks. However, if the ordinal ranking of obligors is incorrect, then this
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approach doesn’t ensure the monotony of PDs in LDP ratings. The same problem exists
in Kiefer’s (2006) approach. Forrest’s (2005) approach without correlation ensures the
monotony and conservatism of PDs; however, it requires programming skills, otherwise
the iterative recalculation of PDs will be very time-consuming. PDs estimated in these
three approaches passed the binomial test.

A numerical example has shown that PDs estimated in Burgt’s (2007) CAP curve and
Tasche’s (2009) ROC curve approaches are too low for better ratings; PDs didn’t pass
the binomial test.

If it is impossible to extract the information about rating transitions during a year
and the exact time of defaut, it makes no sence to apply the approaches based on
rating transition matrices; in any case, they are quite time-consuming. However, some
supervisors (e.g., the Bank of Lithuania) require banks to estimate rating transition
matrices; so, at the same time the LDP problem is solved.

Applying Forrest’s (2005) and the Pluto and Tasche (2005) approaches with a
correlation, the conservative values of PDs may be too high, thus the calculated capital
adequacy requirements to cover credit risk may not satisfy banks and their supervisors,
taking into account that the internal ratings based approach in Basel II should ensure not
an over-conservative but an accurate calculation of capital requirements. Multi-period
approaches, proposed by Pluto, Tasche (2005) and Wilde, Jackson (2006), give either too
high or too low PDs; in some cases, assumptions are unrealistic and cannot be fulfilled in
practice. The approach based on unemployment rates proposed by G. Sabato (2006), is
appropriate only to estimated PDs for a physical person. Modifications of the approach
to estimate PDs for companies wouldn’t allow deriving reasonable PDs. Besides, the
approach is appropriate only to derive PDs for specific sub-groups of age, education,
etc., but not for ratings.

As the rating system used in this article was developed using a large sample of
Lithuanian companies’ data, the conclusions are most actual to banks of Lithuania and
their ratings systems to Lithuanian companies. Besides, it is recommended to supervisors
to prepare a common methodology applicable in all their jurisdiction, or to prepare look-
up tables of PDs for banks.
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