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Abstract. This article presents several  approaches to estimating the probabilities of default for low default 
portfolios, their advantages and disadvantages, and provides exemplary calculations using data of one exter-
nal credit register of Lithuania. The results show that three approaches seem to be most appropriate: those of 
K. Pluto and D. Tasche (2005) without correlation, and those of N. M. Kiefer (2006) and A. Forrest (2005) without 
correlation. The first one could be easily implemented by banks; however, if the ordinal ranking of obligors is in-could be easily implemented by banks; however, if the ordinal ranking of obligors is in-ordinal ranking of obligors is in-
correct, then the monotony of probabilities of default is not ensured. The same problem exists with the second 
approach. The A. Forrest (2005) approach without correlation ensures the monotony of default probabilities 
and allows estimating conservative PDs; however, it requires programming skills, otherwise iterative recalcula-
tion will be very time-consuming. 
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Introduction

According to the New Capital Adequacy Directive, banks applying the internal-rating-
based approach have to estimate their own probabilities of default (thereinafter PDs) for 
their obligors. However, in practice a substantial part of bank assets often consists of low 
default portfolios. This impedes not only the development of a statistical scoring model, 
but also the estimation of PDs and other credit risk parameters, as well as the validation 
process. The key concern for regulators is that credit risk might be underestimated 
because of data scarcity. Supervisory requirements (Basel II, New Capital Adequacy 
Directive and local supervisory regulations) provide no excuse or relief for low default 
portfolios (thereinafter LDP). To avoid excluding LDPs from the internal ratings based 
approach, it is recommended to use some data-enhancing tools. Banks should put more 
emphasis on alternative data sources, apply alternative methods with more emphasis 
on qualitative tools. At the same time, the Basel Committee on Banking Supervision 
(BCBS, 2005b) has advised to use larger margins of conservatism if an uncertainty in 
PDs estimated for LDPs remains. 
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Defining LDP is not a straightforward task. Different authors and supervisory 
institutions have used different definitions of LDP (see BBA, LIBA, ISDA 2004; 2005; 
FSA 2005; CEBS 2006; Bank of Lithuania 2006a). For example, the Bank of Lithuania 
defines LDP as a portfolio with only few actual defaults, or a portfolio free from any 
actual defaults. As all these definitions have the drawback of being judgmental and 
introduce the question of degree, the FSA (2006) proposed using a concrete number of 
defaults in order to define LDP without taking into account the total portfolio size. It was 
proposed to use 20 defaults on the rating level; this definition will be used further in this 
article. 

Till now, the problem of LDPs has not been analysed by Lithuanian researchers. 
L. Dzidzevičiūtė (2010b) only mentioned the LDP problem in the context of statistical 
scoring model development. 

Even though there is a range of statistical techniques available to choose from, 
there is no consensus on the best technique to estimate PDs for LDPs. Various authors 
have proposed the approaches related to rating transition matrices and bootstrapping, 
the distribution of numbers of defaults and simulation, the CAP and RoC curves, 
macroeconomic variables, etc. The purpose of this article is to analyze various approaches 
to PD estimation for LDPs, their advantages and disadvantages, to provide a comparative 
analysis and exemplary calculations. The LDP problem has an effect on the statistical 
scoring model development, the estimation of credit risk parameters and their validation. 
The Basel II determines three credit risk parameters needed to calculate risk-weighted 
assets and expected loss amount; these are the probability of default (PD), loss-given 
default (LGD) and exposure at default (EAD). The article focuses on the estimation of 
only one risk parameter – PD. 

Part 1 of the article shows the spheres of the LDP problem, approaches to PD estimation 
for LDPs, and Part 2 presents exemplary calculations with data of one external credit 
register of Lithuania, defining LDP as a rating having no more than 20 actual defaults.

1. Comparative analysis of PD estimation approaches to LDPs

1.1. The spheres of LDP problem

Often, the insufficiency of defaults impedes the development of statistical scoring models. 
However, if obligors are assigned to ratings based on the result of expert scoring models, 
the LDP problem is not actual (see Fig. 1). When obligors are already assigned to ratings, 
banks applying the internal ratings based approach for capital adequacy calculation 
purposes have to estimate PD for each rating (Directive, 2006). To estimate the rating 
PD is recommended even for banks that not apply internal ratings based approach 
(Dzidzevičiūtė, 2010b). Rating PD may be estimated applying various methods (see 
Table 1). 
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The LDP problem is actual only when estimating rating PD from long-run averages 
of one-year default rates (i. e. PD(4)). If bank assigns obligors to ratings based on the 
score of the expert scoring model or on the score of the statistical scoring model not 
allowing to estimate individual PDs (e.g., discriminant analysis), PD(4) is the only 
possible method of PD estimation. As very often in better ratings the number of actual 
defaults is too low, banks have to find the way how to solve the LDP problem. 

Statistical scoring models are not very popular among the banks of Lithuania. The 
survey related to commercial banks and branches of foreign banks operating in Lithuania 
has shown that statistical scoring models are applied only in four banks, and only one 
bank applies statistical scoring models allowing to estimate individual PD (logistic 
regression) (Dzidzevičiūtė, 2010c). Thus, for the majority of banks in Lithuania, the 
most appropriate method to estimate PDs for ratings is PD(4) (see Table 1).

Further in this article, the LDP problem is analyzed only as regards PD (4) 
estimation.

1.2. Approaches based on rating transition matrices and bootstrapping

PDs for ratings can be estimated from upgrades and downgrades to other ratings during a 
certain period of time. There are two ways to estimate migration matrices (Schuermann, 
Hanson, 2004): the cohort and the duration approaches. In simple terms, the cohort 
approach just takes observed proportions from the beginning of a year to the end (for 

the case of annual migration matrices) as estimates of migration probabilities; any 

movements within a year are not accounted for, i.e.: 
i

ij
ij N

N
P = , where Pij is migration 

FIG. 1. LDP problem
Source: compiled by the author.
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TAbLE 1. Methods to estimate PDs for ratings

Method Formula Comments

Simple  
average of 
PDs

n

PD
PD

n

i
i

rating

∑
== 1)1(

PDi  is  individual PD of obligor i assigned to that rating; 
n is number of obligors assigned to that rating Methods may be 

used only applying 
statistical scoring 
model allowing to 
estimate individual 
PD (e.g., logistic, 
probit regression 
etc.)

Arithmetical 
average of 
PD interval 
boundaries

2
)2( lowerupper

rating
PDPD

PD
+

=

PDupper – upper PD boundary of individual PD interval defined for 
that rating;
PD lower – lower PD boundary of individual PD interval defined for 
that rating

Geometrical 
average of 
PD interval 
boundaries

 )()3( lowerupperrating PDPDPD ⋅=

Individual PD  

Average of 
one-year  
default rates yeartheofbeginningtheatobligorsofnumber

yeartheduringdefaultsofnumberPD

n

PD
PD

i

n

i
i
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________
_____

)4( 1

=

=
∑
=

PDi – rating’s default rate for year i;
n – number of years used to estimate PD

Method may be 
used applying 
statistical and /
or expert scoring 
models

Source: Dzidzevičiūtė (2010b).

probability from rating i to rating j during a year, Nij is the total number of transitions 
from rating i to rating j during a year, and Ni  is the number of obligors at the beginning 
of a year.

The duration approaches, on the contrary, count all rating changes during a year. The 
probabilities to migrate to default status estimated applying duration approaches may 
be used as PDs for capital requirements calculation purposes. Lando and Skφdeberg 
(2002) propose two duration approaches: parametric, based on time-homogeneity, and 
nonparametric, based on time non-homogeneity. Applying one of duration approaches, 
it is possible to get migration probabilities even for ratings without actual defaults 
and use them as PDs, so both duration approaches are recommended for LDPs. The 
research of Y. Jafry and T. Schuermann (2004) has shown that even the second estimator 
imposes fewer assumptions on the data generating process by allowing for time non-
homogeneity while fully accounting for all movements within a year; both approaches 
yield statistically indistinguishable transition matrices. However, computationally, the 
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second, non-parametric, estimator is more intensive than the first one, so the authors 
recommend the first duration approach. 

Meanwhile, applying the cohort approach we will not get PDs for zero defaults; 
in this approach, the probability to migrate to a default status is equal to the actual 
default rate. Schuermann and Hanson (2004), Christensen et al. (2004) propose to apply 
bootstrapping to obtain confidence sets for estimated migration probabilities. In such a 
case, it is possible to get PDs for ratings with no actual defaults even applying the cohort 
approach, using the upper boundary of a set. Confidence sets may also be calculated 
analytically, using the Wald interval; however, this is not recommended by the authors 
as PD bands are too wide (see Schuermann, Hanson, 2004). 

In this research, the information about rating transitions during a year and the exact 
time of default was not received from the external credit register, so it was impossible to 
apply approaches based on rating transition matrices and bootstrapping in Part 2. 

1.3. Approaches based on CAP and ROC curves

M. V. Burgt (2007) proposes an alternative way how to derive the CAP curve:
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where x is the cumulative part of obligors, y(x) is the proportion of defaults, in x, and 
k is the concavity parameter defining the slope of the CAP curve; when k converges to 
0, the CAP curve converges to a diagonal line (more about CAP and RoC curves, see 
BCBS, 2005a). 

PDs can be derived from the CAP curve, using the following equations, when AR  
is > 60% (or AUC > 80%):
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where xR is the cumulative percentage of obligors in the rating R, D is the average observed 
default rate for the whole portfolio in question; AR is the accuracy ratio, AUC is the area 
under curve measure, z is the total number of obligors, zR is the number of obligors in 
rating R, zN is the number of obligors in the worst rating, and z the is total number of 
obligors. 

The formulas above imply that CAP curve approach needs at least some defaults, i.e. 
it cannot be applied when there are no defaults in the whole portfolio (but it is enough to 
have defaults in at least one rating). 
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D. Tasche (2009) proposes the two-parametric RoC curve approach described below. 
The RoC curve may be derived using the following equations:
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where Ra,b(FN(s)) is the cumulative proportion of defaults till rating s, D is an average 
observed default rate for the whole portfolio in question, FN(s) is a false alarm rate 
till rating s, i.e. the cumulative proportion of non-defaulters till rating s that were 
treated as defaulted. The numerator is calculated as the product of two probabilities, 
i.e. the probability that the rating is lower than or equal to s (if lower ratings indicate 
a higher risk) and the cumulative probability of non-default till rating s, µN, σN are the 
mean and standard deviations of non-defaulters’ ratings, µD,σD are mean and standard 
deviation of defaulters’ ratings, Ф() is a cumulative normal distribution function for 
a standard normal random variable; it is possible to calculate it with the MS Excel 
function = NORMSDIST(); Ф–1() is the inverse cumulative distribution function for a 
standard normal random variable; it is possible to calculate it with MS Excel function 
= NoRMSINV().

PD for ratings may be derived as presented below:
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where φ() is a standard normal density; it is possible to calculate it using MS Excel 
function = NoRMDIST(x; 0; 1; false).

1.4. Approaches based on the distribution of default numbers and simulation 

A. Forrest (2005) proposes two types of PD estimation approaches for LDPs: without 
correlation (see Table 2) and with correlation. The basic idea is that for each chosen 
confidence level the interval of PDs is derived (not one concrete PD value). The author 
recommends taking conservative PDs from this interval.

When there are no actual defaults in several ratings in succession, we are interested 
in conservative combinations of PDs on the dashed line (FIG. 2). As for several LDP 
ratings, even for each chosen confidence level, many conservative combinations of PDs 
are derived, the question is how to choose only one combination. The author recommends 
using the combination of PDs giving the maximum risk-weighted assets.

When there are several defaults in several ratings in succession, the minimum and 
maximum values of PDs are found separately in the same way as for a single LDP rating, 
adding all defaults and obligors up to that rating, for example, for rating A (see Fig. 3):
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TAbLE 2. Approaches without correlation 

Description Formulas Comments
Single LDP 
rating, no 
actual  
defaults

N

N

)DR(ML
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L(PD) – likelihood, i.e. probability of obtaining data 
actually observed on the subjects in the study as a 
function of the unknown parameters in the model. 
In the LDP context, the only parameter is PD
ML – maximum likelihood, i.e. the largest value of 
likelihood among all relevant combinations of the 
model parameters. As in this case, the actual default 
rate (DR) = 0, ML = 1. 
N – the number of obligors in rating.

To get conservative PD, equa-
tion of likelihood ratio LR(PD) is 
solved iteratively for hypothetical 
PD, recalculating until the value 
reaches a 100%-confidence level. 
For example, if we choose the 95% 
confidence level, we have to find 
the PD giving LR(PD) equal to 0.05.
PD may be also calculated using 
MS Excel formula  
= bETAINV(confidence level;1;N)

Single LDP 
rating,  
several  
actual  
defaults PD_MAXDRPD_MIN

)DR(DRML

PDPDPDL;
ML
PDLPDLR
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−⋅==

−

−

1

)(1)()()( DN

D – number of actual defaults in rating
DR – actual default rate of rating

LR(PD) is rescaled as a positive 
quantity expressed as  
-2ln LR(PD). As the value of -2ln 
Lr(PD) is expected to be  
chi-squared distributed, the  
conservative PD is the higher of 
two PDs for which -2ln(LR(PD)) 
equals to the inverse of the one-
tailed probability of the  
chi-square distribution that may 
be calculated with MS Excel  
function = CHIINV using the the 
100% confidence level and  
1 degree of freedom as there’ is 
only one LDP rating 

Several LDP 
ratings, no 
actual  
defaults

L(PD) = (1 – PDA)NA + NB (for rating A)
L(PD) = (1 – PDB) NB (for rating b)
NA, NB – numbers of obligors in ratings A and b, 
respectively.

Maximum values of PDA and 
PDb are found iteratively where 
respective L(PD) equals to (100%-
confidence level). Conservative 
combinations of PDs are on the 
dashed line (see Figure 2). 

Several LDP 
ratings,  
several  
actual  
defaults

N

N

)DR(ML

PDPDL;
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PDLPDLR

−=
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1

)(1)()()(

L(PD) = PDA
DA (1 – PDA)NA – DA · PDB

DB (1 – PDB)NB – DB

ML = DRA
DA (1 – DRA)NA – DA · DRB

DB (1 – DRB)NB – DB

Conservative combination of PDs 
has to comply with three  
conditions: a) PDA < PDb; b) -2ln 
(LR(PD)) = CHIINV((100%  
confidence level);2);  
c) combination of PDs has to be on 
the most distant line of the graph 
(see Fig. 3) 
The number of degrees of  
freedom has to be equaled to the 
number of LDP ratings in  
succession.

Source: compiled by the author in accordance with A. Forrest (2005).
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FIG. 2. Estimation of pds for several ldp ratings with no actual defaults
Source: A. Forrest (2005).
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The number of degrees of freedom iteratively searching for the minimum and 
maximum PDs for both ratings will be 2 in this example because we have two LDP 
ratings in succession. However, choosing the maximum PDs for both ratings would be 
over-conservative (see Fig. 3, the point where the lines of MAX PDA and MAX PDB 
intersect).

The dark lines restrict the conservative region of PD, within which -2ln (LR(PD)) 
<=CHIINV((100% confidence level);2). From all conservative combinations on the 
most distant line, only one giving maximum risk-weighted assets should be chosen.

If A. Forrest’s (2005) approach is modified introducing correlations, the conservative 
regions of PDs are ceteris paribus wider than without correlations; the values of 
conservative PDs are bigger. So, further in Part 2 only the approach without correlations 
will be applied.
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FIG. 3. Estimation of pds for several ldp ratings with several actual defaults

Source: A. Forrest (2005).

Pluto and Tasche (2005) have proposed three ways to get most prudent estimates of 
PDs for LDPs: 1) without correlation, 2) with correlation, and 3) a multi-period case. 
If there are no actual defaults in single LDP rating, the approach without correlation 
is identical to A. Forrest’s (2005) approach without correlation. However, if there are 
several LDP ratings in succession with no actual defaults, Pluto and Tasche (2005) 
propose using the extreme values of PDs (see MAX PDA and MAX PDB in Fig. 2). If 
there are actual defaults in LDP ratings, the authors assume that the number of defaults 
in the portfolio is binomially distributed as long as the default events are independent. 
For example, for three LDP ratings (A, B and C), the most prudent PD estimates are 
calculated using the expressions below. The right-hand side of the equations shows the 
probability of observing not more than DA + DB + DC defaults, not more than DB + DC 
defaults and not more than DC defaults, respectively:
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total number of n observations; γ  is chosen at the confidence level. 

The tail of a binomial distribution can be expressed in terms of an appropriate beta 
distribution function. PDs may be calculated using MS Excel formula = BETAINV 
(confidence level; D + 1; N–D).

If a correlation is introduced, analogically as in A. Forrest’s (2005) approach, most 
prudent estimates of PDs are ceteris paribus higher than without correlations. In the 
multi-period case, authors introduce an additional correlation measure, i.e. an inter-
temporal correlation. An unrealistic assumption is made that only the number of obligors 
N1 in the first year is known and the portfolio is closed for new obligors, so that Nt = N1. 
Besides, PDs seem to be too low if compared to the approach without correlation. Most 
prudent estimates of annual PDs are derived for the whole period. Taking into account 
that in this article the LDP problem is discussed only as regards the estimation of PDs 
for rating from long run averages of one-year default rates (i.e. PD(4)), the multi-period 
case will not be further analyzed in this article. In Part 2, only Pluto and Tasche’s (2005) 
approach without correlations will be applied.

N. M. Kiefer (2006) uses the Bayes rule to estimate PDs for LDPs. PD is estimated 
as the posterior expectation ).( e,rE θθ =  The posterior distribution p(θr, e), describing 
the uncertainty about θ given observation of r, actual defaults in rating with n obligors 
and having expert informatikon, e is expressed:

,
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θ
⋅
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were p(rθ, e) is the distribution of r defaults given that PD (i. e. the probability of 
success on each trial) is θ and expert information e is availalle. Using the Bernoulli 
scheme, the right-hand side of the equation below shows the probability of observing r 
defaults in rating with n obligors:

.e,rp rn r
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This distribution may be calculated as the values of probability mass function applying 
MS Excel function = BINoMDIST().

p(θe) is the prior distribution of θ. The challenging step is to represent the expert’s 
assessments with a statistical distribution. As the usual approach is to fit a parametric 
form, the author proposes using the beta distribution. The probability density function of 
the two-parameter beta distribution for the random variable θ∈[0.1] is 

,,p 11 )(1
)()(
)()( −− −

ΓΓ
+Γ

= βα θθ
βα
βαβαθ
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where Γ(n) is gamma function (if n is a positive integer, then Γ(n) = (n –1)!); parameters 
α, β may be estimated by the method of moments to fit the parametric probability 
statements: 

1),)1()(1(1);)1(( −
−

−=−
−

=
ν
θθθβ̂

ν
θθθα̂

where θ ̅is the sample mean and ν is the sample variance.

The p(re) is the unconditional distribution of the number of defaults. For the two-
prameter beta family, the exact functional form can be calculated:

.
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)()()()1()1(
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+Γ+Γ+−Γ+Γ

=

PD is derived searching for the maximum value of the posterior distribution p(θr, e). 
N. M. Kiefer suggests using the four-parameter beta distribution that allows flexibility 
within the PD range [a, b], but in some situations it may be too restrictive. Also, the seven-
parameter distribution is discussed. However, the approach becomes more complicated, 
it is difficult to derive an unconditional distribution of the number of defaults p(re). 

This author has also proposed further modifications of his approach (see Kiefer 2007; 
2008).

1.5. Other approaches 

Wilde and Jackson (2006) proposed to estimate PDs analytically by calibrating CreditRisk+ 
to the Merton model of default behaviour. The approach is most advantageous where 
there are data of five or more years; it is possible to get PDs even when there are no 
defaults in the whole portfolio. However, PDs seem to be too big, even bigger than 
applying the Pluto and Tasche (2005) approach with a correlation.

G. Sabato (2006) proposed to relate the estimation of PDs with unemployment rates 
in a particular age or education category. This approach is appropriate only for the 
estimation of PDs for physical persons. of course, it is possible to modify the approach 
making it appropriate for companies, for example, to use common variables of different 
economic sectors etc.; however, this wouldn’t allow deriving reasonable PDs because 
companies in the same sector may represent different levels of risk. Besides, the approach 
is appropriate only to derive PDs for specific sub-groups of age, education, etc., but not 
for ratings.

Besides, the problem occurs not only when choosing the most appropriate methodology 
to estimate PDs for LDPs. If banks choose the methodology themselves, in different banks 
PDs derived for LDP ratings having the same number of obligors and the same number of 
defaults may be very different, i.e. banks may choose not only different methodologies, 
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but also different parameters of the same methodology (confidence levels, values of 
correlation, etc.). Thus, the supervisors would face the problem of fair comparability. 
Supervisors could use the approach proposed by the Financial Services Authority (FSA, 
2006). In their approach, banks compare their PDs with the so-called “look-up PDs” in 
the supervisory table. If the weighted average PD is less than the look-up PD, the bank 
adjusts it upwards until the weighted average PD is equal to or above the look-up PD. 
Look-up PDs are derived by the supervisor using one of the approaches discussed above, 
for example, the Pluto and Tasche (2005) approach without correlations. In such a way, 
PDs for LDP ratings with a similar risk in different banks would be comparable.

 
2. Estimation of PD for LDPs using data of one external credit register  
of Lithuania

For the purpose of this chapter, following the FSA definition, LDP shall be treated as a 
rating with the total number of defaults not more than 20. 

10404 “company-years” at three scoring dates were assigned to nine ratings according 
to individual PDs estimated by the statistical scoring model of Lithuanian companies, 
developed by L. Dzidzevičiūtė (2006a). To develop this model, data on the Lithuanian 
companies from all economic sectors for 2005–2008 were obtained from the external loan 
register JSC Creditinfo Lietuva. It is possible to say that the data sample used to develop 
the model represents all the companies of Lithuania. An additional validation sample 
consisting of 10404 “company-years” was used to test the suitibility of LDP approaches.

The first rating indicates the lowest risk of companies and the 9th the highest risk. 
Rating PDs were estimated for the point of 31 December 2007 (see PD(4) in Table 3). 
Data about defaults in 2008 were used for validation purposes.

PD(4) was calculated as a simple average of annual default rates in 2006 and 2007, 
respectively. one could notice that in ratings 1–3, both in 2006 and 2007, there are no 
more than 20 defaults. In 2007, also rating 7 should be treated as an LDP rating (as there 
are only 9 defaults). An especially severe problem is the rating 1 as there are no defaults 
either in 2006 or in 2007. Therefore, PD(4) for ratings 1–3 and 7 should be recalculated 
using one of the proposed approaches (see Table 4):

M. Burgt’s (2007) CAP curve approach;•	
D. Tasche’s (2009) RoC curve approach;•	
A. Forrest’s (2005) approach without correlation;•	
K. Pluto and D. Tasche’s (2005) approach without correlation;•	
N. M. Kiefer (2006) Bayes’ approach.•	

M. Burgt (2007) CAP curve and D. Tasche (2009) ROC curve approaches. Even 
though both approaches ensure the monotony of PDs, they seem to be too low (see 
marked PDs in Tables 5 and 6).
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One could notice that for better ratings PDs are significantly lower than the actual 
default rates, especially in D. Tasche’s (2009) RoC curve approach. In both years this 
approach gives too low PDs for ratings 1 and 2, even if compared with M. Burgt’s (2007) 
CAP curve approach. For example, for rating 2, the actual default rate in 2006 is 1.03 per 
cent (see Table 3), M. Burgt’s (2007) CAP curve approach gives 0.37 per cent, meanwhile 
D. Tasche’s (2009) RoC curve approach gives 0.18 per cent. So, the values seem to be 
too low if compared with other approaches (see Table 4). 

For worse ratings PDs are not too low (see rating 7 in Table 6), but usually in practice 
a low number of defaults is an issue for better ratings. Besides, both approaches are 
very sensitive to the discriminatory power of the scoring model. As in 2007 the model 
discriminates better (the accuracy ratio is 73.85 per cent and in 2006 only 63.21 per 
cent), PDs for better ratings in 2007 are comparatively lower. The other three approaches 
(see Table 4) give higher PDs for ratings 1, 2 and 3 in 2007 than in 2006, and this seems 
to be reasonable because ratings 1, 2 and 3 are riskier in 2007 than in 2006. M. Burgt’s 
(2007) CAP curve and D. Tasche’s (2009) RoC curve approaches, on the contrary, give 
lower PDs for ratings 1, 2 and 3 in 2007 than in 2006; thus, these PDs don’t fully reflect 
the riskiness of ratings.

The Pluto and Tasche (2005) approach without correlation. Table A.1 in Appendix  
provides the PDs for LDP ratings applying this approach with various confidence levels. 
PDs for ratings 1, 2 and 3 are derived on the cumulative basis adding all defaults and all 
obligors up to this rating, i.e. in 2006 for rating 1 the number of defaults will be 3 and the 
number of obligors 735; for rating 2, the number of defaults will be 3 and the number of 
obligors 636; for rating 3, the number of defaults will be 0 and the number of obligors 
344. However, the PD for rating 7 in 2007 was derived on a single basis as rating 7 does 
not follow the other LDP ratings. one could notice that PDs in 2006 don’t comply with 
the monotony requirement as almost allways the PD for rating 3 is lower than for rating 2 
(except only the 99.99% confidence level; however, then PDs are too high). Scaled PDs 
were also estimated as proposed by the authors (see Table A.1 in Appendix), i.e.:

321

332211

NNN
NPDNPDNPD

PD
K

PDKPD_SCALED

PORTFOLIO

ii

++
⋅+⋅+⋅

=

⋅=

where PDi is the estimated PD for rating i; K is the scaling factor, and Ni is the number of 
obligors in rating i.

As LDP ratings were excluded from ordinary ratings, the PDportfolio was treated as an 
average PD of the portfolio consisting of only the first three ratings in 2006 (for 2007, 
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also rating 7 was added). In 2006, the PDPoRTFoLIo is 0.41 per cent (i. e. 3/735), and in 
2007 it is 2.24 per cent (i.e. 24/1073). For the final purposes of anglysis, it was decided 
to use scaled PDs with the 99.99% confidence level. The estimates comply with the 
monotony requirement and are not too high. 

A. Forrest (2005) approach without correlation. To estimate the PD2007, rating 7 was 
treated as a single LDP rating. Graphically (see Fig. 4), the conservative PD2007 may be 
determined where the line of the rescaled likelihood ratio (i.e. -2ln LR(PD)) intersects 
the cut line of the chosen confidence level on the right side of the graph. A. Forrest 
argues that classically the 95% confidence level is chosen. If we choose the confidence 
level reccomended by this author, the PD2007 lies between the minimum PD of 12.16 per 
cent and the maximum PD of 38.64 per cent. The maximum likelihood is found at 23.68 
per cent, i.e. at the actual default rate. 

As we are interested in getting a conservative value, we will choose 38.64 per cent. 
The cut lines were derived using MS Excel function =CHIINV(100%-chosen confidence 
level;1) (see Table 2). The conservative PD2007 for rating 7, derived using the 95 per cent 
confidence level, seems to be most reasonable and will be used further. 

As both in 2006 and 2007, ratings 1, 2 and 3 are LDP ratings and they are in succesion, 
PDs for them will be derived together (see Fig. 3). Table 7 provides the minimum and 
maximum values of PDs for these ratings. 

FIG. 4. Estimation of PD2007 for rating 7

Source: calculations of the author.
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TABlE 7. Minimum and maximum values of pds for ratings (percentages)

 2006 2007
rating Minimum PD Maximum PD Minimum PD Maximum PD
1 0.05 1.45 0.64 2.74

2 0.05 1.68 0.82 3.49
3 0.00 1.13 0.96 7.07

Source: calculations of the author.

As one could see in Fig. 3, combinations of PDs can break through the line of the 
minimum PD, so the iterative checking of PDs was started from 0.01 per cent for rating 
1, from 0.02 per cent for rating 2 and from 0.03 per cent for rating 3 up to the maximum 
PD of a respective rating. From all the conservative combinations of PDs complying 
with these three conditions, i.e.

PD•	 1 < PD2 < PD3,
-2ln(LR(PD)) =CHIINV((100% – 95%);3),•	
combination of PDs has to be on the most distant line of the graph,•	

only one combination was chosen, giving maximum risk-weighted assets. For 2006, this 
is a combination of 0.85%/0.879%/0.88% and for 2007 it is 1.49%/1.78%/3.63% (see 
Table 4). To compare risk-weighted assets, the formulas applicable for retail exposures 
were used:
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where LDG is a loss given default; for the sake of comparability, always the value of 
45% was used; EAD is exposure at default; for the sake of comparability, always the 
value of 100 LTL was used.

It should be noted that the application of this approach starting from three LDP ratings 
in succession requires programming skills, otherwise the iterative checking of various 
combinations of PDs will be very time-consuming. However, the derived combinations 
of PDs comply with the monotony requirement and seem to be very reasonable for the 
calculation of capital adequacy. 

N. M. Kiefer (2006) Bayes’ approach. The first step is to decide upon the representation 
of the prior distribution p(θe). As N. M. Kiefer (2006) says that the four-parameter beta 
distribution in some situations may be too restrictive, in this article we use the two-
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parameter beta distribution. For ratings 1, 2 and 3, in both years hypothetical PDs from 
0.01 per cent to 7.00 per cent were used with the step equal to 0.01 per cent. Thus, 
parameters α and β are 3 and 79, respectively. However, parameters for rating 7 in 2007 
have to be different as the PD for this rating is expected to be significantly higher than 
in other three LDP ratings, so hypothetical PDs from 12.00 per cent to 45.00 per cent 
were used with the step equal to 0.01 per cent. Thus, parameters α and β are 6 and 15, 
respectively.

Similarly as in the Pluto and Tasche (2005) approach, PDs for ratings 1, 2 and 3 are 
derived on the cumulative basis adding all defaults and all obligors up to that rating. 
For rating 7, posterior distribution was derived on a single basis, as this rating is not in 
succesion with other LDP ratings.

Figures 5 and 6 show the posterior distributions p(θr,e) of PDs. The PD for a respective 
rating is derived searching for the maximum value of this posterior distribution. 

one could notice that the posterior distribution of PD for rating 3 in 2006 is shifted to 
the left as compared with PD distributions  for ratings 1 and 2. Thus, PDs in 2006 don’t 
comply with the monotony requirement as the PD for rating 3 is lower than for rating 2 
and even than for rating 1. 

The estimated PDs need to be validated in order to check their suitability. According 
to the regulation of the Bank of Lithuania, banks applying the internal ratings based 
approach shall carry out a regular (at least annual) validation of the PD quantification 

fiG. 5. posterior distributions of pds for ratings 1, 2 and 3 in 2006 and 2007

Source: calculations of the author.
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fiG. 6. posterior distribution of  pd for rating 7 in 2007

Source: calculations of the author.
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process (Bank of Lithuania, 2006b). Even banks not applying the internal ratings based 
approach should mutatis mutandis comply with the regulation on validation (Bank of 
Lithuania, 2008). one of the recommended validation methods is the binomial test 
(BCBS, 2005a; Bank of Lithuania, 2006b; Tasche, 2006; Burgt, 2007; SAS, 2009). 
This method tests whether the estimated PD(4) presented in Table 4 falls within a 95% 
confidence level around the PDreal (i.e. the actual default rate in 2008). The PDestimated 
should lie in the interval as presented below:
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where α is the confidence level which is chosen as 95%, and Φ-1 is the inverse of the 
cumulative standard normal distribution.

Results of the binomial test have shown that only in three approaches the PDestimated 
allways falls into the interval between the lower and the upper boundaries of PDreal (see 
Table 8). So, it is reasonable to reject the other two approaches where this requirement 
is not fulfilled. PDs in the Pluto and Tasche (2005) approach without correlation using 
scaled PDs with 99.99 per cent confidence level seem to be quite reasonable, they allways 
fall into the defined interval. In Forrest’s (2005) approach without correlation and Kiefer 
(2006) Bayes’ approach, PDs also fall into the defined interval; besides, they are more 
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conservative than PDs in the approach discussed above. In the Burgt (2007) CAP curve 
and the Tasche (2009) RoC curve approaches, the PDestimated for ratings 2 and 3 is less 
than the lower boundary. For rating 7, all PDs fall into the defined interval; however, the 
Pluto and Tasche (2005) approach without correlation here gives quite a low value, very 
chose to the lower boundary. 

Conclusions

The author of this article recommends to apply LDP approaches on the rating (and not on 
the portfolio) level, using a concrete number of defaults in order to define LDP without 
accounting for the total size of rating or portfolio. For ratings not complying with LDP 
definition (having more than 20 defaults), PDs should be calculated in an ordinary way. 
If a concrete rating in one year is treated as an LDP and in another doesn’t comply with 
the LDP definition, LDP approaches should be applied only for the first year.

The Pluto and Tasche (2005) approach without correlation could be easily 
implemented in banks. However, if the ordinal ranking of obligors is incorrect, then this 

TAbLE 8. Validation of pds for ldps

1 rating 2 rating 3 rating 7 rating 

Number of obligors by 2007.12.31 369 706 361 50

Defaulted till 2008.12.31 2 10 11 17

PDreal, % 0.54 1.42 3.05 34.00

Lower boundary of PDestimated, % 0.00 0.54 1.27 20.87

Higher boundary of PDestimated , % 1.29 2.29 4.82 47.13

M. bUrGT (2007) CAP CUrVE APPrOACH

PDestimated,%  0.19  0.32  0.70 27.54

binomial test  TrUE  FALSE  FALSE  TrUE

D. TASCHE (2009) rOC CUrVE APPrOACH

PDestimated, % 0.03 0.12 0.77  30.83

binomial test TrUE FALSE FALSE TrUE 

A.Forrest (2005) approach without correlation 

PDestimated, %  1.17  1.33  2.26  32.83

binomial test TrUE TrUE TrUE TrUE 

K. PLUTO, D. TASCHE (2005) APPrOACH WITHOUT COrrELATION 

PDestimated, % 0.71  0.88 1.67  22.17

binomial test TrUE TrUE TrUE TrUE 

 N. M. KIEFEr (2006) bAYES’ APPrOACH 

PDestimated, %  1.06 1.29 1.68 25.80

binomial test TrUE TrUE TrUE TrUE 

Source: calculation of the author.
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approach doesn’t ensure the monotony of PDs in LDP ratings. The same problem exists 
in Kiefer’s (2006) approach. Forrest’s (2005) approach without correlation ensures the 
monotony and conservatism of PDs; however, it requires programming skills, otherwise 
the iterative recalculation of PDs will be very time-consuming. PDs estimated in these 
three approaches passed the binomial test.

A numerical example has shown that PDs estimated in Burgt’s (2007) CAP curve and 
Tasche’s (2009) RoC curve approaches are too low for better ratings; PDs didn’t pass 
the binomial test.  

If it is impossible to extract the information about rating transitions during a year 
and the exact time of defaut, it makes no sence to apply the approaches based on 
rating transition matrices; in any case, they are quite time-consuming. However, some 
supervisors (e.g., the Bank of Lithuania) require banks to estimate rating transition 
matrices; so, at the same time the LDP problem is solved.

Applying Forrest’s (2005) and the Pluto and Tasche (2005) approaches with a 
correlation, the conservative values of PDs may be too high, thus the calculated capital 
adequacy requirements to cover credit risk may not satisfy banks and their supervisors, 
taking into account that the internal ratings based approach in Basel II should ensure not 
an over-conservative but an accurate calculation of capital requirements. Multi-period 
approaches, proposed by Pluto, Tasche (2005) and Wilde, Jackson (2006), give either too 
high or too low PDs; in some cases, assumptions are unrealistic and cannot be fulfilled in 
practice. The approach based on unemployment rates proposed by G. Sabato (2006), is 
appropriate only to estimated PDs for a physical person. Modifications of the approach 
to estimate PDs for companies wouldn’t allow deriving reasonable PDs. Besides, the 
approach is appropriate only to derive PDs for specific sub-groups of age, education, 
etc., but not for ratings.

As the rating system used in this article was developed using a large sample of 
Lithuanian companies’ data, the conclusions are most actual to banks of Lithuania and 
their ratings systems to Lithuanian companies. Besides, it is recommended to supervisors 
to prepare a common methodology applicable in all their jurisdiction, or to prepare look-
up tables of PDs for banks.
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