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Abstract. Although there are many different interest rates in the economy, in theoretical and applied model 
building these distinctions are usually ignored by assuming that there is only one, “true” interest rate. Hence, 
the aim of this article is twofold. First, we empirically examine whether such assumption is plausible for the Euro 
area yield curve data. Second, using different time spans we try to assess the impact of the financial crisis on the 
validity of this assumption. For both purposes, the principal component analysis technique will be employed. 

Key words: principal component, interest rates, bond, yield curve, macroeconomics

Introduction

Interest rates are the fundamental elements of financial and economic activities, and their 
movements are the major risk factors driving the global capital flows. They are also a 
vital tool of monetary policy, an important variable in many macroeconomic models and 
the building block of financial mathematics. 

There are many different interest rates in the economy. Despite the distinction be-
tween the nominal and the real ones, the interest rates can differ in their term, credit 
risk and even tax treatment. However, in theoretical and applied model building, these 
distinctions are usually ignored. This is because the various interest rates tend to move 
up and down together1, revealing the significant amount of joint behaviour, which can 
be abstracted and summarized by the notion of single interest rate. For that reason, it 
seems theoretically legitimate to assume the existence of only one, “true” interest rate 
as the dominant and prevailing financial instrument in the economic system. The above-
mentioned concept will be defined and referred to as the homogeneous interest rates 
assumption. 

The homogeneous interest rates assumption is well known and widely used as it sim-
plifies the complex behaviour of the interest rates structure. Almost all classical and 
Keynesian macroeconometric models, derivative-pricing algorithms, portfolio-manage-

1  As was shown in (Fase, 1973) and (Fase, 1976).
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ment tools, risk-measurement models make some assumptions about the interest rates, 
the most common being that interest rates are homogeneous. Notwithstanding the im-
portance of this assumption, in most cases it is made only implicitly, without any formal 
diagnostic or testing procedures. Although a considerable amount of research2 has been 
devoted to explain the co-movements among interest rates, none of these studies pro-
vide a verification of the homogeneous interest rates assumption, so still little is known 
about its reasonableness. Therefore, the main goal of this study was to empirically exam-
ine whether such assumption is plausible for the Euro area yield curve data. Moreover,  
using different time spans we tried to assess the impact of the present financial crisis 
on the validity of this assumption. For both purposes, in the role of a research tool, the 
principal component analysis was employed.

The remainder of the paper proceeds as follows. The next section describes the prin-
cipal component methodology and provides its interpretation in the context of this study. 
The empirical results are presented in the third section. The final section concludes with 
a brief summary and directions for future research.

Methodology

As indicated in the previous section, our main concern was to identify and test the exis-
tence of the joint behaviour of a set of interest rates. To this end, we propose to employ 
the principal component analysis (PCA). This method is the well-known, standard sta-
tistical tool; therefore, in this paper we recall only a few points, focusing mainly on the 
interpretation, which is relevant to understand the empirical results.

PCA involves a mathematical procedure that linearly transforms a number of possi-
bly correlated variables into a smaller number of uncorrelated variables called principal 
components. The first principal component accounts for as much of the variability in the 
data as possible, and each succeeding component accounts for as much of the remaining 
variability as possible. PCA is based on the eigenvalue-eigenvector decomposition of a 
covariance or correlation matrix. Its operation can be thought of as revealing the internal 
structure of the data in a way which best explains the variance in the data.

Let X denote a T × n matrix containing data on n correlated stationary time series each 
containing T observations at contemporaneous points in time and let V be the covariance 
(or correlation) matrix of X. The principal components of V are the columns of the T × n 
matrix P defined by

P = XW,  (1)

where W is the n × n  orthogonal matrix of eigenvectors of V. Thus, the linear transforma-
tion defined by W transforms original data X on correlated random variables into a set 

2  See, for example, (Litterman et al., 1991), (Bliss, 1997), (Berk et al., 1999), (Moraux et al., 2002), (Soto, 
2004), (Sethi, 2008), (Novosyolov et al., 2008).  
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of orthogonal random variables, i.e. the principal components. Since for the orthogonal 
matrix W its inverse is equal to its transpose, W–1 = WT, we can turn (1) into a representa-
tion of the original variables in terms of principal components:

X = PWT. (2)

The mth principal component is the mth column of P, and if we denote the mth eigen-
value of V by λm, the total variation in X is the sum of the eigenvalues of V: λ1 + ... + λn. 
Hence, the proportion of this total variation, explained by the mth principal component, is

n

m
m λ...λ

λ

1 ++
=ϕ , (3)

and is used as an analogy for R2 in the regression analysis, indicating the goodness of 
fit.

The major aim of PCA is to use only a reduced set of principal components to rep-
resent the variables X. For this purpose, the eigenvalues and their corresponding eigen-
vectors in W are ordered from largest to smallest, i.e. λ1 ≥ ... ≥ λn. In a highly correlated 
system, the first eigenvalue will be much larger that the others, so the first principal 
component alone can explain a very large part of movements in the data, followed by the 
second component, and so on. Hence, most of variations in the system can be explained 
by using only the first few principal components, as these are the most important ones. 
This fact can be represented by adjusting equation (2) to an approximation of the original 
data in terms of the first k principal components only:

X ≈ P*W*T , (4)

where P* is T × k a matrix with columns being the first k principal components, and W* 
is an  n × k  matrix with k columns given by the first k eigenvectors. This equation lies at 
the core of all PCA models and allows extracting just the key sources of variation from 
the data.

In this article, the representation (4) also forms the basic motivation and justification 
of using PCA to test the homogeneous interest rates assumption. The logic adopted here 
is the following: if we are able to attribute a fairly large part of variation in the interest 
rates to the first principal component, we can consider the discussed assumption as plau-
sible. Otherwise,  the homogeneous interest rates assumption will be recognized as not 
supported by the available data over the given period.

The first principal component usually is interpreted as a common trend, and in the 
context of interest rates it can be seen as a parallel movement during which all rates 
change up or down by roughly the same amount (Jajuga, 2006). For this reason, the first 
component is often called the trend or level component (Soto, 2004). The interpretation 
of the second and higher order principal components does depend on having the natural 
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ordering in the system. If the system is ordered, then the second principal component 
captures a change in the slope of the term structure (Alexander, 2008). If the elements 
of the second principal component are decreasing (or increasing) in magnitude and this 
component changes, then the interest rates move up at one end of the term structure and 
down at the other end. The third principal component is often called the curvature or 
convexity component, because if it changes, the interest rates move up (or down) at both 
ends of the term structure and down (or up) in the middle. 

As in the case of any statistical method, PCA has also some limitations, which should 
be carefully recognized. The major limitations of PCA are that it provides a linear trans-
formation only, and utilizes merely the second-order statistics (covariance) of the data. 
on the other hand, these limitations greatly facilitate the computation of PCA compared 
to nonlinear techniques such as neural networks. If the underlying data are Gaussian, 
nonlinear processing and the use of higher-order statistics do not yield any advantage 
over PCA type solutions.

Data and empirical results

The empirical analysis in this paper focuses on the euro area government debt market. 
The dataset contains historical zero-coupon spot yield curves for all euro area central 
government bonds with all issuers and all ratings included. The estimation of the yield 
curve is done by means of a modelling algorithm, namely the Svensson model3, which 
minimises the sum of the quadratic difference between the yields which can be computed 
from the curve and the yields actually measured. The sample period extends from Janu-
ary 2007 to April 2010, providing in  total 850 daily observations after excluding non-
trading days. We will utilize yield curves for maturities between 3 months and 30 years 
with a three-month step size4, thus the dimension of our input data matrix is 850 × 120. 
The series for the analysis are obtained from the European Central Bank webpage5.

The sample constitutes a very valuable period, since the European economy was sub-
ject to the financial crisis. Figure 1 below shows the yield curves for all considered 
maturities. Three different regimes in interest rates are apparent from this graph. From 
January 2007 until mid-2007, the yield curves for different maturities were quite close to 
each other. In the second half of 2007 until September 2008, the span between the curves 
starts to widen. This process was intensified greatly following Lehman Brother bank-
ruptcy on 15 September 2008, which triggered the world-wide economic downturn.

In finance, the profits and losses on fixed income portfolios are mapped to changes in 
interest rate risk factors measured in basis points (Alexander, 2008). Hence, the volatili-

3 See (Svensson, 1994).
4  In other words, we will use yield curves for the following maturities: 3M, 6M, 9M, 1Y, …, 29Y9M, 30Y.
5  http://www.ecb.int/stats/money/yc/html/index.en.html.
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ties and correlations of interest rates should refer to the absolute changes in interest rates 
in basis points. Figure 2 shows the volatility of the examined zero-coupon spot rates in 
the basis point per annum, plotted against the maturity of the spot rate. Volatility is low-
est at the very short end (up to 1.5 years) and highest for rates longer than 28 years. Rates 
between 5 and 25 years’ maturity have a rather stable volatility within the range of 60 
bps as the lower and 70 bps as the upper boundary. Since the volatility of the majority of 
the rates is quite steady and does not fluctuate significantly over the sample, the results 
of applying the principal component analysis to the covariance matrix, which includes 
the volatilities of the rates, are expected to be similar to the results of applying PCA to 
the correlation matrix. Therefore, the subsequent analysis will utilize only the correlation 
matrix. 

FIG. 1. Euro area government zero-coupon yields, 01.2007-04.2010.

FIG. 2. Volatilities of government zero-coupon yields, 01.2007–04.2010.
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We perform a PCA on the correlation matrix of the daily changes in each rate. The 
correlation matrix is a 120 × 120 matrix measured using the equally weighted average 
methodology. An extract from this matrix is shown in Table 1. The correlation matrix  
exhibits the usual behaviour for correlations in a term structure: correlations are higher 
for adjacent maturities and decrease as the maturity difference between the rates in-
creases. Moreover, in this case the 1-year rate has the lowest correlation with the rest 
of the system overall, because this is the money market rate that is more influenced by 
government policies than the longer rates.

Table 1. Correlation matrix of selected changes in spot rates

Maturity 1Y 2Y 3Y 4Y 5Y 10Y 15Y 20Y 25Y 30Y

1Y 1.000 0.896 0.817 0.759 0.712 0.519 0.386 0.326 0.288 0.248

2Y 0.896 1.000 0.973 0.924 0.871 0.624 0.464 0.390 0.335 0.274

3Y 0.817 0.973 1.000 0.985 0.950 0.704 0.520 0.439 0.384 0.323

4Y 0.759 0.924 0.985 1.000 0.989 0.779 0.584 0.496 0.439 0.376

5Y 0.712 0.871 0.950 0.989 1.000 0.846 0.653 0.557 0.492 0.418

10Y 0.519 0.624 0.704 0.779 0.846 1.000 0.934 0.830 0.684 0.514

15Y 0.386 0.464 0.520 0.584 0.653 0.934 1.000 0.956 0.808 0.601

20Y 0.326 0.390 0.439 0.496 0.557 0.830 0.956 1.000 0.937 0.779

25Y 0.288 0.335 0.384 0.439 0.492 0.684 0.808 0.937 1.000 0.947

30Y 0.248 0.274 0.323 0.376 0.418 0.514 0.601 0.779 0.947 1.000

Given the distinct regimes in euro area interest rates, a PCA over the whole period 
only will not reflect the prevailing market circumstances. Therefore, below we conduct 
PCA over the whole sample and also over the three sub-periods identified above. Table 
2 reports the main outcomes of the computations: the three largest eigenvalues λi along 
with the percentage of variation explained φi. 

As one can see from Table 2, the eigenvalues are all positive because the correlation 
matrix is positive definite, and they have been sorted in a decreasing order of magnitude. 
Since we are dealing with the 120 × 120 correlation matrix, the sum of all eigenvalues 
should be equal to 120. The eigenvalues of the correlation matrix determine how much 
of the covariance in the system is explained by each principal component. For instance, 
over the whole sample period denoted by (A), the first eigenvalue is 90.19, which means 
that the first principal component explains 90.19/120 = 75.16% of all the variation. Tak-
en together, the first three principal components account for 96.31% of the movements 
in the yield curve over the sample period (A). Moreover, if the first principal component 
shifts upwards, leaving the other principal components fixed, then all the rates will move 
upwards in an approximately parallel shift, and this type of shift explains 90.19% of 
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movements in the data. Similarly, the second or tilt component will produce 15.10% of 
the changes, and the third – curvature   principal component – will affect 6.05% of the 
variation. 

The following four figures (Figs. 3, 4, 5 and 6) show the first three eigenvectors plot-
ted as a function of maturity of interest rate for each sub-period described in Table 2. In 
order to facilitate the visual comparison, the same vertical scaling and line styles were 
applied to all graphs. These figures indicate that the first three principal components have 
the standard stylized interpretation of level, tilt and curvature. 

The first, and most important, eigenvector is practically a horizontal line because it 
has almost identical values on each maturity, and this feature is most apparent for the 
pre-crisis sub-period (B). As stated above, the short rates have a lower correlation with 
the system than the other rates. Hence, at the short maturities, the first eigenvector is not 
as flat as it is for the longer maturities.

The second eigenvector is very similar to a downward sloping line moving from posi-
tive to negative. Therefore, an upward shift in the second component, leaving the other 
components fixed, induces a tilt in the yield curve, with an upward move at the short 
end and a downward move at the long end. This type of movement accounts for at mini-
mum 6% for sub-period (B) and maximum 15.5% for sub-period (D), meaning that in 
turbulent times we can encounter less parallel and at the same time less homogeneous 
movements of interest rates.

The third eigenvector, denoted on the graphs by the dashed line, has a smooth shape 
comparable to a quadratic function of maturity, being positive at the short and the long 
ends and negative for middle maturities. Hence, an upward shift in the third principal 
component (leaving the other components fixed) will change the convexity of the yield 

Table 2. Eigenvalues and explanatory power of the first three principal components

Period
Principal components

First
i = 1

Second
i = 2

Third
i = 3

Sum

(a): January 2007 – april 2010 
λi 90.19 18.11 7.26 115.56

ϕi 75.16% 15.10% 6.05% 96.31%

(b): January 2007 – July 2007
λi 109.70 7.21 1.54 118.45

ϕi 91.42% 6.01% 1.28% 98.71%

(C): august 2007 – 14 September 2008
λi 95.77 17.49 3.71 116.97

ϕi 79.81% 14.57% 3.09% 97.47%

(D): 15 September 2008 – april 2010
λi 87.08 18.59 8.96 114.63

ϕi 72.57% 15.50% 7.47% 95.54%
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FIG 3. Eigenvectors of the zero-coupon yields correlation matrix: sub-period (A)

FIG. 4. Eigenvectors of the zero-coupon yields correlation matrix: sub-period (B)

FIG. 5. Eigenvectors of the zero-coupon yields correlation matrix: sub-period (C)
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curve. It will make a downward sloping curve more convex and an upward sloping curve 
less convex. This component accounts for only 1.28% of the variation in sub-period (B) 
for and 747% in sub-period (D).

From the perspective of testing the homogeneous interest rates assumption, the first 
principal component can be identified as the “true”, prevailing interest rate. In this sense, 
the more variation is captured by the first component, the more reasonable the homoge-
neous interest rates assumption becomes. Following such reasoning, we can empirically 
assess the validity of this assumption for different time periods indicated in Table 2. The 
conclusion to be drawn is that we can find a relatively strong justification for the ho-
mogeneous interest rates assumption only for fairly tranquil periods, such as period (B) 
before the beginning of the financial meltdown, during which the first principal compo-
nent alone explains more than 91% of the variation. The results for the next two periods, 
namely (C) and (D), form the clear and expected pattern with a lower explanatory power 
φ1 which is equal to 79.81% and 72.57% respectively. Since the difference between φ1 
for period (B) and period (D) is almost 19 percentage points, we can conclude that the 
financial crisis of 2008 had a pronounced and negative impact on the legitimacy of the 
homogeneous interest rates assumption. Thus, in general, we can state that during the 
periods of economic turmoil the investigated assumption is questionable and hardly ac-
ceptable because the rationale for it is limited.

Conclusions

In this paper, we consider the euro area historical yield curves in an attempt to evaluate 
the performance and validity of the homogeneous interest rates assumption. The adopted 
verification method is empirical and relies on the principal component analysis, which is 
applied to different time periods.

FIG. 6. Eigenvectors of the zero-coupon yields correlation matrix: sub-period (D)
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The conclusions regarding testing the homogeneous interest rates assumption are 
twofold. First, the “true”, prevailing interest rate can be identified as the first principal 
component which can be interpreted as a single indicator of the joint behaviour of the 
interest rates’ term structure. Second, while in the relatively stable economic conditions 
the first principal component reflects more than 91% of the co-movements in interest 
rates, during the period of turbulence this number is significantly smaller. As an immedi-
ate implication, it means that all the theoretical and applied models that incorporate the 
homogeneous interest rates assumption should be subjected to a critical review in this 
respect. Looking at it from a different perspective, we can also say that to have homoge-
neous interest rates in the whole euro area is fundamental for an effective functioning of 
the single monetary policy in the Eurosystem.

Taking into consideration the importance of the homogeneous interest rates assump-
tion, further research in this area is needed. Future contributions and directions of studies 
can include the derivation of a formal statistical hypothesis test or extending the dataset 
by adding the other types of interest rates for different currencies.
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