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Introduction

In recent times, somewhat unexpectedly, the 
number theory started being applied by physicists 
to solve physical problems and, perhaps even more 
unexpectedly, techniques developed by physicists 
are applied to problems in number theory. Physicists 
become acquainted with special functions early in their 
studies. D. Schumayer, D. A. W.  Hutchinson  [1] present, 
that for perennial model, the harmonic oscillator 
needs Hermite functions, or the Laguerre functions 
in quantum mechanics. Here physicists choose a 
particular number of theoretical functions, such as the 
Riemann zeta function. Physicists examine numerous 
models from different branches of physics, from 
classical mechanics to statistical physics where this 
function plays an integral role. Physicists also observe 
how this function relates to quantum chaos and how 
its pole-structure encodes when particles can undergo 
Bose-Einstein condensation at low temperatures [1].

The universality is a very interesting and useful 
property of zeta and L-functions. The property for the 
Riemann zeta-function was discovered by S. M. Vo
ronin. Later, many mathematicians (S.  M.  Gonek, 
A. Reich, B. Bagchi, A. Laurinčikas, K. Matsumoto, 
R. Garunkštis, J. Steuding, W. Schwarz, H. Mishou, 
R. Macaitienė, R. Kačinskaitė, D. Šiaučiūnas, V. Gar­
baliauskienė and others) improved and generalized 
Voronin’s theorem. Also the Linnik-Ibragimov 
conjecture exists stating that all functions in some 
half-plane given by Dirichlet series, analytically 
continuable to the left of the absolute convergence 
half-plane and satisfying some natural growth 
conditions that are universal in the Voronin sense. 
Hence, the universality of dzeta-functions is a new 
property of a very important mathematical object; 
on the other hand, it supports the Linnik-Ibragimov 
conjecture.

The aim of this note is to present the universality 
of dzeta-functions and its applications in physics. 

  Riemann-zeta function in Physics

D. Schumayer, D. A. W. Hutchinson present the 
applications of Riemann-zeta function in Quantum 

mechanics [1]. At the dawn of the 20th century, 
Bohr postulated a series of rules for describing the 
spectrum of the hydrogen atom well before the birth of 
Schrodinger’s and Heisenberg’s quantum mechanics. 
In these early days ‘quantisation’ meant to restrict the 
possible values of action variables of the classical 
system (Bohr-Sommerfeld, Wentzel Kramers-
Brillouin, etc.) and the rules worked well, up to an 
additive constant.  Classical mechanics works well 
for large systems; therefore, quantum mechanics must 
give the same predictions for a large system as classical 
mechanics (Bohr’s correspondence principle). This 
unproven principle ties these two theories firmly 
together and the same principle inspired the use of the 
Riemann ζ function in investigating the relationship 
of classical to quantum mechanics.

Interpreting the ζ(s) zeros as energy levels, 
their distribution is breathtakingly similar to those 
of a quantum system’s. This has inspired physicists 
to examine whether one could associate a dynamical 
system with the Riemann zeta function. The advantage 
of this approach would be that the huge number of ζ(s) 
zeros are known and quick numerical algorithms have 
also been developed to find further zeros, thus solving 
the Schrodinger equation for large energies would be 
unnecessary. The Riemann zeta function could play 
the same role in the examination of chaotic quantum 
systems as the harmonic oscillator does for integrable 
quantum systems.

Riemann-zeta function in Condensed 
matter physics [1]. One of the fundamental bases of 
modern condensed matter physics is the geometrical 
structure of solids; the lattice. The examination of this 
mathematical structure is necessary to understand 
even the basic properties of matter. The regular 
structure of a perfect lattice is suitable for immediate 
comparison with regularities among the natural 
numbers, and therefore it is not a surprise that many 
number-theoretical functions arise in crystallography. 
Moreover, not only the perfect regularity of a lattice, 
but also the lack of this regularity can be related 
to the Riemann zeta function, as Dyson indicated 
recently [2]: “A fourth joke of nature is a similarity in 
behaviour between quasi-crystals and the zeros of the 
Riemann Zeta function.”
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Riemann-zeta function in Statistical physics 
[3]. Although statistical physics (the physics of 
systems with a large number of degrees of freedom) 
relied heavily upon combinatorics, well before the 
birth of quantum mechanics, presumably the first 
appearance of the Riemann zeta function in statistical 
physics occurred in Planck’s momentous work on 
black body radiation, the dawn of the quantum era. 
From then on, the Riemann zeta function pops up in 
numerous different branches of statistical physics, 
from Brownian motion to lattice gas models.  Since 
the topic of ultra-cold quantum gases has expanded 
rapidly in the past decade, we interpret the implications 
of the distribution of the Riemann zeta zeros in this 
area first.

Universality of some analytic functions

Now we will briefly discuss the universality 
property in analysis. The first result in this direction 
was achieved by M. Fekete in 1914, and is mentioned 
in [4]. He showed that there exists a real power series 
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which diverges at every point x ≠ 0, and, moreover, 
for every continuous function f(x), x ∈ [–1,1], f(0) = 0, 
there exists a  sequence {nk, nk ∈ ℕ} such that  
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uniformly in x.
J. Marcinkiewicz was the first who, in 1935, 

used the name of the universality. He proved [5] that 
if {hn} is a sequence of real numbers and hn → ∞ as 
h → ∞, then there exists a continuous function f(x) 
∈ C[0,1] such that for every measurable function g(x),  
x ∈ [0,1], we can find an increasing sequence {nk, nk 
∈ ℕ} satisfying
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almost everywhere on [0, 1].
A result of G. D. Birkhoff [6] is related to 

the shifts of entire functions. He proved that there 
exists an entire function f(s) such that for every 
entire function g(s)  there exists a sequence {an} ∈ C 

such that 
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uniformly on compact 

subsets of the complex plane C.
Now many universal objects are known. All 

above examples of universal objects are not explicitly 

given. Their existence obtained by using some non-
effective theorems. Only in 1975 S. M. Voronin found 
an explicitly given universal object, and this object is 
the Riemann zeta-function ζ(s) defined, for σ > 1, by 
Dirichlet series
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and by analytic continuation elsewhere. The 
universality of ζ(s) in some sense is related to the 
mentioned above Birkhoff result. Now we state the 
original Voronin theorem. 

Theorem A [7]. Suppose that 
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f(s) be a continuous non-vanishing function on the 
disc | s | ≤ r which is analytic in the interior of this 
disc. Then, for every ε > 0, there exists a real number 
τ = τ(ε) such that
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The Voronin theorem was improved and 
generalized. Denote by meas A the Lebesgue measure 
of a measurable set A ⊂ R, and let, for T > 0, 
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where in place of dots a condition satisfied by τ is to 
be written. Then the modern version of the Voronin 
theorem is the following statement [8].

Theorem B.  Let K be a compact subset of 

the strip 
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complemenst. Let f(s) be a continuous and non-
vanishing  on K function which is analytic in the 
interior of K. Then, for every ε > 0,
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In Theorem A the approximation of a given 
function by a translation of ζ(s) is uniform only on 
a disc, while in Theorem B the disc is replaced by 
a more general compact set. On the other hand, by 
Theorem A there exists at least one number τ with an 
approximation property, and in Theorem B the set 
of such τ is sufficiently wide: it has a positive lower 
density. However, both Theorems A and B are non-
effective, since it is impossible to indicate at least one 
value of τ.

In 1977, A. Reich obtained [9] the universality 
for Euler’s product
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where 0 ≤ xk < 1, k ∈ N, and pk , k ∈ N, are prime 
elements of some commutative semigroup with norm 

and satisfying a certain axiom for the number of 
elements with norm ≤ x.

A. Reich and S. M. Voronin for the proof of 
the universality used a theorem on the rearrangement 
of series in Hilbert spaces. The proof of Theorem 
B is based on a limit theorem in the sense of weak 
convergence of probability measures in the space of 
analytic functions.

The Hurwitz zeta-function ς(s, α), 0 < α ≤ 1, for 
σ > 1 is defined by
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and by analytic continuation elsewhere. S. M. Gonek 
[10] and B. Bagchi [11] proved independently the 
universality of ς(s, α) for rational and transcendental 
values of the parameter α. Since the function ς(s, α)
has no the Euler product over primes, the function f(s) 
in Theorem B is not necessarily non-vanishing.

The Lerch zeta-function L(λ,α,s) is a 
generalization of the Hurwitz zeta-function, and is 
defined, for σ > 1 by
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If λ ∈ Z the Lerch zeta-function reduces to ς(s, α). 
If λ ∉ Z then the Lerch zeta-function is analytically 
continuable to an entire function. A. Laurinčikas 
proved [12] the universality of L(λ,α,s) with 
transcendental parameter α, and in [13], under some 
additional conditions, with rational α.

The works of H. Mishou and H. Bauer are 
devoted to universality of L-functions considered in 
algebraic number theory. H. Mishou in [14] and [15] 
proved the universality for L-functions with ideal class 
characters and for Hecke L-functions, respectively. 
H. Bauer obtained [16] the universality of Artin 
L-functions and applied this to zero distribution of 
these functions.

The universality of general Dirichlet series
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where am ∈ C and {λm} is an increasing sequence of 

real numbers, 
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[17]. We note that in the case of general Dirichlet 

series many additional conditions in hypotheses 
of universality theorems are involved.  The most 
important of them is the linear independence over the 
field of rational numbers of the system of exponents 
{λm}.

The problem of effectivization of universality 
theorems for Dirichlet series has been investigated 
in [18] and [19]. The universality theorems are non-
effective, since it is impossible to indicate at least one 
value of τ.  

The universality of zeta-functions implies their 
functional independence. Note that the problem of 
independence of functions comes back to D. Hilbert. 
During the International Congress of Mathematicians 
in 1900 he raised a problem of algebraic-differential 
independence for functions given by Dirichlet 
series. D. Hilbert noted that an algebraic-differential 
independence of the Riemann zeta-function ς(s) can be 
proven using the algebraic-differential independence 
of the function Γ(s) and the functional equation for 
ς(s), He also conjectured that there is no algebraic-
differential equation with partial derivatives which 
can be satisfied by the function
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This conjecture was proven independently by 
D. D. Mordukhai-Boltovskoi and by A. Ostrowski 
[20]. A. G. Postnikov generalized the Hilbert problem 
for the function
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where χ (m) is a Dirichlet character modulo q. 
All universality theorems stated above are of 

continuous type: in them translations of the imaginary 
part of the complex variable vary continuously in the 
interval [0,T]. Also, a discrete version of universality 
theorems exists. In this case, the translations of the 
imaginary part of the complex variable take values 
from some discrete sets, for example arithmetical 
progression.  

Universality in Physics 

Riemann zeta function has many interesting 
properties and has proven to be useful for many 
applications in physics. In [21] K.M. Bitar attempted 
to use one such property, described by Voronin’s 
theorems, where a new characteristic distribution 
was discovered numerically and then calculated 
analytically. This distribution allows the use of the 
Riemann zeta function as a generator of pseudo 
random numbers.
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K. Bitar [20] claims, that the Riemann zeta 
function is complex and according to Voronin’s 
theorems can approximate any complex number 
when evaluated for an argument whose real part is 

in the region 

	
2
1  to 1 and for a very large imaginary 

part. As one increases the imaginary part, one will 
encounter other values where this property will repeat 
itself. In this critical strip if one then chooses a value 

for the real part of the argument, say – 

	
4
3 , and then 

varies the imaginary part from say 106 upwards to 
larger values, these theorems assure us that one will 
generate for some such value any pre-chosen number 
with arbitrary precision and that this will happen more 
than once. K. Bitar has implemented this process with 
the aim of studying this characteristic property.

K. Bitar, N.N. Khuri and H.C. Ren [22] present 
a new formulation of Feynman’s path integral, based 
on Voronin’s theorems on the universality of the 
Riemann zeta function. The result is a discrete sum 
over ‘‘paths’’, each given by a zeta function. 

In quantum mechanics or quantum field theory 
one has to evaluate path integrals of the following 
from: 
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Here ν is the number of lattice points, φ(j) is 
the field at the j’th lattice point, S(φ) is the Euclidean 
action, and P(ϕ(l1)... (ϕ(lm)) is a polynomial in the 
fields.  

In paper [23] K. M. Bitar states that the path 
integral can write by series
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where N is large, N >> N0 and pv(n) is a measure, or 
density function. The probability density is the product 
of the independent probabilities for each component  
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For v=1, the density p1(n) is simply given by    
p1(n) = Wσ(γ(1; n)), with γ(1; n) defined in equality
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here j=1,..., v, n=1,..., N, 
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1 <<σ  any real Δ > 0,  

Δ >>h, and Δ >hv. For v>1, and h>1, the values of  
γσ(j; n) and γσ(j + l; n) are uncorrelated. 

By summing over n we sum over all “paths”, 
but the density pv(n) insures that we have the correct 
Jacobian for quantum mechanics.  

A new measure that leads to the correct quantum 
mechanics is explicitly given.

Thus, a path integral can be easily approximated 
by summation.  Khalil M. Bitar [23] notes, that the 
continuous form of Voronin’s theorem, leads us to 
contemplate a far-reaching conjecture. This concerns 
taking the limit a → 0, where a is the lattice spacing. 
If in this limit a measure, p∞(n), exists, then essentially 
any quantum mechanical problem can be reduced to 
quadratures. The important thing to remember is that 
p∞(n) depends only on the properties of the Riemann 
zeta function. All the physics enters through S(n). 
Clearly, the existence of measure p∞(n) and an explicit 
formula for it would be a remarkable achievement. 
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Summary

UNIVERSALITY THEOREMS IN PHYSICS

Antanas Garbaliauskas 

The paper presents universality of some analytic functions, which is a very exceptional and useful property of zeta and 
L-functions. The property for the Riemann zeta-function was discovered by S. M. Voronin. Later, many mathematicians, 
such as S. M. Gonek, A. Reich, B. Bagchi, A. Laurinčikas, K. Matsumoto, R. Garunkštis, J. Steuding and others improved 
and generalized  Voronin’s theorem. Physicists examine numerous models from different branches of physics (from classical 
mechanics to statistical physics) where this function plays an integral role. 

Keywords: Rymann zeta-function, L-function, universality, applications in physics. 

Santrauka

UNIVERSALUMO TEOREMOS FIZIKOJE

Antanas Garbaliauskas 

Darbe pateikiamos kai kurių analizinių funkcijų tolydaus tipo universalumo teoremos. Universalumas – įdomi ir reikš-
minga dzeta ir L-funkcijų savybė. Šią savybę Rymano dzeta funkcijai pirmasis įrodė S. Voroninas. Po to daug matematikų 
(S. M. Gonekas, A. Reichas, B. Bagchi, A. Laurinčikas, K. Matsumoto, R. Garunkštis, J. Steudingas ir kt.) apibendrino ir 
pagerino universalumo rezultatus. Rymano dzeta funkcija yra svarbus instrumentas atliekant klasikinės mechanikos, kvanti-
nės mechanikos, statistinės fizikos tyrimus.

Prasminiai žodžiai: Rymano dzeta funkcija, L-funkcija, universalumas, taikymai fizikoje.
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