
64

Received: 2025-03-02. Accepted: 2025-03-20
Copyright © 2025 Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Published by Vilnius University Press. This is an Open
Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

Jaunųjų mokslininkų darbai	 eISSN 1648-8776
2025, vol. 55, pp. 64–73 	 DOI: https://doi.org/10.15388/JMD.2025.55.7

Assessing Vulnerability of Students’ Programming
Projects: Application of Testing Tools and Estima-
tion of Checklist Effect on Code Quality
Studentų programavimo projektų pažeidžiamumo vertini-
mas: testavimo įrankių taikymas ir kontrolinio sąrašo įtakos
kodo kokybei įvertinimas

Eligijus Andriulionis
Silutes Vyduno Gymnasium
E-mail ari@ari.lt

Simona Ramanauskaitė, Prof. Dr.
Vilnius Gediminas Technical University
E-mail simona.ramanauskaite@vilniustech.lt
https://ror.org/02x3e4q36

Tatjana Balvočienė
Silutes Vyduno Gymnasium
E-mail tatjana.balvociene@vydunas.lt

Summary. Web application security is one of the mandatory elements in system development, however, the
proper level of security measures among beginner level programmers is still an issue. This paper examines
how security checklists impact the secure development practices and code quality in novice developers, within
web application development using the Flask framework. In a controlled experiment, four university students
were asked to develop a sleep tracking system using the Flask web framework, then later asked to improve
it by either using a short or a comprehensive security checklist. This research studies how such checklists
drive the identification and mitigation of common security vulnerabilities, such as XSS, SQL injection, and
poor key management. Using automated and manual code reviews, this study assesses the efficiency of such
checklists in improving both security and general code quality, and hence their potential value in academic
and professional environments.
Keywords: website security, vulnerability, security checklists, code quality, student projects.

Santrauka. Žiniatinklio programų saugumas yra vienas iš privalomų sistemos kūrimo elementų, tačiau prade-
dančiųjų programuotojų žinių lygis apie saugumo priemones vis dar yra problema. Straipsnyje nagrinėjama,
kaip saugos kontroliniai sąrašai veikia saugaus kūrimo praktiką ir kodo kokybę, kai pradedantieji progra-

Contents lists available at Vilnius University Press

https://www.vu.lt/leidyba/
https://creativecommons.org/licenses/by/4.0/
https://www.journals.vu.lt/jaunuju-mokslininku-darbai/
http://
https://doi.org/10.15388/JMD.2025.55.7
https://www.vu.lt/leidyba/

65

Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Assessing Vulnerability of
Students’ Programming Projects: Application of Testing Tools and Estimation of Checklist Effect on Code Quality

muotojai kuria žiniatinklio programas naudodami Flask karkasą. Kontroliuojamo eksperimento metu keturių
universiteto studentų buvo paprašyta sukurti miego sekimo sistemą naudojant Flask žiniatinklio karkasą, o
vėliau paprašyta ją patobulinti, naudojant trumpą arba išsamų saugos kontrolinį sąrašą. Pristatomame tyrime
analizuojama, kaip tokie kontroliniai sąrašai padeda nustatyti ir sumažinti įprastas saugumo spragas, tokias
kaip XSS, SQL injekcija ir prastas raktų valdymas. Naudojant automatines ir rankines kodų peržiūras, šiame
tyrime vertinamas tokių kontrolinių sąrašų efektyvumas gerinant saugumą ir bendrą kodo kokybę, taigi ir jų
potencialią vertę akademinėje ir profesinėje aplinkoje.
Pagrindiniai žodžiai: tinklalapių saugumas, pažeidžiamumas, saugos kontroliniai sąrašai, kodo kokybė,
studentų projektai.

Introduction

As the world continues to digitalize, web applications become not separable from our
daily life and work. Vulnerabilities such as Cross-Site Scripting (XSS), SQL injection,
and poor key management are among the most common web application security issues
and can lead to severe data breaches, loss of user trust, and potential harm to both users
and organizations. This issue is compounded partly by the lack of clearly structured guide-
lines, best practices for the novice programmers. Detailed checklists for system security
level improvement and systematic approach for web application security testing might
be a way to change the situation and move toward more secure web system development.

This research aims to investigate how security checklist usage affects system security
developed by a novice programmer. It is focused on two main research questions:

•	 RQ1: How do publicly available results of web system vulnerability scanning
tools match experts’ evaluation on the estimation of the Flask project web system
security level?

•	 RQ2: How efficient are web system security assurance checklists among novice
programmers?

In this research, we will concentrate on python-based web system development using
the Flask micro web framework. This specific technology was selected taking into account
the constantly increasing popularity of Python language and students’ orientation to learn
this technology and apply it for web system development.

Related Work

Checklist-Based Code Reviews

Studies have explored the impact of checklists on detecting security vulnerabilities in code
reviews. Braz et al. (2022) found that simply instructing reviewers to focus on security
increased vulnerability detection eightfold, while adding a checklist had little effect,
highlighting the importance of mindset.

In education, Chong et al. (2021) analyzed 1,791 checklist questions from 394 students,
finding that while students could anticipate defects, misconceptions about code reviews
remained, emphasizing the need for better instruction.

66

eISSN 1648-8776 Jaunųjų mokslininkų darbai / Journal of Young Scientists

Checklists serve various purposes beyond security. Fedele et al. (2024) developed the
ALTAI checklist for ethical AI. However, Su (2024) notes that while checklists and test-
ing tools are essential for learning secure development, they must be part of a structured
study process.

Automated Vulnerability Assessment Tools

Web vulnerability scanning relies on Static (SAST) and Dynamic (DAST) testing. SAST
analyzes code without execution to detect early-stage flaws, while DAST tests runtime
behavior to find execution-related vulnerabilities.

Esposito et al. (2024) found SAST tools highly precise but limited in scope, empha-
sizing the need for complementary methods. Bennett et al. (2024) noted SAST’s role in
early detection but highlighted challenges in adoption and configuration, especially for
novice developers.

DAST remains essential for runtime security but faces automation and coverage chal-
lenges (Sutter et al., 2024). Research suggests combining SAST and DAST improves
detection and reduces false positives (Nunes et al., 2024), requiring continuous adaptation
to evolving threats (Kumaran et al., 2024).

Research Methodology

The research was designed (see Fig. 1) to gather the needed data to answer research
questions and guarantee that the data are trusted. The research was started by analyzing
different sources for building main and extended checklists for security assurance level
of a Python and Flask micro web framework-based project.

 Fig. 1. Main flow of the research

67

Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Assessing Vulnerability of
Students’ Programming Projects: Application of Testing Tools and Estimation of Checklist Effect on Code Quality

The extended checklist serves as a detailed framework, addressing a broad range of
vulnerabilities from out-of-bounds access to XSS attacks. It is applicable to both front-end
and back-end development, as well as general administration practices. Meanwhile, the
main version of the checklist was created retaining the essential security considerations
while minimizing content. The checklists were composed taking into account that they
will be used with Flask projects, however, presenting them in a more general way, making
sure that the checklist is suitable for any web system project. The key features of each
checklist are:

•	 Main checklist1: This 32-item list (2.4 KB in size) provides quick, concise instruc-
tions to help prevent common vulnerabilities.

•	 Extended checklist2: This 56-item list (10 KB in size) provides more detailed
guidance, with specific questions about the code and suggestions for preventing
potential issues. Each item also lists relevant vulnerabilities.

A programming task was developed separately from the checklist to ensure neutral-
ity. It focused on common web vulnerabilities, including user management and CRUD
operations, while keeping the project small and relevant to early-year students.

The task was given to 3rd-year IT students with prior desktop programming experience
but limited web development exposure. As an optional assignment, it introduced Flask
and Python for web development. While students had no formal cybersecurity training
yet, a dedicated course was planned for later, after they gained experience with various
programming languages and platforms.

The research with students was conducted in two main stages (marked with green
background in Fig. 1):

1.	 Students developed a Flask web app without guidance to assess their independent
coding decisions. Only four projects were submitted.

2.	 Students were then split into two groups (two per group) and given different security
checklists to review and refine their code without external feedback. This tested the
impact of structured security guidance. All four students submitted revised projects
and shared feedback on checklist usability.

In both stages, methodological rigor was ensured to minimize methodological vari-
ability in the study’s results. Each participant received only one type of checklist, without
additional information other than that contained in the checklists. Despite the fact that
the number of participants is very limited, the students’ skills in this course were of very
similar level, with no distinction in one group or another.

The received students’ projects were deployed and tested for security vulnerabilities.
The same testing procedure and tools were used for the initial and updated students’ proj-
ects. The testing stage used a mixed-methods approach to analyze students’ programming
practices, incorporating both manual and automated analyses. Automated tools such as

1	 https://git.ari.lt/ari/research-school-2024/src/branch/main/writeups/mini-checklist.md
2	 https://git.ari.lt/ari/research-school-2024/src/branch/main/writeups/checklist.md

https://git.ari.lt/ari/research-school-2024/src/branch/main/writeups/mini-checklist.md
https://git.ari.lt/ari/research-school-2024/src/branch/main/writeups/checklist.md

68

eISSN 1648-8776 Jaunųjų mokslininkų darbai / Journal of Young Scientists

Pyright3, Pylint4, Bandit5, and OWASP ZAP6 were used to identify potential issues within
the code. The first ones are SAST, while the last ones are DAST tools, freely available for
personal application. At the same time, the main focus was on manual web application
security analysis, which allowed for more context-aware insights from the students’ code
submissions. Manual analysis is particularly effective at detecting subtle ‘code smells’
and security vulnerabilities that automated tools may overlook.

Automated vulnerability testing used the latest tools (as of January 2025), while manual
analysis involved code review and system testing. Each project received a list of strengths
and weaknesses, with expert evaluations summarizing checklist adoption.

The final stage compared project vulnerability levels using five evaluation tools, as-
sessing changes between initial and updated versions to measure checklist impact.

Research results

Summary of Research Results

As shown in the Fig. 2, in the first stage, the students generated 877 lines of HTML, 711
lines of Python, and 158 lines of CSS. The second stage slightly exceeded these figures,
with 888 lines of HTML, 971 lines of Python, and 158 lines of CSS.

 Fig. 2. Code change in the first and second stages of the research

The growth ratios across the two stages reveal a modest increase of 0.6% for HTML
and a more significant rise of 15.5% for Python, while CSS remained unchanged with a
growth ratio of 0%. Overall, the projects’ size increased by 22.2%.

3	 https://pypi.org/project/pyright/
4	 https://pypi.org/project/pylint/
5	 https://bandit.readthedocs.io/en/latest/
6	 https://www.zaproxy.org/

https://pypi.org/project/pyright/
https://pypi.org/project/pylint/
https://bandit.readthedocs.io/en/latest/
https://www.zaproxy.org/

69

Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Assessing Vulnerability of
Students’ Programming Projects: Application of Testing Tools and Estimation of Checklist Effect on Code Quality

In the initial phase of the experiment, students who implemented the sleep monitoring
system without security guidance demonstrated various vulnerabilities characteristic of
insecure programming practices. Simple mistakes were prevalent, from hard-programming
credentials, lack of input validation, to poor handling of sensitive data. The review showed
that these issues represented serious threats, which in a real-world usage scenario would
have serious consequences.

The testing results are summarized in Table 1, listing the numeric values of the testing
results, which can be used for easier comparison.

Table 1. Summary of project vulnerability analysis results

Stage Checklist Student
SAST DAST Manual

Pyright:
1.1.391

Pylint:
3.3.3

Bandit:
1.8.2

OWASP ZAP:
2.15.0 Expert

Initial
project NA

A 65 errors 8.17/10 2 low, 0 me-
dium, 1 high

3 medium, 4 low,
4 informational

14 issues,
6 strengths

B 33 errors 7.61/10 1 low, 0 me-
dium, 1 high

2 medium, 2 low,
0 informational

13 issues,
5 strengths

C 72 errors 6.59/10 1 low, 7 me-
dium, 1 high

3 medium, 3 low,
3 informational

15 issues,
3 strengths

D 65 errors 5.87/10 2 low, 0 me-
dium, 1 high

4 medium, 3 low,
4 informational

11 issues,
5 strengths

Updated
project

Main

A 69 errors 8.00/10 2 low, 0 me-
dium, 0 high

4 medium, 4 low,
5 informational

4 fixes, 7/32
checklist

B 59 errors 6.47/10 1 low, 0 me-
dium, 0 high

5 medium, 4 low,
7 informational

8 fixes,
26/32
checklist

Extended

C 96 errors 7.70/10 1 low, 0 me-
dium, 0 high

5 medium, 7 low,
7 informational

9 fixes,
17/56
checklist

D 107 er-
rors 4.98/10 1 low, 0 me-

dium, 1 high
5 medium, 7 low,
7 informational

10 fixes,
38/56
checklist

Baseline data show that indeed all the projects had very serious security problems
before the application of the security checklists. The average number of original projects
was 58.75 errors per project according to Pyright. Moreover, for Pylint, the average rat-
ing of the original projects was 7.06/10, and the lowest score belonged to D, which was
5.87/10. The Bandit scan also revealed an average vulnerability count of 0 undefined, 2
low, 2 medium, and 1 high in severity for the four projects. The OWASP ZAP automated
scan reported a total average of 3 medium, 3 low, and 3 informational vulnerabilities per
project.

70

eISSN 1648-8776 Jaunųjų mokslininkų darbai / Journal of Young Scientists

Analysis of Quantitative Security Analysis

One of the most pervasive issues in the projects during the initial stage of the research
was the poor handling of sensitive data: hard-coded credentials, static secret keys, and
improperly handled passwords. These were present in all four projects and directly be-
trayed the open security model by exposing sensitive data. Most of these projects adopted
more secure practices after the application of the security checklists in the second stage,
updating the project based on the checklist. Even though the projects did not show major
improvement in the mere storage of the credentials, the credentials were separated out
of most of the code. Proper password hashing was also implemented for more secure
password storage by only storing the hash digest of the password. The introduction of a
secure password hashing function significantly mitigated the risks from plaintext password
storage and weak hashing algorithms like MD5.

Input validation was another critical area that needed much attention because initially,
most of the projects did not validate the inputs given by users. This could result in pos-
sible injection attacks like SQL injection, Cross-Site Scripting, and other injection or input
validation attacks. After following the security checklists, the projects improved their
input validation practices significantly, which also improved the error handling as well.

Another common weakness was the lack of CSRF protection in the original projects.
This made the applications vulnerable to CSRF attacks, where malicious users could trick
authenticated users into performing unintended actions. After the implementation of the
checklist, 50% of the projects in the second stage added Anti-CSRF tokens to their web
applications using Flask-WTF, hence mitigating this threat. Some projects also imple-
mented a content security policy to avoid XSS attacks and make sure that only trusted
resources could run within the web application in the front-end.

Among the key takeaways for the students from the manual reviews of these proj-
ects, there came out the much-improved default settings of Flask which were addressed.
Moreover, secret keys and credentials were not only stored in a more secure way, but
performance was also optimized by reusing database connections. The improvements and
quality of them also directly correlated to how thoroughly the checklists were followed.
Although far from perfect, project D was substantially more secure compared to its initial
state and showed a very good understanding of both security principles and best coding
practices in the second stage.

Analysis of Checklist Application Efficacy
The hypothesis was that the usage of checklists helps to increase the security level

of beginner-level programmers’ projects. Meanwhile, the comparison of the results of
automated testing tools indicates that the ratio of system vulnerability level for most of
the tools increased (see Fig. 3). Once the security fixes had been applied, several of the
statistics shifted significantly. In many cases, the automated scan results were worse or
no better than the original findings. While counter-intuitive, this is not unusual as sys-
tems become increasingly complex, true review requires sophisticated understanding of
context to understand the code and make educated assessments on the project’s source

71

Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Assessing Vulnerability of
Students’ Programming Projects: Application of Testing Tools and Estimation of Checklist Effect on Code Quality

code. However, Bandit’s results improved for most of the projects, which correlates well
with the mitigated security flaws.

 Fig. 3. Change of vulnerability metrics ratio between the first and second stage

The security enhancements recommended by the checklists added complexity to
the applications, and complexity often begets an increase in lint-time errors. The added
complexity is not only supported by the lint-time error count related to code quality, but
also the 20% code size increase as demonstrated above. It is worth pointing out, though,
that even while these are not directly security-related issues, better code quality ̶ in the
sense of clean, organized, and optimized code ̶ usually means fewer security bugs and
more efficient mitigations; a fact to which the results of this project proved no exception.

To go deeper into the project vulnerability, the change in these two stages, the most
common vulnerability groups were highlighted. For each of them, the percentage of
projects having this vulnerability was marked. This was done both in the initial as well
as the second stage (see Table 2).

Table 2. Summary of manual code analysis based on vulnerability categories

Vulnerability group
Percentage of project with this vulnerability

Initial stage Second stage
Static secret keys 100% 25%
Lack of input validation 100% 0%
XSS vulnerabilities 100% 0%
CSRF and CSP vulnerabilities 100% 50%
Password storage problems 75% 0%
SQL injection vulnerabilities 25% 0%
Unsafe cryptography 25% 0%
Code quality 100% 25%
Other vulnerabilities and configuration flaws 75% 25%
Average among all categories 78% 14%

72

eISSN 1648-8776 Jaunųjų mokslininkų darbai / Journal of Young Scientists

The manual analysis results indicate quite a drastic increase in the project security level.
During the second stage, still half of the projects contained CSRF and CSP vulnerabilities,
one project had static secret keys, the code quality was not proper, and other configura-
tion flaws existed. Meanwhile, all other vulnerabilities were eliminated. The change in
vulnerability level match Pylint and Bandit indicated changes in vulnerability level.

Analyzing how existing automated security testing tools obtained while testing the
results relate to the manually identified number of security issues, the linear regression
model indicates that the highest importance is assigned to the number of high (0.34) and
medium (0.38) level errors in the Bandit tool. Meanwhile, the only remaining parameter
with positive feature weight is Pyright score (0.01). All the remaining metrics have a
negative weight, where ZAP OWASP information notices reach the highest negative
weight (-0.45). This indicates that the expert’s evaluation is still a core element in security
evaluation. However, application of automated tools motivates to look for all possible
security issues or code flaws.

Analyzing what exactly was changed in each project, it is visible that the main check-
list is effective – 12 fixes were added by the students A and B, while the students C and
D added 19 fixes to their code, which indicates that the extended checklist gave a wider
coverage of the vulnerabilities to take into account. The most significant improvements
directly addressed major vulnerabilities on sensitive data management, input validation,
and password security. The projects that followed fewer items in the checklist demonstrated
very modest improvements. Meanwhile, basic security measures were implemented, like
password hashing and input validation, the lack of comprehensive changes resulted in
only minimal improvements. In contrast, project D applied 38 out of 56 checklist items
and showed the most robust improvement: more secure session management, improved
error handling, and enhanced cryptographic as well as general security and programming
practices. This leaves us with a conclusion that our checklists had positive outcomes in
security, however, it does not mean that it improved the code quality overall.

Discussion and conclusions

After using the security checklists, there was a marked improvement in both security stance
and code quality. Students employing the complete checklist achieved more improvements
in their code than students who employed the abbreviated checklist. Individuals who
utilized the more exhaustive checklist were also in a position to identify weaknesses and
resolve them accordingly. This finding suggests that the role of long, formalized advice
plays a significant part in instilling a sense of security best practice in novice developers.
Consequently, most security weaknesses that appeared at the initial phase of development
were largely mitigated.

However, the study also uncovered a latent trade-off between security enhancements
and more complex code. Meanwhile, the participants working with the checklists showed
significant security gains, this came at the cost of more complicated code. Inclusion of
security aspects led to increased lint-time bugs and an approximated 20% code growth.

73

Eligijus Andriulionis, Simona Ramanauskaitė, Tatjana Balvočienė. Assessing Vulnerability of
Students’ Programming Projects: Application of Testing Tools and Estimation of Checklist Effect on Code Quality

This new complexity can cause issues for maintenance and long-term quality, particularly
for new programmers who do not yet fully understand standard security practices.

The results highlight the importance of balancing security enhancements with code
simplicity. The results suggest that security checklists can significantly improve the security
practices of novice developers, but proper care must be taken into account as to how these
are affecting the overall quality and maintainability of the code. Encouraging developers
to adopt a mindset that aligns security practice with clean programming standards can
potentially lead to more enduring software development outcomes.

In conclusion, the findings of this study indicate the effectiveness of security checklists
in guiding novice programmers to attain better secure programming practices. The added
code complexity that accompanies it, however, necessitates ongoing research and debate
about the most effective ways of deploying security without impairing code maintainability.
Future work should go towards improving checklist designs and injecting best practices
which consider security as well as code simplicity to ensure that starting developers can
yield secure, good quality software with minimal complexity to overwhelm them.

References

Bennett, G., Hall, T., Counsell, S., Winter, E., & Shippey, T. (2024, October). Do Developers Use
Static Application Security Testing (SAST) Tools Straight Out of the Box? A large-scale Empirical
Study. In Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (pp. 454-460).

Braz, L., Aeberhard, C., Çalikli, G., & Bacchelli, A. (2022, May). Less is more: supporting devel-
opers in vulnerability detection during code review. In Proceedings of the 44th International conference
on software engineering (pp. 1317-1329).

Chong, C. Y., Thongtanunam, P., & Tantithamthavorn, C. (2021, May). Assessing the students’
understanding and their mistakes in code review checklists: an experience report of 1,791 code review
checklist questions from 394 students. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET) (pp. 20-29). IEEE.

Esposito, M., Falaschi, V., & Falessi, D. (2024, June). An extensive comparison of static application
security testing tools. In Proceedings of the 28th International Conference on Evaluation and Assess-
ment in Software Engineering (pp. 69-78).

Fedele, A., Punzi, C., & Tramacere, S. (2024). The ALTAI checklist as a tool to assess ethical and
legal implications for a trustworthy AI development in education. Computer Law & Security Review,
53, 105986.

Kumaran, U., Sree, P. S., Udaya Sree, S., Sowgandhi, V. K., & Balasubramanian, S. (2024, April).
Web Vulnerability Scanner. In International Conference on Advances in Information Communication
Technology & Computing (pp. 193-207). Singapore: Springer Nature Singapore.

Nunes, P., Fonseca, J., & Vieira, M. (2024). Blending Static and Dynamic Analysis for Web Ap-
plication Vulnerability Detection: Methodology and Case Study. IEEE Access.

Su, J. M. (2024). WebHOLE: Developing a web-based hands-on learning environment to assist
beginners in learning web application security. Education and Information Technologies, 29(6), 6579-
6610.

Sutter, T., Kehrer, T., Rennhard, M., Tellenbach, B., & Klein, J. (2024). Dynamic security analysis
on android: A systematic literature review. IEEE Access.

	Summary.
	Studentų programavimo projektų pažeidžiamumo vertinimas: testavimo įrankių taikymas ir kontrolinio sąrašo įtakos kodo kokybei įvertinimas
	Introduction
	Related Work
	Checklist-Based Code Reviews
	Automated Vulnerability Assessment Tools

	Research Methodology
	Research results
	Summary of Research Results
	Analysis of Quantitative Security Analysis

	Discussion and conclusions
	References

