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Summary. Background. Artificial intelligence (AI) in medical imaging is a growing and
promising technology that can be applied in stroke diagnosis. The study aims to overview
studies that compare diagnostic performance of Al applications in stroke detection and seg-
mentation of stroke lesions with and without human clinicians, appraising the models, study
design, and metrics used.

Materials and methods. This systematic review was performed using the PubMed search
engine including articles published in the time frame of 2015 January 1 to 2021 July 23. A to-
tal of 438 studies were found, out of which 60 were chosen for the review.

Results. Only 2 out of 60 (3.3%) studies were prospective. Minimum unique computer
tomography (CT) scans included for validation - 10, maximum - 21586, mean - 599, me-
dian - 100, standard deviation - +2801.1. The training set sizes consisted of minimum 28 CT
scans, maximum - 24214, mean - 1279, median - 153, standard deviation - +5006.7. Most
popular software used in the studies were Brainomix (n=12, 20% of studies) and RAPID
(n=12,20%), 6 studies (10%) used convolutional neural networks, and 6 studies did not iden-
tify the model or name of software used. The average value of the ROC AUC results reported
was 0.884 and the average accuracy was 0.857. The average reported sensitivity and specific-
ity were 0.746 and 0.862, respectively. 27 out of 60 studies used human operators, with the
average number of human operators per study being 3.7+2.9.

Conclusions. Al solutions can be widely applied in computation of infarct volumes. Us-
ing Al in stroke diagnosis still requires further research with more prospective studies, more
expert human operators, and more focus on evaluating secondary outcomes.
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INTRODUCTION

and indirect costs of care provision and productivity loss
[2]. Thus, early stroke detection is an essential part of

According to the Global Burden of Disease 2019 Study,
stroke remains to be the second-leading cause of death and
the third leading cause of death and disability in the world
combined [1]. The number of people living with stroke is
estimated to increase by 27% between 2017 and 2047 in
the European Union, mostly due to the aging population
and better survival rates [2]. In 2017, the cost associated
with stroke was estimated at €45 billion, including direct
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better diagnostics, prompt intervention, and better overall
patient health outcomes.

Artificial Intelligence (AI) is an emerging technology
which enables computers to take real-life decisions with no
or minimal human input [3]. In recent years, applications
of Al in medicine have attracted increasing interest and in-
vestments from venture capital funds [4]. This rapidly
evolving field provides a promising approach for quicker
and more efficient imaging analysis, potentially contribut-
ing to quicker patient diagnosis. Machine learning, a sub-
set of Al can be used at different points of patient care, in-
cluding ischemic and hemorrhagic stroke detection, triage,
segmentation, classification, image quality improvement,
Alberta Stroke Program Early CT Score (ASPECTS) grad-
ing, and outcome prediction [5].
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Some advocates of Al even suggest that current medi-
cal imaging workflows might be transformed to an extent
resulting in staff relay [6]. However, other evidence sug-
gests that Al technology is still in its early phase and most
the research related to it tends to be flawed in study design
[7]. Some studies even suggest that many computer aided
diagnosis (CAD) systems result in additional work-ups for
radiologists because of the false-positive cases [8, 9].
Therefore, most Al research must be assessed extremely
critically.

STUDY AIM

This systematic review aims to give a contemporary over-
view of the studies that compare diagnostic Al perfor-
mance of stroke detection and segmentation of stroke le-
sions, e.g., hemorrhage or large vessel occlusion, with hu-
man clinicians and without, appraising the Al models,
study design, and metrics used.

METHODS

This systematic review was performed using PubMed
search engine for peer-reviewed articles using the search
terms: “deep learning” or “machine learning” or “artificial
intelligence” or “computer aided diagnosis” and “com-
puted tomography” or “CT”, and “stroke” or “ischemic
stroke” or “hemorrhagic stroke”. Literature published in
the time frame of 2015 January 1 to 2021 July 23 was in-
cluded in order to review the newest improvements made
for Al-aided stroke diagnostics.

Inclusion criteria

Studies were included if they were in English only, had
full-articles available, were using deep learning in brain
imaging for segmentation and detection only, were using
only computed tomography as an imaging modality, and
were used for hemorrhagic or ischemic stroke detection.

Exclusion criteria

Studies were excluded from the search only if they did not
meet inclusion criteria or compared different software
without comparison with human clinicians, were abstracts
only, were review articles, were studies involving animals
or children, used machine learning to alter pixel values for
quality improvement or were studies discussing only tech-
nical network architecture matters or predicting patient
stroke outcome.

Literature analysis

A total number of 438 studies were found using the
Pubmed search engine. Upon removal of studies that did
not fit the inclusion criteria, 60 journal articles were chosen
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Records identified through
publication databases,
n=438

Titles assessed for eligibility, 325 studies excluded
n=438 [ ‘

J

Abstracts assessed for eligibility, 40 studies excluded
n=116
Full text articles assessed for 11 studies excluded
eligibility, n=71

Full text articles included in
the study, n=60

Fig. Flowchart of literature screening and review protocol

for the present review. Identified articles were reviewed in-
dependently by two authors. Relevant articles were ana-
lyzed to determine the dataset size used for training and
validation, if any, the type of stroke discussed in the study
(large vessel occlusion, ischemic, intracranial, and
intracerebral hemorrhage), the imaging modality used
(CTA, CTP,NCCT), the name of the software (if commer-
cially available) or the type of the model used, the metrics
used to evaluate the algorithm, and whether the study was
conducted prospectively or retrospectively. The data anal-
ysis workflow is presented in Fig. The results, covered in
this article, are reported only for the best results (e.g., the
paper observes several machine learning techniques, but
we report the technique that showed the best results).

Data analysis

Data was analysed using MS Excel (2021).

RESULTS

Table 1 shows general characteristics of the 60 studies cov-
ered in this article. Only 2 out of 60 (3.3 %) included studies
were prospective. Out of the 60 articles identified, 17 were
on computed tomography angiography, 7 were on com-
puted tomography perfusion, 44 were on non-contrast en-
hanced computed tomography, 6 were on computed to-
mography angiography and non-contrast enhanced com-
puted tomography, 1 was on computed tomography angio-
graphy and computed tomography perfusion, and 1 was on
computed tomography perfusion and non-contrast en-
hanced computed tomography. 21 studies out of 60 as-
sessed large vessel occlusion, 32 assessed ischemic core
volume, 4 assessed intracranial hemorrhage, 7 assessed
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Table 1. Main study characteristics

Lead author Publication Study type | Software used Valldat19n Tralr{mg
year dataset size| set size

Yahav-Dovrat A. [11] 2021 Retrospective | Viz LVO 1167 -
Sheth SA. [15] 2019 Retrospective | DeepSymNet, Rapid iSchema View 297 -
Chilamkurthy S. [16] 2018 Retrospective | Not stated 21586 290055
Dhar R. [17] 2020 Retrospective | Not stated 308 -
Olive-Gadea M. [18] 2020 Retrospective | MethinksLVO 1453 24214
Nishio M. [19] 2020 Retrospective | You Only Look Once v3 (YOLOvV3); Visual 49 189

Geometry Group 16 (VGG16) CNN
Xiong Y. [20] 2019 Prospective | RAPID; Olea 120 -
Kasasbeh AS. [21] 2019 Retrospective | Not stated 51 77
Qiu W. [22] 2020 Retrospective | Not stated 100 157
Kniep HC. [23] 2020 Retrospective | Random forest algorithms 69 -
Kuang H. [24] 2020 Retrospective | Not stated 602 -
LiL. [25] 2021 Retrospective | UNet(UNet10), UNet(UNet6), UNet10Gan, - -

UNet6Gan, UNet6Dil, UNet6Flip, UNet6FlipD,

UNet6Incep, UNet6Vgg.
Arab A. [26] 2020 Retrospective | CNNs with deep supervision (CNN-DS) 10 45
Neuhaus A. [27] 2020 Retrospective | Brainomix e-ASPECTS 178 -
Shinohara Y. [28] 2020 Retrospective | Xception 22 -
Kral J. [29] 2020 Prospective | Brainomix 45 -
Guan Y. [30] 2020 Retrospective | Multilayer perceptron, Decision tree, Random 56 -

Forest, Adaboost, Gradient boosting, Bagging,

Bernoulli naive Bayes, Gaussian naive Bayes,

Support vector machine, K-nearest neighbor
Shinohara Y. [31] 2020 Retrospective | Xception 79 -
Cimflova P. [32] 2020 Retrospective | Brainomix, RAPID 81 -
Hoelter P. [33] 2020 Retrospective | Syngo.via Frontier ASPECT Score Prototype V2, 131 -

Brainomix e-ASPECTS, RAPID ASPECTS
Oman O. [34] 2019 Retrospective | DeepMedic 30 30
Mah YH. [35] 2020 Retrospective | Support vector machine 1832 -
Ko H. [36] 2020 Retrospective | CNN-LSTM; Xception 727392 4516842
Ironside N. [37] 2019 Retrospective | Analyze 12.0 40 260
Amukotuwa SA. [38] 2019 Retrospective | RAPID 4.9.1 969 -
Kuang H. [39] 2019 Retrospective | Random Forest 100 157
Seker F. [40] 2019 Retrospective | Brainomix e-ASPECTS 43 -
Vargas J. [41] 2018 Retrospective | CNN 40 356
Albers GW. [42] 2019 Retrospective | RAPID ASPECTS 65 -
Austein F. [43] 2019 Retrospective | Brainomix e-ASPECTS, iSchema View RAPID 52 -

ASPECTS
Li L. [44] 2020 Retrospective | Frontier ASPECTS 55 -
Sales Barros R. [45] 2020 Retrospective | CNN 396 630
You J. [46] 2020 Retrospective | XGBoost 100 200
Wen X. [47] 2020 Retrospective | Multivariate logistic regression model 39 87
Guberina N. [48] 2018 Retrospective | Brainomix e-ASPECTS 117 -
Amukotuwa SA. [49] 2019 Retrospective | RAPID CTA 477 -
Copelan AZ. [50] 2020 Retrospective | RAPID 38 -
Heit JJ. [51] 2021 Retrospective | RAPID ICH 308 -
Stib MT. [52] 2020 Retrospective | DenseNet-121 116 424
Prevedello LM. [53] 2017 Retrospective | GoogLeNet 50 264
Schultheiss M. [54] 2020 Retrospective | U-net 186 369
Lo CM. [55] 2021 Retrospective | AlexNet 325 1254
Wang C. [56] 2021 Retrospective | 3D CNN 194 259
Herweh C. [57] 2016 Retrospective | Brainomix e-ASPECTS 34 -
Nagel S. [58] 2017 Retrospective | Brainomix e-ASPECTS 132 -
Goebel J. [59] 2018 Retrospective | Brainomix, Frontier ASPECTS 150 -
Wu G. [60] 2021 Retrospective | U-net, ResNet, MAP 128 149
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Table 1. Main study characteristics (continuation)

Lead author Publication Study type | Software used Validati?n Train'ing
year dataset size| set size

Naganuma M. [61] 2021 Retrospective | Three-dimensional fully convolutional network- 151 -

based brain hemisphere comparison algorithm

(3D-BHCA)
Scherer M. [62] 2016 Retrospective | Random Forest 30 28
Rava RA. [63] 2021 Retrospective | Canon AUTOStroke Solution LVO 303 -
Abramova V. [64] 2021 Retrospective | 3D U-net 15 61
Pan J. [65] 2021 Retrospective | DL Res Net 58 58
Brinjikji W. [66] 2021 Retrospective | Brainomix e-ASPECTS 60 -
Adhya J. [67] 2021 Retrospective | RAPID-CTA 310 -
Rava RA. [68] 2021 Retrospective | Canon AUTOStroke Solution ICH 302 -
Shi T. [69] 2021 Retrospective | C2MA Network 62 94
YouJ. [70] 2021 Retrospective | 3D dissimilar-siamese-u-net 624 -
Delio PR. [71] 2021 Retrospective | iSchema View software, Rapid 500 -
Seker F. [72] 2021 Retrospective | Brainomix e-CTA 301 -
Tomasetti L. [73] 2021 Retrospective | Random Forest 93 59

intracerebral hemorrhage, 4 studies assessed large vessel
occlusion and ischemic core volume, and 1 study assessed
intracranial hemorrhage and intracerebral hemorrhage.

When assessing the study dataset size, the study by
Ko H et al. 2020 stood out, as it had a significantly greater
retrospective database than others (a total of 4516842 im-
ages used for training and 727392 for validation). There-
fore, we excluded it from the statistics as an outlier. The
corrected statistics for training set sizes consisted of mini-
mum 28 CT scans, maximum - 24214, mean - 1279, me-
dian - 153, standard deviation - £5006.7. Test and valida-
tion dataset sizes reported in the studies were as follows:
minimum unique CT scans included for validation - 10,
maximum - 21586, mean - 599, median - 100, standard
deviation - £2801.1. The results of the final statistics are
presented in Table 2.

Table 2. Training and validation dataset sizes

Validation Training
Minimum CT scans used 10 28
Max CT scans used 21586 24214
Mean 599 1279
Standard deviation 2801.1 5006.7
Variance 7846182.5 25067432.5
Median 100 157

We compared the results of the five most often reported
metrics: sensitivity, specificity, accuracy, receiver operat-
ing characteristic area under the curve (ROC AUC), and
Dice similarity coefficient. Bland-Altman plots were not

Table 3. Most popular metrics used

Spearman’s rank correlation coefficient

Intersection over Union (IoU)
The McNemar’s test

The Somer’s delta
Krippendorf’s alfa

xz square
One-way ANOVA
Youden index

Matthew’s correlation coefficient

Change in groin puncture time

Concordance coefficient
Mann-Whitney U test
Fisher exact tests

T-test

Recall

K-fold cross validation

Positive predictive value

Inter-rater reliability / Interclass correlation coefficient

Most popular commercially available software used in
the studies were Brainomix (n=12, 20% of studies) and
RAPID (n=12, 20%), 6 studies (10%) specified using
convolutional neural networks, and 6 studies did not iden-
tify the type of software, nor the model, nor the neural net-
work architecture used. The other types of machine learn-
ing techniques used are shown in Table 1.

A large spectrum of different statistical methods was
used to evaluate the performance of the model, making it
difficult to compare their results accurately. The most pop-
ular methods used in the studies are presented in Table 3.
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Negative predictive value

Precision

Cohen’s kappa coefficient
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Pearson correlation coefficient

Intra-rater reliability / Intraclass correlation coefficient | 11
Dice similarity coefficient 13
Bland-Altman plots 14
ROC AUC 19
Accuracy 21
Specificity 25
Sensitivity 28
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Table 4. Most popular metrics used and their results

Sensitivity Specificity Accuracy ROC AUC | Dice similarity coefficient
Publication count with the metric 28 25 21 19 13
Minimum value 0.185 0.570 0.609 0.759 0.317
Maximum value 1.000 1.000 1.000 0.960 0.905
Average value 0.764 0.862 0.857 0.884 0.712
Standard deviation 0.198 0.116 0.105 0.061 0.178
Variance 0.039 0.013 0.011 0.004 0.032

included in the comparison as the results are mostly visual
rather than numeric.

The average value of the ROC AUC results is 0.884 and
the average accuracy is 0.857, both of which can be consid-
ered as excellent. The average sensitivity and specificity of
the studies are estimated at 0.746 and 0.862, respectively.
The largest standard deviation of 0.198 and the variance of
0.039 between study results were among the results of the
sensitivity metric.

Such findings suggest that the reported results show a
low variance between different studies, indicating that the
different software used perform at a rather similar level.
The results are summarized in Table 4.

Human comparator groups were used in 27 out of
60 studies, and these groups were relatively small. The
minimum number of people (experts or non-experts) in-
volved in the study was 1, the maximum was 16, with the
average number of human operators per study being
3.7+2.9. In most studies, the data were rated independently
by most of the human comparators.

DISCUSSION

We have established several findings from our review.
First, out of 60 studies reviewed, 58 studies were retro-
spective and only 2 were prospective. This is an important
limitation in studies aimed at testing Al in clinical practice,
as prospective studies are more suitable to represent the
real clinical environment. Al performance is likely to be
less accurate when facing new, real-world data, rather than
the data used in algorithm training [10]. The success in
silico studies and excellent performance metrics do not al-
ways translate into clinical functionality, as metrics such as
ROC AUC, which is universally used in Al studies, are ar-
gued not to be the best metrics to represent clinical success
[10].

There is little to no consensus on what metrics to re-
port of Al application in stroke diagnostics should be
used. Our findings show a large spectrum of different sta-
tistical measures to prove the performance of the model,
however, only one study attempted to show the clinical
benefit. The study by Yahav-Dovrat et al. (2021) mea-
sured how the Al application VIZ LVO reduced the time
to the groin puncture [11]. Other studies introduced met-
rics that do not necessarily reflect any benefit in clinical
practice, and their comparison with human operators re-

flects an in silico environment in which clinicians do not
typically work.

Second, the studies in our review present a very varied
number of dataset sizes with different sample distributions
and characteristics. The average number of unique CT
scans used for validation of neural networks per study was
noted to be 599, however, the validation dataset sizes
ranged from 10 to 21586 CT scans. The use of small
datasets with less than 100 scans for training and/or valida-
tion raises the question of whether the results can be reli-
able, whether they can be replicated by others, whether
they can be replicated in real-life clinical scenarios, or can
be generalized in different populations and different re-
gions.

Third, there were few human operators across all stud-
ies compared to Al applications, with the average number
of human operators per study being 3.7+2.9. Inter-rater
variability as well as intra-rater variability among human
operators can also be high, therefore future research need
to use larger samples of human operators to ensure reliabil-
ity. In addition, including non-experts and comparing
them with AI can make the algorithm better compared to it,
making it harder for a human, so comparison with experts
would be preferable [12]. Most importantly, studies with
human comparators should attempt to move past opposing
Al vs. clinicians and move towards observing collabora-
tion between clinicians and machine learning, as the com-
bination of both tends to outperform either alone [13, 14].

However, Al seems to be a promising tool for ridding
people of manual and repetitive tasks. For example, Al so-
lutions can be widely applied in computation of infarct vol-
umes since manual delineation tends to be a tedious task. It
is widely recognized that medical reporting is a huge re-
sponsibility for medical practitioners and takes a signifi-
cant amount of time for each examination.

Finally, the legal status of any Al application operating
in a clinical setting should be established. Al as a stand-
alone decision maker or working on a black box principle
does not seem to be a safe and sustainable solution. For ex-
ample, Al applications in stroke diagnosis still carry a rela-
tively high probability of false negative cases that may re-
sult in late or missed diagnosis. Vendors of Al systems
must make their applications transparent and focus on the
application design that empowers the end-user rather than
replaces it. Further research should aim to mention the in-
tended position of the Al system under study in the clinical
pathway.
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In summary, further studies should focus on including

larger patient samples from different geographical regions,
including more prospective cases, validating AI models
across different care centers, including more expert human
operators to account for inter-operator variability among
humans, evaluating secondary outcomes, e.g., time sav-
ings per procedure and long-term patient outcomes, avoid-
ing in silico testing environment to evaluate the perfor-
mance of human operators compared to the Al systems,
and ultimately making datasets and source codes available
to other researchers to accelerate Al research globally.

CONLUSIONS

Artificial intelligence is a rapidly developing field that
promises significant impact in time savings, quality
improvement of medical procedures, and even better
patient outcomes.

However, the use of Al in routine stroke diagnosis still
requires further research with more prospective stud-
ies, more expert human operators, and more focus on
evaluating secondary outcomes.

The performance of Al systems in clinical settings
should be demonstrated more in tandem with human
operators rather than stand-alone systems.
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DIRBTINIO INTELEKTO PRITAIKYMAS UMINIO
INSULTO VAIZDINIU TYRIMU DIAGNOSTIKOJE.
SISTEMINE LITERATUROS APZVALGA

Santrauka

Ivadas. Dirbtinis intelektas (DI) yra sparciai besivystanti techno-
logija, kuri gali atnesti daug teigiamy poky¢iy galvos smegeny
insulto diagnostikoje. Tyrimo tikslas - apzvelgti publikacijas,
kuriose DI gebéjimas diagnozuoti iminj insulta i$ radiologiniy
vaizdy ir gebéjimas segmentuoti insulto radiologinius pozymius
yra lyginamas su Zzmonémis vertintojais arba apzvelgiamas be jy.
Apzvelgiami naudoti modeliai, studijy dizainas ir taikomi statis-
tikos metodai.

Tiriamieji ir tyrimo metodai. Sisteminé apzvalga buvo atlikta
naudojant ,,Pubmed* duomeny bazg, i apzvalga itraukiant publi-

kacijas nuo 2015 m. sausio 1 d. iki 2021 m. liepos 23 d. I$ viso bu-
vo aptiktos 438 publikacijos, i$ kuriy apzvalgai atrinkta 60.

Rezultatai. Tik 2 studijos i$ 60 (3,3 %) buvo perspektyvinés.
Maziausias unikaliy kompiuterinés tomografijos vaizdy skai-
¢ius, naudotas DI sistemos validacijai, buvo 10, didziausias -
21 586, vidurkis - 599, mediana - 100, standartinis nuokrypis -
+2801,1. Maziausias duomeny kiekis, naudotas neuroniniy tin-
kly mokymui, buvo 28 studijos, didziausias - 24 214, vidurkis -
1279, mediana - 153, standartinis nuokrypis - +5 006,7. Popu-
liariausia naudota programiné jranga buvo ,,Brainomix“ (n = 12,
20 % visy publikacijy) ir RAPID (n = 12,20 % visy publikacijy),
6 studijos (10 %) naudojo konvoliucinius neuroninius tinklus ir
6 publikacijos nenurodé nei modelio, nei programinés irangos
pavadinimo. Vidutinis ploto po kreive rodiklis buvo 0,884, o vi-
dutinis tikslumas - 0,857. Jautrumo ir specifiSkumo vidurkiai bu-
vo 0,746 ir 0,862. 27 i$ 60 atlikty studijy turéjo Zmones vertinto-
jus, o Zmoniy vertintojy skaiciaus vidurkis $iose studijose buvo
3,7+29.

I$vados. Dirbtinio intelekto sprendimai gali bati placiai tai-
komi automatizuotam galvos smegeny insulto ttirio apskaiciavi-
mui kompiuterinés tomografijos vaizduose. DI taikymas galvos
smegeny insulto diagnostikai vis dar reikalauja papildomy tyri-
my, perspektyviniy studijy, platesnio palyginimo su Zmonémis
vertintojais ir didesnio démesio antriniy iSeic¢iy vertinimui.

Raktazodziai: dirbtinis intelektas, insultas, masininis moky-
masis, neuroradiologija.
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