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Abstract. The consensus problem of fractional-order multi-agent systems is investigated by event-
triggered control in this paper. Based on the graph theory and the Lyapunov functional approach,
the conditions for guaranteeing the consensus are derived. Then, according to some basic theories
of fractional-order differential equation and some properties of Mittag–Leffler function, the Zeno
behavior could be excluded. Finally, a simulation example is given to check the effectiveness of the
theoretical result.
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1 Introduction

Fractional-order calculus could trace back to three hundred years ago [18], but the ap-
plications of fractional-order calculus in engineering field just in the last decades. The
concept of a fractional-order PIλDµ-controller, involving fractional-order integrator and
fractional-order differentiator, was proposed in [21]. After that, more and more results
about fractional-order control systems have been published; it could be seen in [16]
and references therein. As the research further develops, people have found that the
fractional-order systems show great memory and hereditary properties, and many results
have proved that some phenomena can be explained better by the fractional-order systems,
especially, the viscoelastic systems [1]. Thus, fractional-order systems has gradually been
in a hot topic [8, 15, 28, 36, 39, 40].

Cooperative control of multi-agent systems has been widely investigated for its easy
implementation, strong robustness. In the past decades, multi-agent systems have been
applied to many fields, such as unmanned aerial vehicle [17], formation control [13],
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target tracking [11] and so on. As a significant problem for the coordination control,
consensus has received many attentions, which means that all the agents would converge
to a desired target via communicating with their local neighbors. Consensus of multi-agent
system has gotten many results in recent years, which could be seen in [7, 13, 19, 22] and
references therein.

However, most of results about multi-agent systems were concerned with integer-
order dynamics for agents. Indeed, lots of agents often work in complex environments, for
example, vehicles moving on sand, muddy road, or grass, high-speed aircraft traveling in
rain, dust storm, or snow environment, then, integer-order dynamics cannot well describe
behaviors of agents. Under these cases, the dynamics for agents can be described as
the fractional-order systems. Recently, fractional-order multi-agent systems have been
gotten many results. Distributed coordination algorithms were studied for fractional-order
systems firstly in [5]. Some further studies about consensus for the fractional-order multi-
agent systems by the authors of [5] were published [6]. Then, lots of control laws for
fractional-order multi-agent systems have been designed based on different approaches.
For example, output feedback control for uncertain fractional-order multi-agent systems
has been investigated in [33]. Adaptive pinning control for the leader-following consensus
of fractional-order multi-agent systems has been studied in [37]. Distributed consensus
tracking for the fractional-order multi-agent systems based on the sliding mode control
method has been studied in [3].

All these aforementioned works were considered based on continuous control. It is
obviously that unnecessary communication will lead to a waste of energy. Continuous
communication would also cause the communication resource competition among agents.
More recently, results based on impulsive control and sampled-data control methods
have also been proposed in [26] and [38], respectively. However, data of them are up-
dated period, which may also contain unnecessary communication. Event-triggered con-
trol strategy under which the information of agents were updated when a pre-set thing was
triggered. There lots of results based on event-triggered control law were investigated
for integer-order multi-agent systems [12, 14, 24, 27, 29, 31, 32, 41]. To the best of our
knowledge, there were just few results about event-triggered control for fractional-order
multi-agent systems [25, 30]. On the other hand, the leader-following consensus problem
can be conveniently converted into a stabilization problem. However, as for the leaderless
consensus problem, there is no specified leader. Consequently, the leaderless consensus
problem is more challenging. Thus, more and more results about leaderless consensus
have been published [2, 10, 34].

Based on the above analysis, this paper discusses consensus of fractional-order non-
linear multi-agent via event-triggered control. Firstly, a event-triggered control law will be
introduced, the consensus can be achieved under some simple conditions formed as matrix
inequalities. Then, for the proposed event-triggered scheme, we have proved that the inter-
event-time intervals are strictly positive, i.e., there is no Zeno behavior. The rest of the
manuscript is organized as follows: In Section 2, the graph theory and Caputo fractional
operator have been introduced, and some basic lemmas have been given, which would be
used in the later sections. In Section 3, we have given a statement for the problem. The
main results are shown in Section 4. A simulation is presented in Section 5 to illustrate
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the effectiveness of the proposed method. Finally, conclusions and the further research
directions are made in Section 6.

Notations. Let R be the set of real numbers. Rn and Rn1×n2 refer to the n-dimensional
real vector and n1 × n2 real matrices. The superscript “T” denotes matrix transposition.
In denotes the n-dimensional identify matrix. For a vector x ∈ Rn, ‖x‖ is defined as
‖x‖ =

√
xTx. For P ∈ Rn×n, λmax(P ) represents the maximum eigenvalue of P .

⊗ denotes Kronecker product.

2 Preliminaries

In this section, some basic theories of graph theory and Caputo fractional-order operator
would be introduced.

2.1 Graph theory

Let G = {∆,E,W} be a undirected graph of order N , where ∆ = {v1, v2, . . . , vN},
E ⊆ ∆ × ∆ denote the set of nodes and edges respectively. For any i, wii = 0. eij =
(vi, vj) ∈ E is a edge from i to j, where i 6= j, which means that vj can receive message
from vi. vi is a neighbor of vj if eij ∈ E. The set of all neighbors of vi can be denoted
as Ni = {vj : eij ∈ E, j = 1, 2, . . . , N}. W = {wij} ∈ RN×N denotes weighted
adjacency matrix, where wij is weight, which satisfies wij = wji 6= 0 if eij ∈ E and
wij = 0 otherwise. We assume wii = 0 for all i = 1, 2, . . . , N . The Laplacian matrix
L = (Lij) ∈ RN×N is defined by Lij = −wij for i 6= j and Lii = −

∑
j 6=i Lij .

2.2 Caputo fractional derivative

Caputo fractional operator plays an important role in the fractional systems, since the
initial conditions for fractional differential equations with Caputo derivatives take on
the same form as for integer-order differential, which have well-understood physical
meanings [20]. Thus, we use Caputo derivatives as main tool in this paper. The formula
of the Caputo fractional derivative is defined as follows.

Definition 1. (See [20].) The Caputo fractional derivative of function x(t) is defined as

CD
α
0,tx(t) =

1

Γ(m− α)

t∫
0

(t− τ)m−α−1x(m)(τ) dτ,

where m− 1 < α < m, m ∈ Z+.
Let m = 1, 0 < α < 1, then

CD
α
0,tx(t) =

1

Γ(1− α)

t∫
0

(t− τ)−αx′(τ) dτ.
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For simply, denote Dαx(t) as the CD
α
0,tx(t). The following properties of Caputo

operators are specially provided.

Lemma 1. (See [20].) If w(t), u(t) ∈ C1[t0, b] and α, β > 0, then

(i) DαD−βw(t) = Dα−βw(t);
(ii) Dα(w(t)± u(t)) = Dαw(t)±Dαu(t).

The Mittag–Leffler function is defined by

Eα,β(z) :=

∞∑
i=0

zi

Γ(αi+ β)
,

where α > 0, β > 0, Γ(·) is the gamma function. For short, Eα(z) := Eα,1(z). The
following lemma of Mittag–Leffler function will be used in the later.

Lemma 2. (See [20].) Let 0 < α < 1 and p ∈ R. The solution of the initial value problem

Dαx(t) = px(t) + q(t),

where q(t) is a given continuous function, can be expressed in the form

x(t) = x(t0)Eα
(
p(t− t0)α

)
+ α

t∫
t0

(t− τ)α−1Eα,α
(
p(t− τ)α

)
q(τ) dτ.

3 Problem formulation

Each considered agent is modeled by a generic nonlinear system dynamics taking up the
following form:

Dαxi(t) = Axi(t) +Df
(
xi(t)

)
+Bui(t), i = 1, 2, . . . , N, (1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is the state of agent i, f : Rn → Rr,
ui(t) ∈ Rm is the distributed control law for agent i, which uses only the local infor-
mation from its neighboring agents. A, B and D are constant matrices with appropriate
dimensions. In this paper, the following control input for ith agent would be considered:

ui(t) = γK

N∑
j=1

wij
(
xj(tk)− xi(tk)

)
, t ∈ [tk, tk+1), (2)

where tk is kth event-triggered moment. Let

yi(t) =

N∑
j=1

wij
(
xj(t)− xi(t)

)
, i = 1, 2, . . . , N,

and ei(t) = yi(tk)− yi(t), then, one has

Dαxi(t) = Axi(t) +Df
(
xi(t)

)
+ γBKyi(t) + γBKei(t), i = 1, 2, . . . , N.
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This formula can be written in the following compact matrix form:

Dαx(t) = (IN ⊗A)x(t) + (IN ⊗D)F
(
x(t)

)
− γ(IN ⊗BK)y(t)

+ γ(IN ⊗BK)e(t),

where x(t) = [xT1 (t), xT2 (t), . . . , xTN (t)]T, F (x(t)) = [f(x1(t))T, f(x2(t))T, . . . ,
f(xN (t))T]T, y(t) = [yT1 (t), yT2 (t), . . . , yTN (t)]T, e(t) = [eT1 (t), eT2 (t), . . . , eTN (t)]T.
Note that y(t) = −(L⊗ In)x(t), then

Dαx(t) =
(
IN ⊗A− γ(L⊗BK)

)
x(t) + (IN ⊗D)F

(
x(t)

)
+ γ(IN ⊗BK)e(t). (3)

In this paper, the next trigger moment is determined as

tk+1 = inf
{
t > tk:

∥∥e(t)∥∥ = η
∥∥y(t)

∥∥)} ∀k ∈ N. (4)

Assumption 1. For the nonlinear function f(·), we assume that f(0n×1) = 0r×1, and
there exists a constant l such that∥∥f(x)− f(y)

∥∥ 6 l‖x− y‖ ∀x, y ∈ Rn.

Assumption 2. The undirected communication graph is connected.

Under Assumption 2, the corresponding Laplacian matrix L is symmetric and positive
semi-definite; hence, the eigenvalues of the matrix L are real and can be labelled as
0 = λ1 < λ2 6 λ3 6 · · · 6 λN .

Lemma 3. If x, y ∈ Rn are real vectors, then, for any positive constant ρ and positive
matrix Θ,

2xTy 6 ρxTΘx+
1

ρ
yTΘ−1y.

4 Main results

Now the main results for system (1) can be given as follows.

Theorem 1. Under Assumptions 1 and 2, the consensus of multi-agent system (1) under
controller (2) with K = BTP can be reached if there exists real constants ε1, ε2, β and
a positive definite matrix P such that

PA+ATP + ε2D̂ − 2γλ2B̂ + ε1γµB̂λNIn +
l2λN
ε2

In

< −λNβIn < −
η2γµB̂
ε1

In,

where B̂ = PBBTP , D̂ = PDDTP , µB̂ = ‖B̂‖.
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Proof. Consider the following Lyapunov function: V (t) = xT(t)(L⊗ P )x(t). Calculat-
ing the derivatives of V (t) along the solutions of system (3), one has

DαV (t) 6 2xT(t)(L⊗ P )
(
IN ⊗A− γ(L⊗BK)

)
x(t)

+ 2γxT(t)(L⊗ P )(IN ⊗BK)e(t) + 2xT(t)(L⊗ P )(IN ⊗D)F
(
x(t)

)
6 xT(t)

(
L⊗

(
PA+ATP

)
− 2γ

(
L2 ⊗ (PBK)

))
x(t)

+ 2γxT(t)(L⊗ P )(IN ⊗BK)e(t) + 2xT(t)(L⊗ P )(IN ⊗D)F
(
x(t)

)
.

Note that L is a symmetric matrix. Then one can find a orthogonal matrix Q ∈ RN×N
such thatQLQ−1 = QLQT = Λ = diag{λ1, λ2, . . . , λN}. By letting z(t) = (Q⊗In)×
x(t), ê(t) = (Q⊗ In)e(t), for any positive constant ε1, ε2 and positive matrix Θ, we can
get

xT(t)
(
L⊗

(
PA+ATP

)
− 2γ

(
L2 ⊗ (PBK)

))
x(t)

= zT(t)
(
Λ⊗

(
PA+ATP

)
− 2γ

(
Λ2 ⊗ B̂

))
z(t)

=

N∑
i=2

zTi (t)
(
λi
(
PA+ATP

)
− 2γλ2i B̂

)
zi(t),

2γxT(t)(L⊗ P )(IN ⊗BK)e(t)

= 2γzT(t)(Λ⊗ B̂)ê(t) = 2γ

N∑
i=2

λiz
T
i (t)B̂êi(t)

6 γ

N∑
i=2

(
ε1µB̂λ

2
i

∥∥zi(t)∥∥2 +
µB̂
ε1

∥∥êi(t)∥∥2),
2xT(t)(L⊗ P )(IN ⊗D)F

(
x(t)

)
= 2zT(t)(Λ⊗ PD)

(
QT ⊗ In

)
F
(
x(t)

)
6 ε2z

T(t)(ΛΘΛ⊗ D̂)z(t)

+
1

ε2
FT
(
x(t)

)(
QT ⊗ In

)(
Θ−1 ⊗ In

)
(Q⊗ In)F

(
x(t)

)
.

Now, choosing Θ = Λ−1 and combining with the Assumption 1, we have

2xT(t)(L⊗ P )(IN ⊗D)F
(
x(t)

)
6 ε2z

T(t)(Λ⊗ D̂)z(t) +
l2

ε2
zT(t)(Λ⊗ In)z(t)

6
N∑
i=2

zTi (t)

(
ε2D̂λi +

l2λ2i
ε2

In

)
zi(t).
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Due to QTQ = IN , from the condition in the Theorem 1 we have

PA+ATP + ε2D̂

λi
− 2γB̂ + ε1γµB̂In +

l2

ε2
In

<
1

λi

(
PA+ATP + ε2D̂ − 2γλ2B̂ + ε1γµB̂λNIn +

l2λN
ε2

In

)
< −βIn.

Then, based on the event-triggered conditions, it is easy to get

DαV (t) 6
N∑
i=2

(
PA+ATP + ε2D̂

λi
− 2γB̂ + ε1µB̂In +

l2

ε2
In

)
λ2i
∥∥zi(t)∥∥2

+
γµB̂
ε1

N∑
i=2

∥∥êi(t)∥∥2
=

N∑
i=2

(
PA+ATP + ε2D̂

λi
− 2γB̂ + ε1µB̂In +

l2

ε2
In

)
λ2i
∥∥zi(t)∥∥2

+
γµB̂
ε1

N∑
i=1

∥∥ei(t)∥∥2
6 −β

N∑
i=1

λ2i
∥∥zi(t)∥∥2 +

γη2µB̂
ε1

N∑
i=1

∥∥yi(t)∥∥2
= −βzT(t)

(
Λ2 ⊗ In

)
z(t) +

η2γµB̂
ε1

N∑
i=1

∥∥yi(t)∥∥2
= −

(
β −

η2γµB̂
ε1

) N∑
i=1

∥∥yi(t)∥∥2
Let Y (t) =

∑N
i=1 ‖yi(t)‖2, then, similar to the analysis in [4, 35], one can conclude that

Y (t)→ 0 as t→ +∞, which completes our proof.

Remark 1. Under the event-triggered control law introduced in this paper, the infor-
mation of agents would be updated just when states of them have changed much. Thus,
compared with traditional continuous control strategies and periodic sampling control
methods, this lowers the cost of information transmission. In the proof of Theorem 1, the
symmetry of L has been used to diagonalization, which required topological structure of
the multi-agent network is undirected. The case of directed topological structure would
be our future work.

Noting that the matrix inequalities in the conditions of Theorem 1 are not linear, one
cannot solve it by using the LMI toolbox of the MATLAB. The following corollary would
overcome this difficulty.

Nonlinear Anal. Model. Control, 24(3):353–367
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Corollary 1. Under Assumptions 1 and 2, the consensus of multi-agent system (1) under
controller (2) with K = BTP can be reached if there exists real constants ε1, ε2, ε3, β
and a positive definite matrix P such thatPA+ATP + γλNIn + l2λNε3In + λNβIn ε2PD

√
2γλ2PB

∗ −ε2In 0
∗ ∗ −In

 < 0, (5)

η2 <
ε21λNβ

γ
, (6)

ε2ε3 > 1, (7)

ε1µB̂ < 1, (8)

where B̂ and µB̂ are the same as in Theorem 1.

This corollary can be proved directly from that of Theorem 1 above by using Schur
complement lemma, so the proof is omitted for brevity.

Remark 2. In fact, the condition of unknown parameter ε1 in the Corollary 1 are not
linear, and the parameter µB̂ depends on the unknown matrix P , which is also linear in
the B̂. However, to solve this problem, one can give a small ε1 at first. Then (5) and (6)
could be solved by using LMI toolbox of the MATLAB. Afterthat, we can check whether
(7) and (8) are true or not. Consequently, the matrix inequalities of Corollary 1 could be
solved.

Theorem 2. Consider the leaderless multi-agent system with fractional-order nonlinear
dynamics (1), the control protocol (2), the triggering condition (4). The Zeno behavior can
also be excluded, which means that the minimum inter-event interval is lower bounded by
a positive scalar.

Proof. Based on the definition of ei(t) and yi(t), one has

Dα
∥∥ei(t)∥∥
6
∥∥Dαei(t)

∥∥ =
∥∥−Dαyi(t)

∥∥ =

∥∥∥∥∥−
N∑
j=1

wij
(
Dαxj(t)−Dαxi(t)

)∥∥∥∥∥
=

∥∥∥∥∥−Ayi(t)−D
N∑
j=1

wij
(
f
(
xj(t)

)
−f
(
xi(t)

))
+ γBK

N∑
j=1

wij
(
yi(tk)−yj(tk)

)∥∥∥∥∥
6 ε
∥∥ei(t)∥∥+ l‖D‖

∥∥yi(tk)
∥∥+

∥∥∥∥∥Ayi(tk)− γBK
N∑
j=1

wij
(
yi(tk)−yj(tk)

)∥∥∥∥∥
6 ε
∥∥ei(t)∥∥+ ψik,

where ε = ‖A‖ + l‖D‖, ψik = l‖D‖‖yi(tk)‖ + ‖Ayi(tk) − γBK
∑N
j=1 wij(yi(tk) −

yj(tk))‖. When t ∈ [tk, tk+1), it is easy to get ‖ei(tk)‖ = 0, then based on Lemma 2 and
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comparison principle of fractional-order differential equations, one can get

∥∥ei(t)∥∥ 6 αψik

t∫
tk

(t− tk)α−1Eα,α
(
ε(t− tk)α

)
ds.

Recall the property of Mittag–Leffler function Eα,β(·) that [9, 23]

tβ−2Eα,β−1
(
λtα
)

=
d

dt

(
tβ−1Eα,β

(
λtα
))
.

Then, letting β = α+ 1, we have

∥∥ei(t)∥∥ 6 αψik

t∫
tk

(t− tk)α−1Eα,α
(
ε(t− tk)α

)
ds

= αψik

t−tk∫
0

sα−1Eα,α
(
εsα
)

ds

= αψik

t−tk∫
0

d

ds

(
tαEα,α+1

(
εsα
))

ds

= αψik(t− tk)αEα,α+1

(
ε(t− tk)α).

According to the other property of Mittag–Leffler function Eα,β(·) [9, 23]

Eα,β(t) = tEα,α+β(t) +
1

Γ(β)
,

we have ∥∥ei(t)∥∥ 6
αψik
ε

(
Eα
(
ε(t− tk)α

)
− 1
)
.

According to the definition of event-triggered instants (4), the next event will not be
generated before ‖ei(tk+1)‖ = η‖y(tk+1)‖, which implies that ‖ei(t)‖ 6 η‖yi(t)‖ when
t ∈ [tk, tk+1). By using ‖ei(t)‖ > |‖yi(tk)‖ − ‖yi(t)‖|, one has

‖yi(tk)‖
1 + η

6
∥∥yi(t)∥∥ 6

‖yi(tk)‖
1− η

. (9)

Then, we have ‖ei(tk+1)‖ > (η/(1 + η)‖yi(tk)‖, one can conclude that

η

1 + η

∥∥yi(tk)
∥∥ 6

αψik
ε

(
Eα(ε(tk+1 − tk)α)− 1

)
.

To prove that the inter-event interval tk+1 − tk is strictly positive, we first consider the
case when yi(tk) 6= 0. It is easy to get

αψik
ε

(
Eα
(
ε(tk+1 − tk)α

)
− 1
)
>

η

1 + η

∥∥yi(tk)
∥∥ > 0,

Nonlinear Anal. Model. Control, 24(3):353–367
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which implies that tk+1− tk > 0. Next, based on Theorem 1, we have yi(tk) = 0 as
k→∞. Then, according to (9), we have yi(t)=0 when t∈ [tk, tk+1) as k→∞. One has

Dαyi(t) = Ayi(t) +D

N∑
j=1

wij
(
f
(
xj(t)

)
− f

(
xi(t)

))
− γBK

N∑
j=1

wij(yi
(
tk)− yj(tk)

)
= 0.

Then, based on the definition of ψik, we have

ψik 6 ε
∥∥yi(tk)

∥∥+ ε
∥∥yi(t∗)∥∥, t∗ ∈ [tk, tk+1).

At the same time, one can get from (9) that

1− η 6 lim
k→∞

‖yi(tk)‖
‖yi(t)‖

, t ∈ [tk, tk+1].

Consequently, we have

lim
k→∞

‖yi(tk)‖
ψik

>
1

ε+ ε(1− η)
> 0.

As a result,

lim
k→∞

(
Eα
(
ε(tk+1 − tk)α

)
− 1
)
>

η

α(1 + η)(2− η)
> 0,

which implies that tk+1− tk is strictly positive. The proof is thus completed with the case
yi(tk) 6= 0.

Remark 3. The existence of lower bound of the minimum inter-event interval has been
proved above. In fact, the lower bound can be further determined. Let τ be the lower
bound of the minimum inter-event interval. It is easy to show that

Eα
(
ετα
)
> 1 +

η

α(1 + η)(2− η)
.

Thanks to the monotone increasing characteristics for the function Eα(t), one can con-
clude that the inverse of the Eα(t) must be existed. Then, one has

τ >

(
E−1α (1 + η

α(1+η)(2−η) )

ε

)α
.
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5 Numerical simulations

In this section, a simulation example is provided to check the effectiveness of the above
theoretical results.

Consider a 3-dimension multi-agent system with the following matrices

A =

−2 0 0
0 −2 0
0 0 −2

 , D =

 2 −1.2 0
1.8 1.71 1.15
−4.75 0 1.1

 ,

B =

−0.1 0 0
0 −0.1 0
0 0 −0.1


and the nonlinear function f(xi(t)) = (2 tanh(xi1(t)), 2 tanh(xi2(t)), 2 tanh(xi3(t)))T.
When the order α = 0.98, under the initial value xi(0) = [1, 1,−1]T, every agent has
a chaotic behavior, which could be seen in Fig. 1.

Now, four agents considered in the multi-agent system has a communication topology
with the Laplacian

L =


1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 1 1

 .

The initial values of the four agents are given as x1(0) = [−1; 2; 3], x2(0) = [3;−1.5; 0.5],
x3(0) = [−2;−3; 1] and x4(0) = [1.5;−2.5; 0.2]. Without control, the state trajectories
of them have been shown in Fig. 2.

By resorting to some standard software in MATLAB, according to Remark 2, let ε1 =
0.1 and η = 0.1, r = 0.5 at first. Then, the matrix inequalities in (5) and (6) are solvable

Figure 1. Chaotic behavior of isolated agent with
initial value xi(0) = [1, 1,−1]T.

Figure 2. The state trajectories of four agents
without control.
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Figure 3. The state trajectories xi1(t) of four
agents under the control protocol (2).

Figure 4. The state trajectories xi2(t) of four
agents under the control protocol (2).

Figure 5. The state trajectories xi3(t) of four
agents under the control protocol (2).

Figure 6. The release instants and release interval.

with a feasible solution as follows: ε2 = 614.9215, ε3 = 0.1305, β = 4.0092, and

P =

21.9410 −0.3789 0.9716
−0.3789 22.1133 0.8548
0.9716 0.8548 19.9148


Then, one can get ε1µB̂ = 0.5029, ε1ε2 = 80.2412 > 1. Thus, all conditions of Corollary
1 could be satisfied. Consequently, one has

K =

−2.1941 0.0379 −0.0972
0.0379 −2.2113 −0.0855
−0.0972 −0.0855 −1.9915

 .

Under the control protocol (2), the state trajectories can be seen in Figs. 3–5.
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Remark 4. For the above example, we also can select

B =

−0.1 0
0 −0.1
0 0

 .

By resorting to some standard software in MATLAB, according to Remark 2, let ε1 = 0.1
and η = 0.1, r = 0.5 at first. Then, the matrix inequalities in (5) and (6) are solvable with
a feasible solution with

P =

22.2395 −0.3934 1.0262
−0.3934 22.4176 0.8993
1.0262 0.8993 20.1405

 , K =

(
−2.2239 0.0393 −0.1026
0.0393 −2.2418 −0.0899

)
.

Indeed, the theoretical results of this paper could deal with the case that control input with
different dimension.

6 Conclusion

In this paper, we considered the consensus of fractional-order multi-agent systems via the
centralized event-triggered protocols. The main theoretical results were derived based on
the fractional-order Lyapunov stability theory and properties of graph’s Laplacian matrix.
Moreover, the conditions can be changed to some simple linear matrix inequalities. In
addition, the Zeno behavior can effectively avoid. The given numerical examples illustrate
the corresponding theoretical analysis. Note that this paper has considered the centralized
mechanism, however, the distributed mechanism has a better robustness. Thus, it is an
interesting topic of our future work. On the other hand, the consensus of fractional-
order multi-agent systems with switched topologies by using the proposed event-triggered
control will be considered in the future work.
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