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Abstract. The aim of the present paper is to establish a variational principle in metric spaces
without assumption of completeness when the involved function is not lower semicontinuous. As
consequences, we derive many fixed point results, nonconvex minimization theorem, a nonconvex
minimax theorem, a nonconvex equilibrium theorem in noncomplete metric spaces. Examples are
also given to illustrate and to show that obtained results are proper generalizations.
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1 Introduction and preliminaries

Ekeland [17, 18] formulated a variational principle, which is considered the basis of
modern calculus of variations. Since its discovery, there are many generalizations and
equivalent formulations of it (see [19, 20, 28, 37, 40, 45] and references therein). This
principle says that when a function is not guaranteed to have a minimum, there is a “good”
approximate substitute. Under the conditions of lower semicontinuity and boundedness
below, the best we can get is an approximate minimum. These results are essential in areas
of nonlinear analysis and optimization theory. A visualization of Ekeland’s variational
principle is shown in Fig. 1.

In Fig. 1, by taking λ = 1 we draw a line with slope equal to −ε = − tan θ. Then the
theorem guarantees that for any given ε, there is a point (v, F (v)) such that if we create
an open downwards cone with that point as its vertex and having angle 2θ, the function
values for all other inputs will stay above the cone. Here F : X → R ∪ {∞} is a lower
semicontinuous function, which is bounded below.

Ekeland’s variational principle has been widely used to prove the existence of ap-
proximate solutions of minimization problems for lower semicontinuous functions on
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Figure 1. Ekeland’s variational principle.

complete metric spaces (see, for instance, [5]). Since minimization problems are par-
ticular cases of equilibrium problems, many authors deal to derive existence results for
solutions of equilibrium problems using Ekeland-type variational principles. There are
many improvements and generalizations of Takahashi’s nonconvex minimization theo-
rem, Caristi’s fixed point theorem and Ekeland’s variational principle in complete metric
spaces by using generalized distances: for example,w-distances, τ -distances, τ -functions,
weak τ -functions and Q-functions (see [2, 22, 30, 42, 44]).

Meanwhile, the lower semicontinuous condition plays a key role in finding the solu-
tion of minx∈X f(x), but it is not essential for solving some minimization problems.
A function, which may not be necessarily lower semicontinuous, can still obtain its
infimum. By getting motivation from above mentioned work, in present paper, we prove
some generalizations of Ekeland’s variational principle in the setting of T -orbitally com-
plete metric spaces for functions, which are not necessarily lower semicontinuous, by
introducing T -orbitally lower semicontinuity. As an application, we deduce some fixed
point results, Takahashi’s nonconvex minimization theorem, a nonconvex minimax the-
orem, a nonconvex equilibrium theorem in the setting of T -orbitally complete metric
spaces. Our result generalizes the results of [9, 10, 12–14, 17, 23, 32, 34, 37].

In the sequel, let (X, d) be a metric space and T : X → X be a self mapping. For
A ⊆ X , the diameter of A is diam(A) = sup{d(a, b): a, b ∈ A}, and for each x ∈ X ,
orbit of T is O(x;n) = {x, Tx, T 2x, T 3x, . . . , Tnx}, n = 1, 2, 3, . . . , and O(x) =
O(x;∞) = {x, Tx, T 2x, . . . }. A metric space X is said to be T -orbitally complete if
every Cauchy sequence, which is contained inO(x) for some x ∈ X , converges inX [13].
Note that every complete metric space is T -orbitally complete space, but converse is not
true in general. For example, X = (0, 1) with usual metric is not a complete metric space
but a T -orbitally complete, where T : X → X is defined by Tx = 1/2 for all x ∈ X .

Definition 1. (See [7].) Let (X, d) be a metric space and T : X → X be a self mapping.
T is said to be orbitally continuous at a point z in X if for any sequence {xn} ⊆ O(x)
for some x ∈ X , xn → z as n→∞ implies Txn → Tz as n→∞.

The Banach contraction principle [8] is an elementary result in metric fixed point
theory. Many interesting generalizations of this golden principle have been obtained by
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considering several conditions on metric spaces (see [1,6,12,15,21,23,24,31,32,34–36,
43]). An interesting generalization is given by Berinde [10] by introducing a comparison
function.

Definition 2. A function φ : R+ → R+ is said to be comparison function if it satisfies
the following:

(φ1) φ is monotone increasing;
(φ2) {φn(t)} converges to 0 as n→∞ for all t > 0.

Denote the set all comparison functions φ : R+ → R+ by Φ.

Lemma 1. If φ : R+ → R+ is a comparison function, then φ(t) < t for all t > 0.

2 Auxiliary results

We begin with the following definitions.

Definition 3. Let (X, d) be a metric space and T : X → X be a self mapping. A function
f : X → R is said to be T -orbitally continuous at a point z in X if for any sequence
{xn} ⊆ O(x) for some x ∈ X , xn → z as n→∞ implies fxn → fz as n→∞.

Lemma 2. Let (X, d) be a metric space, T : X → X and f : X → R defined by
f(x) = d(x, Tx) for all x ∈ X . If T is orbitally continuous function at z ∈ X , then f is
T -orbitally continuous function at z ∈ X .

Proof. Suppose that T is orbitally continuous function at z ∈ X , then there exists a se-
quence {xn} contained in O(x) for some x ∈ X such that xn → z implies Txn → Tz
as n → ∞. This implies that d(xn, Txn) → d(z, Tz) as n → ∞, consequently,
f(xn)→ f(z) as n→∞. Hence f is T -orbitally continuous function at z ∈ X .

Definition 4. Let (X, d) be a metric space and T be a self mapping on X . A function
f : X → R is said to be T -orbitally lower semicontinuous mapping if

xn → z implies f(z) 6 lim
n

inf f(xn),

where {xn} is a sequence contained in O(x) for some x ∈ X .

Definition 5. Let (X, d) be a metric space and T be a self mapping on X . A function
f : X → R is said to be T -orbitally upper semicontinuous mapping if

xn → z implies f(z) > lim
n

sup f(xn),

where {xn} is a sequence contained in O(x) for some x ∈ X .

Remark 1. Every lower semicontinuous (upper semicontinuous) mapping is T -orbitally
lower semicontinuous (upper semicontinuous) mapping, but converse needs not to be true
as shown in example below.
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Example 1. Let X = (1, 2]∪ {−1, 0} with usual metric d and T : X → X be a mapping
defined as

Tx =

{
−1 if x = 2,

0 if x 6= 2.

Then O(2) = {2,−1, 0, 0, 0, . . . }, and for 2 6= x ∈ X , O(x) = {x, 0, 0, 0, . . . }. Define
f : X → R by

fx =

{
−x if x ∈ (1, 32 ) ∪ ( 3

2 , 2],

0 if x ∈ {0, 32 ,−1}.

Note that every sequence {xn} contained in O(x) converges to 0 ∈ X . So, for {xn} ⊂
O(x), we have

lim
n

inf f(xn) = 0 = f(0).

Hence f is T -orbitally lower semicontinuous mapping. On the other hand, xn = 3/2 +
1/n is a sequence in X and converges to 3/2 ∈ X , but

lim
n

inf f(xn) = lim
n

inf f

(
3

2
+

1

n

)
= lim

n
inf

(
−3

2
− 1

n

)
= −3

2
6> 0 = f

(
3

2

)
.

Hence f is not lower semicontinuous mapping.

Lemma 3. Let T be a self mapping on a metric space (X, d) and f : X → R be a func-
tion. Then f is T -orbitally continuous if and only if f is T -orbitally lower semicontinuous
and T -orbitally upper semicontinuous.

Proof. Suppose that f is T -orbitally lower semicontinuous and T -orbitally upper semi-
continuous, then for a sequence {xn} ⊆ O(x) for some x ∈ X such that xn → z ∈ X ,
we have

f(z) 6 lim
n

inf f(xn) (1)

and
f(z) > lim

n
sup f(xn). (2)

Combining (1) and (2), we get fxn → fz as n→∞. Hence f is T -orbitally continuous.
Conversely, suppose that f is T -orbitally continuous, then there exists a sequence

{xn} ⊆ O(x) for some x ∈ X such that xn → z ∈ X implies

lim
n
f(xn) = f(z), (3)

which further implies f(z) 6 limn inf f(xn) and f(z) > limn sup f(xn). Hence f is
T -orbitally lower semicontinuous and T -orbitally upper semicontinuous.

Definition 6. Let (X, d) be a metric space and T be a self mapping on X . A subset Y
of X is said to be T -orbitally complete if every Cauchy sequence, which is contained in
O(y) for some y ∈ Y , converges in Y .
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Lemma 4. Let (X, d) be a metric space and T be a self mapping on X . Assume that X
is T -orbitally complete and Y is closed subset of X . Then Y is T -orbitally complete.

Proof. Suppose {yn} is a Cauchy sequence contained in O(y) for some y ∈ Y ⊆ X .
Since X is T -orbitally complete, so yn → z ∈ X . But Y is closed, so z ∈ Y . This
completes the proof.

3 Variational principle

Let (X, d) be a metric space and T be a self mapping on X such that O(x) = {x, Tx,
T 2x, T 3x, . . . }. Assume the following:

(A) There are two functions α : X ×X → [0,∞), ρ : X ×X → [0,∞) ∪ {+∞}
satisfying the following, respectively:

(α1) If {xn} is any sequence in X such that xn → x ∈ X as n → ∞, then
α(y, xn)→ α(y, x) for all y ∈ X;

(ρ1) ρ(x, x) = 0 for all x ∈ X;
(ρ2) For each (xn, yn) ∈ X ×X as n→∞, ρ(xn, yn)→ 0 implies d(xn, yn)→ 0;
(ρ3) The function y → ρ(y, z) is T -orbitally lower semicontinuous for each z ∈ X;

and

(O1) If xn is a sequence contained in orbit of T such that xn → z, then z belongs to
some orbit of T .

Denote the collection of all functions ρ : X × X → [0,∞) ∪ {+∞}, which satisfy
(ρ1), (ρ2) and (ρ3), by Ω.

In addition, if f : X → R ∪ {+∞}, δ0 > 0, δn > 0, n ∈ N, is a sequence of
nonnegative integers and u0 ∈ O(x0) for some x0 ∈ X , then for all w ∈ X , denote

∆(w,m) = f(w) + α(u0, w)

m∑
n=0

δnρ(w, un); m ∈ N ∪ {∞}.

Theorem 1. Let (X, d) be a metric space, T be a self mapping on X and f : X → R ∪
{+∞}. Assume that ρ ∈ Ω, (α1) is satisfied and for u0 ∈ O(x0) for some x0 ∈ X and
ε > 0, following assumptions hold:

(A1) f(u0) 6 infx∈X f(x) + ε;
(A2) the set S0 = {w ∈ O(x) | ∆(w, 0) 6 f(u0)} is nonempty and T -orbitally

complete for some x ∈ X;
(A3) for each m ∈ N, the set Sm = {w ∈ Sm−1 | ∆(w,m) 6 ∆(y,m − 1)} for

y ∈ Sm−1 is closed.

Then there exists a sequence un in X and uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) α(u0, uε)ρ(un, uε) 6 ε/(2nδ0), n ∈ N;
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when for infinitely many n, δn > 0,

(iii) ∆(uε,∞) 6 f(u0) 6 infx∈X f(x) + ε;
(iv) ∆(w,∞) > ∆(uε,∞) for every w 6= uε;

and when δk > 0 and δj = 0 for all j > k > 0, conclusion (iv) is replaced by

(v) for all w 6= uε, there exists m > k such that
∆(w, k − 1) + α(u0, w)δkρ(w, um) > ∆(uε, k − 1) + α(u0, uε)δkρ(uε, um).

Proof. There arises two cases for δn:
Case 1: Infinitely many δn > 0.
In this case, without loss of generality, we assume that δn > 0 for all n. Then for

u0 ∈ O(x0) for some x0 ∈ X , consider

G(u0) =
{
w ∈ O(x) for some x ∈ X

∣∣ ∆(w, 0) 6 f(u0)
}
. (4)

Since u0 ∈ G(u0), so G(u0) is nonempty. For every y ∈ G(u0), by using assump-
tion (A1), we have

α(u0, y)δ0ρ(y, u0) 6 f(u0)− f(y) 6 f(u0)− inf
x∈X

f(x) 6 ε. (5)

Choose u1 ∈ G(u0) such that

∆(u1, 0) 6 inf
x∈G(u0)

∆(x, 0) +
δ1ε

2δ0
and let

G(u1) =
{
w ∈ G(u0)

∣∣ ∆(w, 1) 6 ∆(u1, 0)
}
, (6)

similarly as above,G(u1) is nonempty. Continuing in this process, we can choose un−1 ∈
G(un−2) and consider

G(un−1) =
{
w ∈ G(un−2)

∣∣ ∆(w, n− 1) 6 ∆(un−1, n− 2)
}
. (7)

Let us choose un ∈ G(un−1) such that

∆(un, n− 1) 6 inf
x∈G(un−1)

∆(x, n− 1) +
δnε

2nδ0
(8)

and define
G(un) =

{
w ∈ G(un−1)

∣∣ ∆(w, n) 6 ∆(un, n− 1)
}
, (9)

which is nonempty. From (8) and (9), for each y ∈ G(un), we get

α(u0, y)δnρ(y, un)

6

(
f(un) + α(u0, un)

n−1∑
i=0

δiρ(ui, un)

)
−

(
f(y) + α(u0, y)

n−1∑
i=0

δiρ(ui, y)

)

6 ∆(un, n− 1)− inf
x∈G(un−1)

∆(x, n− 1) 6
δnε

2nδ0
. (10)
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This implies that for all y ∈ G(un), we have

α(u0, y)ρ(y, un) 6
ε

2nδ0
. (11)

Now we have sequence of nonempty sets {G(un)} such that

G(u0) ⊇ G(u1) ⊇ G(u2) ⊇ · · · ⊇ G(un−1) ⊇ G(un) ⊇ · · · .

Therefore, un ∈ G(un−1) implies un ∈ G(u0). From assumption (A2), G(u0) is
T -orbitally complete, so un → uε ∈ X . Also, by assumption (A3), G(un) is closed for
each n ∈ N, so uε ∈

⋂∞
n=0G(un). Letting limit as n→∞ in (11), we get ρ(y, un)→ 0,

and since ρ ∈ Ω, we get d(y, un) → 0. Therefore, diam(G(un)) → 0 as n → ∞.
If y ∈

⋂∞
n=0G(un) and y 6= uε, then d(y, uε) = β > 0. There exists n ∈ N large

enough such that diam(G(un)) < β, which ensures that y /∈ G(un). Hence y cannot
be in

⋂∞
n=0G(un). Thus, the intersection contains only one point. From (5)–(11) we

obtain that uε satisfies (ii) and un → uε as n → ∞. Further, for all w 6= uε, we have
w /∈

⋂∞
n=0G(un), so there exists m ∈ N such that

∆(w,m) > ∆(um,m− 1). (12)

From (4), (7) and (8), for every q > m, we obtain

f(u0) > ∆(um,m− 1) > ∆(uq, q − 1) > ∆(uε, q − 1). (13)

Combining (12) and (13) gives

∆(w,m) > ∆(uε, q − 1).

Letting q,m→∞ gives (iii) and (iv).
Case 2: Finitely many δn > 0.
Assume that δk > 0 and δj = 0 for all j > k > 0. Without loss of generality, we

suppose that δi > 0 for all i 6 k. Thus, when n 6 k, we choose the same un and G(un)
as in Case 1. When n > k, we take un ∈ G(un−1) such that

∆(un, k − 1) 6 inf
x∈G(un−1)

∆(x, k − 1) +
δkε

2nδ0
(14)

and put

G(un) =
{
w ∈ G(un−1)

∣∣ ∆(w, k − 1) + α(u0, w)δkρ(un, w) 6 ∆(un, k − 1)
}
.
(15)

Then by following the same steps as in Case 1, hypotheses (ii)–(iv) hold. When w 6= uε,
there exists an m > k such that

∆(w, k − 1) + α(u0, w)δkρ(um, w)

> ∆(um, k − 1) > ∆(uε, k − 1) + α(u0, uε)δkρ(um, uε).

This completes the proof.
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Now, we illustrate Theorem 1 by following example.

Example 2. Let X = C[0, 1] is the space of all real-valued continuous functions on [0, 1]
with metric d defined as

d(g, h) =

[ 1∫
0

∣∣h(t)− g(t)
∣∣2 dt

]1/2
.

Then (X, d) is metric space. Define T : X → X by

T (g) =

{
I if g = I′,

0 otherwise,

where 0(t) = 0, I(t) = 1 and I′(t) = −1 for all t ∈ [0, 1]. Also, define f : X → R ∪
{+∞}, α : X ×X → [0,∞) and ρ : X ×X → [0,∞) ∪ {+∞} as

f(g) =


0 if g(t) = 0,

g(t) if g(t) > 0

−g(t) if g(t) < 0,

α(x, y) = 1 and ρ(g, h) = |h(t) − g(t)| for all g, h ∈ X , respectively. Then O(I′) =
{I′, I,0,0,0, . . . }, and for I′ 6= g ∈ X , O(g) = {g,0,0,0, . . . }, ρ ∈ Ω and (α1) holds.
There exists u0 = 0 ∈ O(I′) and ε = 2n+3 for n ∈ N such that

inf
g∈X

f(g) + ε = 0 + 2n+3 > 0 = f(u0).

Take δ0 = 1 and δn = 0 for all n ∈ N. Since Sm = {0} for each m ∈ N ∪ {0},
therefore S0 is nonempty and T -orbitally complete, also for each m ∈ N, Sm is closed.
Hence hypothesis (A), (A1), (A2) and (A3) of Theorem 1 hold true. Further, there exists
a sequence gn in X such that gn(t) = 1/n for all t ∈ [0, 1] and(

lim
n→∞

gn

)
(t) = lim

n→∞
gn(t) = lim

n→∞

1

n
= 0 = 0(t).

This implies that un → 0 = uε ∈ O(g) as n→∞ with

α(0,0)ρ(un,0) =
∣∣0(t)− gn(t)

∣∣ =
1

n
6 8 =

ε

2nδ0
and

∆(0,∞) = 0 = f(0).

Hence conclusions (i), (ii) and (iii) of Theorem 1 hold. Since δ0 = 1 and δj = 0 for all
j > 0, so we have to satisfy conclusion (v). For this, there arise two cases.

Case 1. For 0 6= g ∈ X such that g(t) > 0, there exists m > 0 such that

f(g) + α(u0, g)δkρ(g, um)

= g(t) + α(0,0)δ0ρ(g, um) = g(t) +
∣∣um(t)− g(t)

∣∣. (16)
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(a) If um(t) > 0 and um(t) > g(t) for all t, then (16) gives

f(g) + α(u0, g)δkρ(g, um) =
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

(b) If um(t) > 0 and um(t) < g(t) for all t, then (16) gives

f(g) + α(u0, g)δkρ(g, um) >
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

(c) If um(t) < 0, then (16) gives

f(g) + α(u0, g)δkρ(g, um) = g(t) +
∣∣g(t) + um(t)

∣∣ > ∣∣g(t) + um(t)
∣∣

>
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

Case 2. For 0 6= g ∈ X such that g(t) < 0, there exists m > 0 such that

f(g) + α(u0, g)δkρ(g, um) = −g(t) + α(0,0)δ0ρ(g, um)

= −g(t) +
∣∣um(t)− g(t)

∣∣. (17)

(a) If um(t) > 0 for all t, then (17) gives

f(g) + α(u0, g)δkρ(g, um) >
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

(b) If um(t) < 0 and um(t) < g(t) for all t, then (17) gives

f(g) + α(u0, g)δkρ(g, um) =
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

(c) If um(t) < 0 and um(t) > g(t) for all t, then (17) gives

f(g) + α(u0, g)δkρ(g, um) >
∣∣um(t)

∣∣ = f(uε) + α(u0, uε)δkρ(uε, um).

Thus, conclusion (v) of Theorem 1 holds for all g 6= 0 = uε.

Remark 2. Note that, in Example 2, metric space (X, d) is not complete. Indeed, consider
the sequence {gn} in Fig. 2. Since d(gn, gm) < ε for n,m > 1/ε, therefore {gn} is
a Cauchy sequence such that for every g ∈ X

d(gn, g) =

[ 1/2∫
0

∣∣g(t)
∣∣2 dt+

1/2+1/n∫
1/2

∣∣gn(t)− g(t)
∣∣2 dt+

1∫
1/2+1/n

∣∣1− g(t)
∣∣2 dt

]1/2
.

d(gn, g)→ 0 as n→∞ when

g(t) =

{
0 if t < 1/2

1 if t > 1/2,

which is not continuous. Hence {gn} is not convergent. Therefore, Theorem 3.1 of [3],
Theorem 1.1 of [17], Theorem 4.2 of [16] and Theorem 1 of [37] cannot be applied for
this example.
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Figure 2. A sequence in C[0,1].

Lemma 5. Let (X, d) be a metric space, T be a self mapping on X such that X is
T -orbitally complete. Assume that f : X → R ∪ {+∞} is a T -orbitally lower semicon-
tinuous function, bounded from below, ρ ∈ Ω, (α1) and (O1) hold true. Then assump-
tions (A2) and (A3) in Theorem 1 hold.

Proof. Let u0 ∈ O(x0) for some x0 ∈ X and

S0 =
{
w ∈ O(x) for some x ∈ X

∣∣ ∆(w, 0) 6 f(u0)
}
.

Since u0 ∈ S0, so G(u0) is nonempty. Now, if zn is a sequence in S0 that converges
to z ∈ X , then z belongs to orbit of T and ∆(zn, 0) 6 f(u0). From T -orbitally lower
semicontinuity of f , T -orbitally lower semicontinuity of ρ(., u0) and (α1) we get

f(z) 6 lim
n

inf f(zn) 6 f(u0)− α(u0, z)δ0ρ(z, u0).

This shows that z ∈ S0 and S0 is closed subset of X . Since X is T -orbitally complete, so
from Lemma 4, S0 is T -orbitally complete. Next, suppose that form ∈ N, y ∈ Sm−1, wn
is a sequence contained in the set Sm = {w ∈ Sm−1 | ∆(w,m) 6 ∆(y,m − 1)} such
thatwn → w∗ ∈ X . Thenw∗ belongs to some orbit of T , and∆(wn,m) 6 ∆(y, m−1).
From T -orbitally lower semicontinuity of f , T -orbitally lower semicontinuity of ρ(., u0)
and (α1) we get

f(w∗) 6 lim
n

inf f(wn)

6 lim
n

inf

{
f(y) + α(u0, y)

m−1∑
i=0

δiρ(y, ui)− α(u0, wn)

m∑
i=0

δiρ(wn, ui)

}

6 f(y) + α(u0, y)

m−1∑
i=0

δiρ(y, ui)− α(u0, w
∗)

m∑
i=0

δiρ(w∗, ui),

that is, ∆(w∗,m) 6 ∆(y, m− 1). Consequently, Sm is closed.
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From Lemma 5 and Theorem 1 we obtain the following:

Theorem 2. Let (X, d) be a metric space, T be a self mapping on X and f : X → R ∪
{+∞} be a T -orbitally lower semicontinuous function, bounded from below. Assume that
X is T -orbitally complete and (A) holds. If for u0 ∈ O(x0) for some x0 ∈ X and ε > 0,

f(u0) 6 inf
x∈X

f(x) + ε.

Then there exists uε ∈ O(x) such that all conclusions (i)–(v) of Theorem 1 hold.

Taking α(x, y) = 1 for all x, y ∈ X in Theorem 2, we get the following:

Corollary 1. Let (X, d) be a metric space, T be a self mapping on X and f : X → R ∪
{+∞} be a T -orbitally lower semicontinuous function, bounded from below. Assume that
X is T -orbitally complete and (A) holds. If for u0 ∈ O(x0) for some x0 ∈ X and ε > 0,

f(u0) 6 inf
x∈X

f(x) + ε. (18)

Then there exists uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) ρ(un, uε) 6 ε/(2nδ0), n ∈ N;

when for infinitely many n, δn > 0,

(iii) χ(uε,∞) 6 f(u0) 6 infx∈X f(x) + ε;
(iv) χ(w,∞) > χ(uε,∞), for every w 6= uε;

and when δk > 0 and δj = 0 for all j > k > 0, conclusion (iv) is replaced by

(v) for all w 6= uε there exists m > k such that χ(w, k − 1) + δkρ(w, um) >
χ(uε, k − 1) + δkρ(uε, um),

where

χ(w,m) = f(w) +

m∑
i=0

δnρ(w, ui); m ∈ N ∪ {∞}.

Since there is always a some point x with f(x) 6 inf F + ε and also x ∈ O(x),
therefore form Corollary 1 we have the following:

Corollary 2. Let (X, d) be a metric space, T be a self mapping on X and f : X → R ∪
{+∞} be a T -orbitally lower semicontinuous function, bounded from below. Assume
that X is T -orbitally complete and (A) holds. Then there exists uε ∈ O(x) such that
conclusions (i)–(v) of Corollary 1 hold.

If we consider ρ(y, z) = (ε/λ)d(y, z), δ0 = 1 and δn = 0 for all n > 0 in Corollary 1,
then we get the following corollary, which is the Ekeland’s ε-variational principle in the
context of T -orbitally complete metric spaces.
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Corollary 3 [Ekeland’s ε-variational principle]. Let (X, d) be a metric space, T be
a self mapping on X and f : X → R ∪ {+∞} be a T -orbitally lower semicontinuous
function, bounded from below. Assume that X is T -orbitally complete and (O1) holds. If
for u0 ∈ O(x0) for some x0 ∈ X and ε, λ > 0,

f(u0) 6 inf
x∈X

f(x) + ε,

then there exists uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) d(un, uε) 6 λ/2n, n ∈ N;

(iii) f(uε) + (ε/λ)d(u0, uε) 6 f(u0) 6 infx∈X f(x) + ε;
(iv) f(w) > f(xε)− (ε/λ)d(w, uε) for every w 6= uε.

Taking ρ(y, z) =
√
εd(y, z), δ0 = 1 and δn = 0 for all n > 0 in Corollary 1, we get

the following:

Corollary 4. Let (X, d) be a metric space, T be a self mapping on X and f : X → R ∪
{+∞} be a T -orbitally lower semicontinuous function bounded from below. Assume that
X is T -orbitally complete and (O1) holds. If for u0 ∈ O(x0) for some x0 ∈ X and ε > 0,

f(u0) 6 inf
x∈X

f(x) + ε,

then there exists uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) d(un, uε) 6

√
ε/2n, n ∈ N;

(iii) f(uε) +
√
εd(u0, uε) 6 f(u0) 6 infx∈X f(x) + ε;

(iv) f(w) > f(xε)−
√
εd(w, uε), for every w 6= uε.

Remark 3. Since every metric space is T -orbitally complete metric space, therefore,
in the light of Remark 1, Corollary 1 is the generalization of Theorem 1 of [37], and
Corollary 3 is the generalization of Theorem 1.1 of [17].

Theorem 3. Let (X, d) be a metric space and T be a self mapping on X . Assume that
f : X → R∪{+∞} such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous and
there exists φ ∈ Φ such that

f(Tx) 6 φ
(
f(x)

)
(19)

for all x ∈ X . Then for every ε > 0, there exists u0 ∈ O(x0) for some x0 ∈ X such that

f(u0) 6 inf
x∈X

f(x) + ε.

Proof. For n ∈ N and x ∈ X , from (19) and Lemma 1 we get

f
(
Tnx

)
= f

(
T
(
Tn−1x

))
6 φ

(
f
(
Tn−1x

))
< f

(
Tn−1x

)
.
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This shows that {f(Tnx)} is a decreasing sequence of nonnegative integers and bounded
below by 0. Also,

f
(
Tnx

)
= f

(
T
(
Tn−1x

))
6 φ

(
f
(
Tn−1x

))
6 φ2

(
f
(
Tn−2x

))
6 · · · 6 φn

(
f(x)

)
. (20)

Letting limit as n→∞ in (20) and using (φ2), we obtain

f(Tnx)→ 0 as n→∞.

It follows that there exists ε > 0 such that

f
(
Tnx

)
6 ε = 0 + ε = inf

{
f(x): x ∈ X

}
+ ε.

This completes the proof.

Proposition 1. Let (X, d) be a metric space and T be a self mapping on X . Assume that
X is T -orbitally complete and, for φ ∈ Φ, T satisfy (19) for all x ∈ X . If {Tnx} is any
sequence contained in O(x) for some x ∈ X and converges to z ∈ X , then z is a fixed
point of T , provided that f : X → R ∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally
lower semicontinuous.

Proof. For n ∈ N and x ∈ X , as in Theorem 2, we get

f
(
Tnx

)
→ 0 as n→∞.

Since f is T -orbitally semicontinuous, so from above inequality we obtain

f(z) 6 lim
n

inf f
(
Tnx

)
= 0.

This implies that f(z) = 0, consequently, z is a fixed point of T .

From Theorem 2, Theorem 3 and Proposition 1 we get the following:

Corollary 5. Let (X, d) be a metric space and T be a self mapping onX . Assume thatX
is T -orbitally complete, α : X×X → [0,∞) satisfy (α1), ρ ∈ Ω and f : X → R∪{+∞}
such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous. If there exists φ ∈ Φ such
that

f(Tx) 6 φ
(
f(x)

)
for all x ∈ X , then there exists uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) α(u0, uε)ρ(un, uε) 6 ε/(2nδ0), n ∈ N;

when for infinitely many n, δn > 0,

(iii) ∆(uε,∞) 6 f(u0) 6 infx∈X f(x) + ε;
(iv) ∆(w,∞) > ∆(uε,∞), for every w 6= uε;
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and when δk > 0 and δj = 0 for all j > k > 0, conclusion (iv) is replaced by

(v) for allw 6= uε, there existsm > k such that∆(w, k−1)+α(u0, w)δkρ(w, um) >
∆(uε, k − 1) + α(u0, uε)δkρ(uε, um).

Taking α(x, y) = 1 for all x, y ∈ X in Corollary 5, we get the following:

Corollary 6. Let (X, d) be a metric space and T be a self mapping on X . Assume that
X is T -orbitally complete, ρ ∈ Ω and f : X → R ∪ {+∞} such that f(x) = d(x, Tx)
is T -orbitally lower semicontinuous. If there exists φ ∈ Φ such that

f(Tx) 6 φ
(
f(x)

)
for all x ∈ X , then there exists uε ∈ O(x) such that conclusions (i)–(iv) of Corollary 1
hold.

If we consider ρ(y, z) = (ε/λ)d(y, z), δ0 = 1 and δn = 0 for all n > 0 in Corollary 6,
then we get the following:

Corollary 7. Let (X, d) be a metric space and T be a self mapping on X . Assume that
X is T -orbitally complete and f : X → R ∪ {+∞} such that f(x) = d(x, Tx) is
T -orbitally lower semicontinuous. If there exists φ ∈ Φ such that

f(Tx) 6 φ
(
f(x)

)
for all x ∈ X , then for ε, λ > 0, there exists a sequence {un} and uε ∈ O(x) such that

(i) un → uε as n→∞;
(ii) d(un, uε) 6 λ/2n, n ∈ N;

(iii) f(uε) + (ε/λ)d(u0, uε) 6 f(u0) 6 infx∈X f(x) + ε;
(iv) f(w) > f(uε)− (ε/λ)d(w, uε) for every w 6= uε.

4 Fixed point results

In this section, we derive some fixed point results from Section 3.

Theorem 4 [Suzuki-type fixed point theorem]. Let (X, d) be a metric space and T :
X → X be a mapping. Define a nonincreasing function θ from [0, 1) onto (1/2, 1] by

θ(r) =


1 if 0 6 r 6 (

√
5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 6 r 6 2−1/2,

(1 + r)−1 if 2−1/2 6 r < 1.

Assume that (X, d) is T -orbitally complete and there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) 6 d(x, y) implies d(Tx, Ty) 6 rd(x, y) (21)

for all x, y ∈ X . Then there exists a unique fixed point of T , provided that f : X → R ∪
{+∞} such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous.
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Proof. Since θ(r) 6 1, so θ(r)d(x, Tx) 6 d(x, Tx) for all x, y ∈ X . By taking y = Tx
in (21), we get

f(Tx) = d
(
Tx, T 2x

)
6 rd(x, Tx) = rf(x), (22)

which shows that (19) holds true for φ(t) = rt, r ∈ [0, 1). Therefore, by using Corol-
lary 7, there exists a sequence {un} and ε, λ > 0 such that un → uε ∈ O(x) and

f(w) > f(uε)−
ε

λ
d(w, uε) (23)

for every w ∈ X with w 6= uε. Now we claim that f(uε) = 0. If not, then choose ε and λ
such that ε/λ ∈ (0, 1− r), r ∈ [0, 1). Considering w = Tuε in (23), we obtain

f(uε) < f(Tuε) +
ε

λ
d(uε, Tuε) < rf(uε) +

ε

λ
f(uε),

which implies (1 − r − ε/λ)f(uε) < 0, this leads to contradiction because (ε/λ) ∈
(0, 1− r). Hence f(uε) = 0, and thus, uε is a fixed point of T in X .

For uniqueness, suppose that x 6= uε is another fixed point of T , then 0 = θ(r) ×
d(uε, Tuε) 6 d(uε, x). Hence (21) implies d(uε, x) 6 rd(uε, x) for r ∈ [0, 1), a contra-
diction. Thus, x = uε.

Remark 4. Theorem 4 generalizes Theorem 2 of [39] from metric spaces to orbitally
complete metric spaces.

Theorem 5 [Ćirić-type fixed point theorem]. Let (X, d) be a metric space and T :
X → X be a mapping. Assume that (X, d) is T -orbitally complete and there exists
q ∈ (0, 1) such that the following holds:

d(Tx, Ty) 6 qM(x, y), (24)
where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Then T has a unique fixed point in X , provided that f : X → R ∪ {+∞} such that
f(x) = d(x, Tx) is T -orbitally lower semicontinuous.

Proof. Put y = Tx in (24), we get

d
(
Tx, T 2x

)
6 qM(x, Tx), (25)

where

M(x, Tx) = max

{
d(x, Tx), d(Tx, T 2x),

d(x, T 2x)

2

}
,

which implies

f(Tx) 6 qmax

{
d(x, Tx), d(Tx, T 2x),

d(x, T 2x)

2

}
. (26)
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Now, if

max

{
d(x, Tx), d(Tx, T 2x),

d(x, T 2x)

2

}
= d
(
Tx, T 2x

)
,

then (26) gives
f(Tx) 6 qd

(
Tx, T 2x

)
= qf(Tx),

which leads to contradiction. Therefore,

f(Tx) 6 qmax

{
d(x, Tx),

d(x, T 2x)

2

}
. (27)

Here arises two cases:

Case 1. If max{d(x, Tx), d(x, T 2x)/2} = d(x, T 2x)/2, then from (27) we get

f(Tx) 6 q
d(x, T 2x)

2
6
q

2

{
d(x, Tx) + d

(
Tx, T 2x

)}
=
q

2
d(x, Tx) +

q

2
d
(
Tx, T 2x

)
.

This implies that

f(Tx) 6
q

2− q
d(x, Tx) = rf(x),

where r = q/(2− q) ∈ (0, 1).

Case 2. If max{d(x, Tx), d(x, T 2x)/2} = d(x, Tx), then from (27) we get

f(Tx) 6 qd(x, Tx) 6 rf(x),

where r = q/(2− q) ∈ (0, 1).
Hence, in each case, (19) holds true for φ(t) = rt, where r = q/(2 − q) ∈ (0, 1).

Therefore, by using Corollary 7, there exists a sequence {un} and ε, λ > 0 such that
un → uε ∈ O(x) and

f(w) > f(uε)−
ε

λ
d(w, uε) (28)

for every w ∈ X with w 6= uε. Now we claim that f(uε) = 0. If not, then choose ε and
λ such that ε/λ ∈ (0, 1− r). Considering w = Tuε in (28), we obtain

f(uε) < f(Tuε) +
ε

λ
d(uε, Tuε) < rf(uε) +

ε

λ
f(uε),

which implies (1−r−ε/λ)f(uε) < 0, this leads to contradiction because ε/λ ∈ (0, 1−r).
Hence f(uε) = 0, and thus, uε is a fixed point of T in X .

For uniqueness, suppose that x 6= uε is another fixed point of T , then from (24) we
obtain d(uε, x) 6 qd(uε, x), a contradiction. Thus, x = uε.
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Theorem 6. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and T satisfy the following:

d(Tx, Ty) 6 αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx), (29)

where α, β, γ, δ, L ∈ [0,∞) with α + β + γ + δ + L < 1. Then T has a fixed point
in X , provided that f : X → R∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally lower
semicontinuous.

Proof. From (29) and by using Lemma of [34], there exists 0 < k < 1 such that

f(Tx) = d
(
Tx, T 2x

)
6 kd(x, Tx) = kf(x). (30)

Relation (30) implies that (19) holds true for φ(t) = kt, k ∈ (0, 1). Therefore, by using
Corollary 7, there exists a sequence {un} and ε, λ > 0 such that un → uε ∈ O(x) and

f(w) > f(uε)−
ε

λ
d(w, uε) (31)

for every w ∈ X with w 6= uε. Now we claim that f(uε) = 0. If not, then choose ε and
λ such that ε/λ ∈ (0, 1− k). Considering w = Tuε in (31), we obtain

f(uε) < f(Tuε) +
ε

λ
d(uε, Tuε) 6 kf(uε) +

ε

λ
f(uε),

which implies (1−k−ε/λ)f(uε) < 0, this leads to contradiction because ε/λ ∈ (0, 1−k).
Hence f(uε) = 0, and thus, uε is a fixed point of T in X .

In similar fashion, we can deduce the following:

Theorem 7. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and T satisfy the following:

d(Tx, Ty) 6 βd(x, Tx) + γd(y, Ty),

where β, γ ∈ [0,∞) with β + γ < 1. Then T has a fixed point in X , provided that
f : X → R ∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous.

Theorem 8. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and T satisfy the following:

d(Tx, Ty) 6
1

2
d(x, Ty) + Ld(y, Tx),

where L ∈ [0,∞) with L 6 1/2. Then T has a fixed point in X , provided that f : X →
R ∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous.

Theorem 9. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and T satisfy the following:

d(Tx, Ty) 6 αd(x, y) + βd(x, Tx) + γd(y, Ty),

where α, β, γ ∈ [0,∞) with α+ β + γ < 1. Then T has a fixed point in X , provided that
f : X → R ∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally lower semicontinuous.

Nonlinear Anal. Model. Control, 24(3):407–432



424 I. Iqbal, N. Hussain

Theorem 10. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and there exists δ ∈ (0, 1) and L > 0 such that following
holds:

d(Tx, Ty) 6 δ(x, y) + Ld(y, Tx).

Then T has a unique fixed point in X , provided that f : X → R ∪ {+∞} such that
f(x) = d(x, Tx) is T -orbitally lower semicontinuous.

Theorem 11. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and there exists q ∈ [0, 1) such that the following holds:

d(Tx, Ty)

< qmax
{
d(x, y),

(
d(x, y)

)−1
d(x, Tx)d(y, Ty), τ(x, y)d(x, Ty)d(y, Tx)

}
for all x, y ∈ X , where τ(x, y) is a nonnegative real function. Then T has a fixed point
in X , provided that f : X → R∪ {+∞} such that f(x) = d(x, Tx) is T -orbitally lower
semicontinuous. In addition, if τ(x, y) 6 (d(x, y))−1, then T has a unique fixed point.

Remark 5. Theorems 6–9 generalize the main results of [12, 23] and [32]. Theorems 10
and 11 generalize Theorem 1 of [9] and [14], respectively.

Theorem 12. Let (X, d) be a metric space and T : X → X be a mapping. Assume that
(X, d) is T -orbitally complete and there exists L > 0 such that following holds:

d(Tx, Ty) 6
d(x, y)

1 + d(x, y)
+ Ld(y, Tx).

Then T has a fixed point in X , provided that f : X → R ∪ {+∞} such that f(x) =
d(x, Tx) is T -orbitally lower semicontinuous.

Theorem 13 [Caristi-type fixed point theorem]. Let (X, d) be a metric space, T :
X → X be a mapping, ρ : X × X → [0,∞) ∪ {∞} be a T -orbitally continuous and
α : X × X → [0,∞) satisfy (α1). Assume that X is T -orbitally complete, there exists
φ ∈ Φ and a lower semicontinuous function f : X → R ∪ {+∞}, f(x) = d(x, Tx),
which is bounded from below such that for u0 ∈ O(x0) for some x0 ∈ X satisfies the
following:

(i) α(u0, Tw)ρ(Tw, y)− α(u0, w)ρ(w, y) 6 ρ(w, Tw);
(ii)

∑∞
n=0 ρ(u, Tu) 6 f(u)− f(Tu);

(iii) f(Tx) 6 φ(f(x)).

Then there exists w̄ ∈ X such that w̄ = Tw̄.

Proof. From Corollary 5 we have that for each ε > 0, there exists a sequence δj of
positive real numbers and a sequence un such that un → uε ∈ O(x) as n → ∞, and for
every w ∈ X , w 6= uε, we have

∆(w,∞) > ∆(uε,∞)
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or

f(w) + α(u0, w)

∞∑
n=0

δnρ(w, un) > f(uε) + α(u0, uε)

∞∑
n=0

δnρ(uε, un). (32)

We suppose that w̄ 6= Tw̄ for all w̄ ∈ X , then there exists Tuε such that Tuε 6= uε, so
(32) implies

f(Tuε) + α(u0, Tuε)

∞∑
n=0

δnρ(Tuε, un) > f(uε) + α(u0, uε)

∞∑
n=0

δnρ(uε, un). (33)

Relation (33) with hypothesis (i) and (ii) gives

f(uε)− f
(
Tuε

)
<

∞∑
n=0

δn
{
α(u0, Tuε)ρ(Tuε, un)− α(u0, uε)ρ(uε, un)

}
6
∞∑
n=0

δn
{
ρ(uε, Tuε)

}
6 f(uε)− f(Tuε). (34)

This leads to contradiction. Thus, there exists w̄ ∈ X such that w̄ = Tw̄.

5 Nonconvex minimax theorems and equilibrium problem

In many existing general topological minimax theorems, the convexity assumptions on
the sets or on the functions are essential. Some applications of Ekeland’s variational
principles to minimax problems in Banach spaces are obtained by McLinden [26]. Ansari
et al. [38] and Lin [25] studied minimax theorems for a family of multivalued mappings
in locally convex topological vector spaces. For detail in this direction, see [4]. Recall
that equilibrium problem is to find x ∈ X such that F (x, y) > 0 for all y ∈ X , where X
is a metric space and F : X × X → R. The equilibrium problem is a unified model of
optimization problems, saddle point problems, Nash equilibrium problems, variational in-
equality problems, nonlinear complementarity problems and fixed point problems. Blum
[27], Oettli and Thera [41] first gave the existence of a solution of an equilibrium problem
in the setting of complete metric spaces.

In this section, we obtain minimax theorems in incomplete metric spaces without
assumption of convexity and also obtain the existence of a solution of equilibrium problem
in incomplete metric spaces. The obtained results also present the importance of the
T -orbitally lower semicontinuous mappings by showing that a function, which is T -orbit-
ally lower semicontinuous but may not be necessarily lower semicontinuous, can still
obtain its infimum and play an important role to solve minimization problems and equi-
librium problems.

Theorem 14 [Takahashi’s-type nonconvex minimization theorem]. Let (X, d) be
a metric space, T be a self mapping onX and f : X → R∪{+∞} be a T -orbitally lower
semicontinuous function bounded from below. Assume that X is T -orbitally complete,
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(A) hold and for any u ∈ O(x) for x ∈ X with f(u) > infz∈X f(z), there exists
y ∈ X such that χ(y,∞) 6 χ(u,∞). Then there exists v ∈ O(x) for x ∈ X such that
f(v) = infz∈X f(z).

Proof. From Corollary 2 there exists uε ∈ O(x) for x ∈ X such that un → uε and for all
w 6= uε,

χ(w,∞) > χ(uε,∞). (35)

We claim that for uε ∈ O(x), f(uε) = infz∈X f(z). If not, then f(uε) > infz∈X f(z).
By assumption, we get there exists y ∈ X such that χ(y,∞) 6 χ(uε,∞), then from (35)
we get

χ(y,∞) 6 χ(uε,∞) < χ(y,∞),

which leads to contradiction.

Theorem 15 [Nonconvex minimax theorem]. Let (X, d) be a metric space, T be a self
mapping onX and F : X×X → R∪{+∞} be a T -orbitally lower semicontinuous func-
tion and bounded from below in the first argument. Assume thatX is T -orbitally complete,
(A) hold and for any u ∈ O(x) for x ∈ X with {b ∈ X: F (u, b) > infa∈X F (a, b)} 6= ∅,
there exists w = w(u) ∈ X with w 6= u such that

ξ(w, r,∞) 6 ξ(u, r,∞) for all r ∈
{
b ∈ X: F (u, b) > inf

a∈X
F (a, b)

}
, (36)

where

ξ(w, r,∞) = F (w, r) +

∞∑
i=0

δiρi(w, ui).

Then
inf
u∈X

sup
v∈X

F (u(v), v) = sup
v∈X

inf
u∈X

F (u, v).

Proof. It follows from Theorem 14 that for all for v ∈ X , there exists u(v) ∈ O(x) for
x ∈ X such that

F (u(v), v) = inf
u∈X

F (u, v).

Taking the supremum over v on both sides gives

sup
v∈X

F (u(v), v) = sup
v∈X

inf
u∈X

F (u, v).

Replacing u(v) by an arbitrary u ∈ X and taking infimum, we obtain

inf
u∈X

sup
v∈X

F (u(v), v) = sup
v∈X

inf
u∈X

F (u, v).

The following result is a nonconvex equilibrium theorem in T -orbitally complete
metric spaces.
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Theorem 16 [Nonconvex equilibrium theorem]. Let (X, d) be a metric space, T be
a self mapping onX and F : X×X → R∪{+∞} be a T -orbitally lower semicontinuous
function and bounded from below in the first argument. Assume that X is T -orbitally
complete, (A) hold and for each u ∈ O(x) for x ∈ X with {b ∈ X: F (u, b) < 0} 6= ∅,
there exists w = w(u) ∈ X with w 6= u such that (36) holds for all r ∈ X . Then there
exists v ∈ O(x) such that F (v, y) > 0 for all y ∈ X .

Proof. By using Corollary 2, for each z ∈ X , there exists uε(z) ∈ O(x) for x ∈ X such
that un → uε and for all a 6= uε(z),

ξ(a, r,∞) > ξ
(
uε(z), r,∞

)
. (37)

We claim that there exists v ∈ O(x) such that F (v, y) > 0 for all y ∈ X . If not, then
for each u ∈ O(x), there exists y ∈ X such that F (u, y) < 0. This implies that for each
u ∈ O(x), the set {b ∈ X: F (u, b) < 0} is nonempty. From our assumption there exists
w = w(uε(z)) ∈ X , w 6= uε(z), such that

ξ(w, r,∞) 6 ξ
(
uε(z), r,∞

)
. (38)

Combining (37) and (38) gives

ξ(w, r,∞) 6 ξ
(
uε(z), r,∞

)
< ξ(w, r,∞),

which leads to contradiction.

Example 3. Let (X, d) be a metric space as in Example 2 and T : X → X be a mapping
defined as

T (g) =

{
I if g = I′

0 otherwise,

where 0(t) = 0, I(t) = 1 and I′(t) = −1 for all t ∈ [0, 1] with O(I′) = {I′, I,0,0,
0, . . . }, and for I′ 6= g ∈ X , O(g) = {g,0,0,0, . . . }. Then (X, d) is T -orbitally
complete metric space. Define F : X ×X → R by

F (g, h) =


2I(t) if g = 0, h ∈ X,
I′(t) if g ∈ {I, I′}, h ∈ X,
|g(t)− h(t)| otherwise,

then F is proper, bounded below and T -orbitally lower semicontinuous in first argument
because for every sequence {gn} contained in O(g), which converges to h ∈ X , we have

lim
n

inf F (gn, y) = F (h, y)

for all y ∈ X . Note that, only for f ∈ {I, I′} ⊂ O(I′), we have F (f, b) = I′(t) = −1 for
all b ∈ X . So, {b ∈ X: F (f, b) < 0} 6= ∅ only when f ∈ {I, I′}. Also, define ρ(g, h) =
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|h(t) − g(t)| for all g, h ∈ X, t ∈ [0, 1], δ0 = 1 and δi = 0 for all i = 1, 2, 3, . . . , then
(36) is equivalent to

F (g, r)− F (h, r) 6
∣∣g(t)− h(t)

∣∣.
For g = I′, there exists h = 0 ∈ X such that h = g + I and for all r ∈ X ,

F (g, r)− F (h, r) = F (I′, r)− F (0, r) = 0 < 1 =
∣∣I′(t)− 0(t)

∣∣.
For g = I, there exists h = I′ ∈ X such that w = −u+ 0 and for all r ∈ X ,

F (g, r)− F (h, r) = F (I, r)− F (I′, r) = 0 =
∣∣I(t)− I′(t)

∣∣.
Hence (36) holds true. All the hypothesis of Theorem 16 are satisfied, and there exists
0 ∈ O(g) such that F (0, h) > 0 for all h ∈ X .

Example 4. Let X = (1, 2]∪ {−1, 0} with usual metric d and T : X → X be a mapping
defined as

Tx =

{
−1 if x = 2,

0 if x 6= 2

withO(2) = {2,−1, 0, 0, 0, . . . }, and when x 6= 2,O(x) = {x, 0, 0, 0, . . . }. Then (X, d)
is T -orbitally complete metric space. Define F : X ×X → R by

F (x, y) =


1 if x = 2, y ∈ X,
−5x+ 3y if x ∈ (1, 1.5) ∪ (1.5, 2), y ∈ {0,−1},
3y if x, y ∈ {0,−1},
0 otherwise,

then F is proper, bounded below and T -orbitally lower semicontinuous in first argument.
Indeed, for every sequence contained in O(x), which converges to x ∈ X , we have for
all y ∈ X ,

lim
n

inf F (xn, y) = F (x, y).

Note that there are three cases for which u ∈ O(x) with {b ∈ X: F (u, b) < 0} 6= ∅:
Case 1. u = −1:

F (−1, b) =

{
3b if b ∈ {0,−1},
0 if b ∈ (1, 2],

so F (−1, b) < 0 when b = −1.

Case 2. u = 0:

F (0, b) =

{
3b if b ∈ {0,−1},
0 if b ∈ (1, 2],

so F (0, b) < 0 when b = −1.
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Case 3. u ∈ (1, 1.5) ∪ (1.5, 2):

F (u, b) =

{
−5u+ 3b if b ∈ {0,−1},
0 if b ∈ (1, 2],

so F (u, b) < 0 when b ∈ {0,−1}.
Also, define ρ(x, y) = d(x, y) for all x, y ∈ X , δ0 = 1 and δi = 0 for all i =

1, 2, 3, . . . . Then (36) is equivalent to

F (u, r)− F (w, r) 6 d(w, u).

For Case 1, there exists w = 0 ∈ X such that w = u+ 1 and for all r,

F (u, r)− F (w, r) = F (−1, r)− F (0, r) = 0 < 1 = d(−1, 0) = d(u,w).

For Case 2, there exists w = −1 ∈ X such that w = u− 1 and for all r,

F (u, r)− F (w, r) = F (0, r)− F (−1, r) = 0 < 1 = d(0,−1) = d(u,w).

For Case 3, there exists w ∈ X such that w < u and for all r and w ∈ (1, 1.5) ∪
(1.5, 2),

F (u, r)− F (w, r) = (−5u+ 3r)− (−5w + 3r) = 5(−u+ w) 6 0 6 d(u,w).

When w ∈ {0,−1},

F (u, r)− F (w, r) = (−5u+ 3r)− (3r) 6 0 6 d(u,w).

Hence in all cases, (36) holds true. All the hypothesis of Theorem 16 are satisfied, and
there exists 2 ∈ O(x) such that F (2, y) > 0 for all y ∈ X .

Remark 6. In Example 4, (X, d) is not a complete metric space because xn = 1+1/n is
a Cauchy sequence in X that converges to 1 as n→∞, but 1 /∈ X . Also, the function F
is not lower semicontinuous in the first argument. Indeed, xn = 1.5 + 1/n is a sequence
in X , which converges to 1.5 ∈ X , but for y ∈ {0,−1},

lim
n

inf F (xn, y) = lim
n

inf F

(
1.5 +

1

n
, y

)
= lim

n
inf

(
−7.5− 5

n
+ 3y

)
= −7.5 + 3y < 0 = F (1.5, y).

Therefore, equilibrium formulations of Ekeland’s variational principles given in [11,
29, 33, 41, 42, 44] cannot be applied for this example.

6 Conclusion

A variational principle is obtained in metric spaces, which are not necessarily complete,
by introducing the notion of T -orbitally lower semicontinuous functions. We also obtain
a nonconvex minimization theorem, a nonconvex minimax theorem and a nonconvex
equilibrium theorem in such metric spaces. The existence of a solution of an equilibrium
problem is also proved from obtained results. As consequences, the fixed points for many
contractions in the existing literature are explored.
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