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Abstract. In the paper, the spectrum structure of one-dimensional differential operator with
nonlocal conditions and of the difference operator, corresponding to it, has been exhaustively
investigated. It has been proved that the eigenvalue problem of difference operator is not equivalent
to that of matrix eigenvalue problem Au = λu, but it is equivalent to the generalized eigenvalue
problem Au = λBu with a degenerate matrix B. Also, it has been proved that there are such
critical values of nonlocal condition parameters under which the spectrum of both the differential
and difference operator are continuous. It has been established that the number of eigenvalues of
difference problem depends on the values of these parameters. The condition has been found under
which the spectrum of a difference problem is an empty set. An elementary example, illustrating
theoretical expression, is presented.
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1 Introduction and problem statement

During last several decades of the development of differential equations theory and nu-
merical analysis, there is an increased interest in problems with various types of nonlocal
conditions. A separate class of these problems is eigenvalue problems of differential and
difference operators. Eigenvalue problems of differential operator with nonlocal condi-
tions can be interpreted as a separate case of the non-self-adjoint operators theory [12].
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In papers [4,16,18,20,21], eigenvalue problems of one- and two-dimensional differential
operators with various nonlocal boundary conditions were analyzed.

Eigenvalue problems of difference operators with nonlocal conditions usually arise
when solving boundary problems by the finite difference method. The spectrum proper-
ties of difference operators with various nonlocal boundary conditions were explored for
investigation of the stability of difference schemes [1, 2, 4, 7, 8, 10, 11]. Another sphere of
such a spectrum analysis application is convergence of iterative methods for the systems
of difference equations [17, 19, 22], in particular, for nonlinear elliptic equations with
integral boundary conditions [22, 23].

Many articles on the investigation of the partial differential equations with various
types of nonlocal conditions were published presenting new mathematical models in heat
conduction, thermoelasticity, underground water flow, biochemistry and so on. References
to the original papers can be found in [2, 19, 21]. Solving these problems by the finite
difference method, we meet unavoidably the problem of the structure of the spectrum of
difference operator. Therefore, the eigenvalue problems could be interpreted as one of the
methods of modeling.

In [5, 6], the eigenvalue problem was investigated in connection with the existence,
uniqueness and multiplicity of the solution of differential problems with nonlocal condi-
tions.

The spectrum of differential and difference operators with nonlocal conditions is much
more diverse and complicated as compared to the spectrum in the case of the classical
boundary conditions (Dirichlet or Neumann). Let us take such an eigenvalue problem
with the Bitsadze–Samarskii nonlocal condition [20]:

d2u

dx2
+ λu = 0, x ∈ (0, 1),

u(0) = 0, u(1) = γu(ξ), ξ ∈ (0, 1),

where γ, ξ are given real numbers. It has been proved that, depending on the values of
these parameters, in the spectrum of both differential and difference operators, there can
be zero, positive, negative or complex values. Besides, though the matrix of a difference
problem is non-symmetrical (except the case γ = 0), we can determine intervals of γ
and ξ in which all the eigenvalues are real and positive.

Next, let us take the corresponding difference problem

ui−1 − 2ui + ui+1

h2
+ λui = 0, i = 1, . . . , N − 1,

u0 = 0, uN = γus,

where h = 1/N , ξ = Sh, which is equivalent to (N − 1)-order matrix A eigenvalue
problem Au = λu, u = {ui}, i = i, . . . , N − 1. It has been proved that, under certain
values of γ and ξ, matrix A may have a parasitic eigenvalue without any correspondence
as h→ 0. For example, if

γ =
(−1)N−S

ξ
,
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there exists a matrix eigenvalue λ = 4/h2 with the corresponding eigenvector

u = {ui} =
{
(−1)icih

}
, i = 1, . . . , N − 1,

where c 6= 0 is any real number. As h→ 0, the limit of the eigenvector does not exist.
In paper [18], one more singularity of the spectrum of a difference operator with non-

local conditions is indicated. Let us take a differential eigenvalue problem with integral
conditions

d2u

dx2
+ λu = 0, x ∈ (0, 1),

u(0) = γ1

1∫
0

u(x) dx, u(1) = γ2

1∫
0

u(x) dx.

The following difference problem corresponds to it with the approximation error O(h2):

ui−1 − 2ui + ui+1

h2
+ λui = 0, i = 1, . . . , N − 1,

u0 = γ1h

(
u0 + uN

2
+

N−1∑
i=1

ui

)
, uN = γ2h

(
u0 + uN

2
+

N−1∑
i=1

ui

)
.

This difference eigenvalue problem for all the values γ1, γ2 and h, except one case as
h = 2/(γ1 + γ2), is equivalent to the eigenvalue problem Au = λu, where A is the
(N − 1)-order matrix. If γ1 + γ2 > 2 and h < 2/(γ1 + γ2), then all eigenvalues of
difference operator are positive except one that is negative. This negative eigenvalue tends
to infinity (−∞) as h→ 2/(γ1+γ2). This fact is well illustrated by numerical experiment
when γ1 + γ2 is quite large positive number. If h > 2/(γ1 + γ2), then all eigenvalues
are positive, and one of them tends to infinity (+∞) as h → 2/(γ1 + γ2). In the case
h = 2/(γ1 + γ2), difference eigenvalue problem cannot be written in the matrix form
Au = λu.

In this paper, we consider a differential eigenvalue problem

d2u

dx2
+ λu = 0, x ∈ (0, 1), (1)

u(0) = γ1u(1), (2)
u(ξ) = γ2u(1− ξ), 0 < ξ < 1, (3)

and a difference eigenvalue problem, corresponding to it. Such a difference eigenvalue
problem was investigated in paper [3] in which some necessary conditions for the pa-
rameters γ1, γ2 and ξ were obtained in order that zero, positive, negative or complex
eigenvalues might exist.

In this paper, we have investigated in detail the spectrum of differential and difference
operators and drew a new qualitative conclusions. Particularly, we have proved that, de-
pending on the parameters γ1, γ2, ξ and h, the spectrum structure of a difference operator
can be essentially different from the spectrum structure both of differential operator and
that of matrix.
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2 Eigenvalue problem of a differential operator

We investigate the spectrum structure of a differential operator, defined by formu-
las (1)–(3). First, we analyze when there exist real eigenvalues by separate three cases:
λ = 0, λ > 0 and λ < 0.

Theorem 1. The number λ = 0 is an eigenvalue of differential problem (1)–(3) if and
only if the following condition is true:

(γ1γ2 − 1)ξ = (γ1 − γ2)(1− ξ). (4)

Proof. As λ = 0, the general solution of equation (1) is

u(x) = c1x+ c2,

where c1 and c2 are arbitrary constants. By substituting this expression into nonlocal
conditions (2) and (3), we obtain a system of equations with two unknowns c1 and c2

−γ1c1 + (1− γ1)c2 = 0,(
ξ − γ2(1− ξ)

)
c1 + (1− γ2)c2 = 0.

(5)

This system has a nontrivial solution if and only if

D =

∣∣∣∣ −γ1 1− γ1
ξ − γ2(1− ξ) 1− γ2

∣∣∣∣ = 0.

After elementary rearrangement, it follows (4) from this equality.

Remark 1. In the coordinate plane (γ1, γ2), as ξ is a fixed number, equation (4) deter-
mines a hyperbola. Points (−1,−1) and (1, 1) always belong to the hyperbola indepen-
dent of the ξ value (see Fig. 1).

Figure 1. The graph of hyperbola (4) in the case ξ = 0.4. The grey areas correspond to the values of γ1, γ2 for
which there exists one negative eigenvalue.
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Lemma 1. Any positive eigenvalue of differential operator (1)–(3) is defined by the
formula

λk = α2
k, (6)

where αk are roots of the equation

(γ1γ2 − 1) sinαξ = (γ1 − γ2) sinα(1− ξ). (7)

Proof. As λ > 0, the general solution of (1) is

u(x) = c1 cosαx+ c2 sinαx, α =
√
λ > 0.

After substituting this solution into nonlocal conditions (2) and (3), we have a system

(1− γ1 cosα)c1 − (γ1 sinα)c2 = 0,(
cosαξ − γ2 cosα(1− ξ)

)
c1 +

(
sinαξ − γ2 sinα(1− ξ)

)
c2 = 0.

(8)

For nontrivial solution (c1, c2) of this system, the necessary and sufficient condition
is

D =

∣∣∣∣ 1− γ1 cosα −γ1 sinα
cosαξ − γ2 cosα(1− ξ) sin ξ − γ2 sinα(1− ξ)

∣∣∣∣ = 0.

After elementary rearrangements, hence it follows (7).

Theorem 2. For all values of γ1 and γ2, except two cases γ1=γ2=1 and γ1=γ2=−1,
and all values of ξ, there exist a countable set of positive eigenvalues of form (6).

Proof. Let us consider three qualitatively different cases of the parameters γ1 and γ2.
(i) γ1 = γ2 6= ±1, i.e., γ1−γ2 = 0, γ1γ2−1 6= 0. In this case, equation (7) becomes

as follows:
sinαξ = 0.

Hence, we derive

αk =
kπ

ξ
, k = 1, 2, . . . .

(ii) γ1 = 1/γ2, γ1 6= ±1, i.e., γ1γ2 − 1 = 0, γ1 − γ2 6= 0. From (7) we obtain

sinα(1− ξ) = 0,

αk =
kπ

1− ξ
, k = 1, 2, . . . .

(iii) γ1 − γ2 6= 0, γ1γ2 − 1 6= 0. Denote

ϕ1(α) = (γ1γ2 − 1) sinαξ, ϕ2(α) = (γ1 − γ2) sinα(1− ξ).

The functions ϕ1(α) and ϕ2(α) are continuous periodical functions with the periods
2π/ξ and 2π/(1 − ξ), respectively. Since ξ < 1 − ξ, in a longer interval α ∈ (0, 2π/ξ),
the graphs of both functions intersect at least one time (or several times) in case ξ, γ1 and
γ2 are fixed. Thus, in all three cases, equation (7) has a countable set of roots αk, i.e.,
there exists a countable set of positive eigenvalues λk = α2

k.
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Corollary 1. If γ1 = γ2 = 1 or γ1 = γ2 = −1, equations (7) become an identity for
all values of λ. In other words, any positive number λ is an eigenvalue. It means that the
spectrum of differential problem (1)–(3) is continuous.

The phenomenon of continuous spectrum also takes a place in the theory of boundary
value problems for degenerate elliptic equations [14, 15].

Lemma 2. The negative eigenvalue of differential operator (1)–(3), if it exists, is defined
by the formula

λ = −β2
0 , (9)

where β0 > 0 is the root of the equation

(γ1γ2 − 1) sinhβξ = (γ1 − γ2) sinhβ(1− ξ). (10)

Proof. As λ < 0, the general solution of equation (1) is

u(x) = c1 coshβx+ c2 sinhβx, β =
√
−λ > 0.

After substituting this expression into nonlocal condition (2) and (3), we get

c1 = γ1(c1 coshβ + c2 sinhβ),

c1 coshβξ + c2 sinhβξ = γ2
(
c1 coshβ(1− ξ) + c2 sinhβ(1− ξ)

)
.

(11)

The necessary and sufficient condition for the existence of a nontrivial solution (c1, c2) of
this system is as follows:

D =

∣∣∣∣ 1− γ1 coshβ −γ1 sinhβ
coshβξ − γ2 coshβ(1− ξ) sinhβξ − γ2 sinhβ(1− ξ)

∣∣∣∣ = 0.

As earlier, it follows (10) from this equality.

Next, we explore when equation (10) has at least one root.

Theorem 3. Except two cases γ1 = γ2 = 1 and γ1 = γ2 = −1, equation (10) has
a unique root β0 ∈ (0,∞) if and only if

γ1γ2 − 1

γ1 − γ2
>

1− ξ
ξ

, γ1 6= γ2. (12)

If condition (12) is satisfied, there exists a unique negative eigenvalue of differential
problem (1)–(3), and it is defined by formula (9).

Proof. According to the assumption of the theorem, let us consider all real values of γ1
and γ2 except γ1 = γ2 = ±1. Thus, if γ1 = γ2, then equation (10) has only a root β = 0.
Therefore, the condition γ1 − γ2 6= 0 is the necessary condition for the existence of the
root β > 0. In this case, we can rewrite equation (10) as follows:

sinhβ(1− ξ)
sinhβξ

=
γ1γ2 − 1

γ1 − γ2
. (13)
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Figure 2. The graph of the function ϕ(β) = sinhβ(1− ξ)/ sinhβξ in the case ξ = 0.4, γ1 = 2.4, γ2 = 1.4.

The function ϕ(β) = sinhβ(1 − ξ)/ sinhβξ, as ξ ∈ (0, 1/2), has in the interval
β ∈ (0,∞) the following properties:

(i) it is continuous, and ϕ(β) > 1;
(ii) it is monotonously increasing function since

ϕ′(β) =
(1− ξ) coshβ(1− ξ) sinhβξ − ξ sinhβ(1− ξ) coshβξ

sinh2 (βξ)

=
coshβ(1− ξ)− ξ

sinhβξ
> 0;

(iii) ϕ(0) = lim
β→0

sinhβ(1− ξ)
sinhβξ

= lim
β→0

(1− ξ) coshβ(1− ξ)
ξ coshβξ

=
1− ξ
ξ

> 1;

(iv) lim
β→∞

sinhβ(1− ξ)
sinhβξ

= +∞.

It follows from these properties that equation (13) has a unique root in interval (0,∞)
if and only if condition (12) is fulfilled (see Fig. 2).

Corollary 2. It follows from Lemma 2 that, in the case γ1 = γ2 = ±1, i.e., if γ1γ2−1 = 0
and γ1 − γ2 = 0, equation (10) turns into identity for all values of β > 0. Thus, if
γ1 = γ2 = ±1, then any negative number λ = −β2 is the eigenvalue of differential
problem (1)–(3).

3 Eigenvalue problem of a difference operator

Let us write a difference problem of eigenvalues that approximates differential prob-
lem (1)–(3) with the approximation error O(h2):

ui−1 − 2ui + ui+1

h2
+ λui = 0, i = 1, . . . , N − 1, (14)

u0 = γ1uN , uS = γ2uN−S . (15)

https://www.mii.vu.lt/NA
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We denote here h = 1/N , ξ = Sh, 1− ξ = (N − S)h; N and S are integer numbers. In
other words, the grid is uniform, and ξ is a mesh point (1− ξ is also a mesh point). Note
that 1 6 S 6 N/2− 1 and h 6 ξ 6 1/2− h.

We call the number λ an eigenvalue of the difference problem, if with this number
there exists a nontrivial solution (eigenvector) of problem (14)–(15).

Let us analyze the spectrum (the set of all eigenvalues) of difference problem (14)–
(15). The proofs of lemmas and theorems presented below, according to methodology are
analogous to that used in Section 2. Therefore, in our proofs, we emphasize only that what
is different.

Theorem 4. The number λ = 0 is the eigenvalue of difference problem (14)–(15) if and
only if

(γ1γ2 − 1)ξ = (γ1 − γ2)(1− ξ). (16)

Proof. First, let us pay attention that condition (16) is coincident with condition (4) of
Theorem 1.

As λ = 0, the general solution of difference equation (14) is

ui = c1ih+ c2, i = 1, . . . , N − 1,

where c1 and c2 are arbitrary constants. By substituting this expression of ui into nonlocal
conditions (15), we obtain a system just like system (5) in the proof of Theorem 1.

Remark 1 is right for difference operator (14)–(15) as well as for differential opera-
tor (1)–(3).

Lemma 3. Positive eigenvalues of difference problem (14)–(15) satisfying the inequality

0 < λ <
4

h2
(17)

are defined by the formula

λk =
4

h2
sin2

αkh

2
, (18)

where αk are roots of the equation

(γ1γ2 − 1) sinαξ = (γ1 − γ2) sinα(1− ξ) (19)

in the interval (0, π/h).

Proof. First of all, note that equation (19) is coincident with equation (7) in Lemma 1.
However, expressions and numbers of eigenvalues are different than in Lemma 1.

Since the inequality ∣∣∣∣1− λh2

2

∣∣∣∣ < 1

follows from condition (17), we can introduce into equation (14) a new unknown α instead
of λ:

cosαh = 1− λh2

2
, 0 < α <

π

h
. (20)
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Hence, formula (18) follows. Now, equation (14) becomes as follows:

ui−1 − 2(cosαh)ui + ui+1 = 0,

and its general solution is

ui = c1 cosαih+ c2 sinαih. (21)

By substituting this expression of ui into nonlocal conditions (15), we obtain a system
coincident with system (8) in the demonstration of Lemma 1. So, the rest of this proof
now is coincident with that one of Lemma 1.

Theorem 5. The number of positive eigenvalues of form (18) is finite with all the values
of γ1, γ2 except two cases: γ1 = γ2 = 1 and γ1 = γ2 = −1.

Proof. According to assumption of the theorem, all possible values of γ1 and γ2 can be
separated into three qualitatively different cases.

(i) γ1 = γ2 6= ±1; then γ1γ2−1 6= 0 and γ1−γ2 = 0. Equation (19), in this case, is

sinαξ = 0,

and its roots are
αk =

kπ

ξ
, 0 < αk <

π

h
,

i.e., 0 < k < S. Thus,

λk =
4

h2
sin2

kπh

2ξ
=

4

h2
sin2

kπ

2S
, k = 1, . . . , S − 1, (22)

where S > 2.

(ii) γ1 = 1/γ2 6= ±1, i.e., γ1γ2 − 1 = 0, γ1 − γ2 6= 0. Then equation (19) is

sinα(1− ξ) = 0.

Analogously as in the first case, we derive

αk =
kπ

1− ξ
, k < N − S,

λk =
4

h2
sin2

πk

2(N − S)
, k = 1, . . . , N − S − 1. (23)

(iii) γ1 − γ2 6= 0 and γ1γ2 − 1 6= 0. As mentioned in the proof of Theorem 2, in the
interval (0, 2π/ξ), equation (19) has one or several roots. Since α ∈ (0, π/h), the number
of roots in this interval is finite (in the general case it depends on four parameters: γ1, γ2,
ξ and h).

We shall indicate one interesting fact.

https://www.mii.vu.lt/NA
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Remark 2. If ξ = h, i.e., S = 1 and γ1 = γ2 6= ±1, then it follows from formula (22)
that difference problem (14)–(15) has no positive eigenvalue λ that satisfies the inequality
0 < λ < 4/h2. Thereby we admit that from the equality ξ = h it not follows (1)–(3) is ill-
possessed problem. The matter is that h→ 0, but ξ = const. Hence, the spectrum of the
difference problem (14)–(15) is empty set with only one concrete value h, i.e., h = ξ (see
Section 6, case 2)). With increasing or decreasing value h this phenomenon disappears.

Corollary 3. If γ1 = γ2 = 1 or γ1 = γ2 = −1, then the spectrum of difference
problem (14)–(15) is continuous for all the values of ξ and h, i.e., any number λ ∈
(0, 4/h2) is an eigenvalue.

The conclusion follows directly from equation (19).
Let us find an eigenvector as γ1 = γ2 = 1, i.e., in the case of continuous spectrum.

Consider any fixed number λ0 ∈ (0, 4/h2) as an eigenvalue. In accordance with (20), we
calculate α0 ∈ (0, π/h) from the equality

cosα0h = 1− λ0h
2

2
. (24)

The eigenvector is of form (21). Choosing c1 = 1, from system (8) we calculate

c2 =
1− cosα0

sinα0
.

Thus, the eigenvector corresponding to the eigenvalue λ0 is as follows:

u = {ui} =
{
cosα0ih+

1− cosα0

sinα0
sinα0ih

}
, i = 0, . . . , N,

where α0 satisfies equality (24).
Note that, differently than in the case of the differential problem (Theorem 2), we have

found not all the positive eigenvalues of the difference problem, but only the eigenvalues
from the interval (0, 4/h2). Under certain additional conditions, there may exist one more
eigenvalue λ > 4/h2 of the difference problem (see below Theorems 7 and 8). As far as
the authors are acquainted, for the first time, the existence of such an eigenvalue in the
case of nonlocal conditions was noticed most likely in paper [20].

Lemma 4. The negative eigenvalue of difference problem (14)–(15), if it exists, is defined
by the formula

λ = − 4

h2
sinh2

βh

2
, β > 0, (25)

where β > 0 is the root of the equation

(γ1γ2 − 1) sinhβih = (γ1 − γ2) sinhβ(N − i)h. (26)

Proof. If λ < 0, then 1 − λh2/2 > 1, therefore we can introduce a new unknown β by
the relation

coshβh = 1− λh2

2
, β > 0.

Nonlinear Anal. Model. Control, 24(3):462–484
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Hence, formula (25) follows. Equation (14) becomes as follows:

ui−1 − 2(coshβh)ui + ui+1 = 0.

The general solution of this equation is

ui = c1 coshβih+ c2 sinhβih.

By substituting this expression into nonlocal conditions (15), we get system (11). A fur-
ther proof of the lemma is coincident with that of Lemma 2.

Like as Theorem 3, the next theorem is proved.

Theorem 6. Except two cases γ1 = γ2 = 1 and γ1 = γ2 = −1, there exists a unique neg-
ative eigenvalue of form (25) of difference problem (14)–(15) if and only if condition (12)
is true.

Corollary 4. If γ1 = γ2 = ±1, then any number λ < 0 is the eigenvalue of difference
operator (14)–(15). Indeed, in this case, equation (26) is an identity 0 = 0 for all values
of β.

In Fig. 1, in the presence of the fixed value ξ = 0.4, in the grey areas of the coordinate
plane (γ1, γ2), there exists a negative eigenvalue of difference problem (14)–(15).

According to Theorems 3 and 6, there exists a negative eigenvalue of both differential
and difference operators under the same conditions (12).

Now we can return to conditions under which there exists the positive eigenvalue
λ > 4/h2.

Theorem 7. The number λ = 4/h2 is the eigenvalue of difference problem (14)–(15) if
and only if the condition

(−1)S(γ1γ2 − 1)ξ = (−1)N−S(γ1 − γ2)(1− ξ) (27)

is satisfied.

Proof. When λ = 4/h2, equation (14) becomes as follows:

ui−1 + 2ui + ui+1 = 0.

The general solution of this equation is

ui = (−1)i(c1ih+ c2). (28)

After substituting the expression of this solution into conditions (15), we obtain

c2 = γ1(−1)N (c1 + c2),

(−1)S(c1ξ + c2) = γ2(−1)N−S
(
c1(1− ξ) + c2

)
.

https://www.mii.vu.lt/NA
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Hence, the necessary and sufficient condition for the existence of nontrivial solution
(c1, c2) is

D =

∣∣∣∣ −(−1)Nγ1 1− (−1)Nγ1
(−1)Sξ − (−1)N−Sγ2(1− ξ) (−1)S − (−1)N−Sγ2

∣∣∣∣ = 0.

After elementary rearrangement, hence we derive (27).

Assume that N is an even number. Then condition (27) is coincident with condi-
tion (16). Thus, we obtained the following conclusion.

Corollary 5. As N is an even number, the existence condition of the eigenvalues λ = 0
and λ = 4/h2 is the same.

Theorem 8. Except two cases γ1 = γ2 = 1 and γ1 = γ2 = −1, difference prob-
lem (14)–(15) has one eigenvalue λ > 4/h2 if and only if

(−1)N γ1γ2 − 1

γ1 − γ2
>

1− ξ
ξ

. (29)

If this condition is satisfied, then

λ =
4

h2
cosh2

βh

2
, (30)

where β is a unique root of the equation

(−1)N (γ1γ2 − 1) sinhβξ = (γ1 − γ2) sinhβ(1− ξ) (31)

in the interval (0,∞).

Proof. If λ > 4/h2, then 1− λh2/2 < −1. Therefore, we can introduce in equation (14)
a new unknown β > 0 by the equality

coshβh =
λh2

2
− 1, β > 0.

Hence, expression (30) follows, and equation (14) becomes such as follows:

ui−1 + 2(coshβh)ui + ui+1 = 0.

The general solution of this equation is

ui = (−1)i(c1 coshβih+ c2 sinhβih). (32)

After substituting this expression into (15), we obtain a system, analogous to system (11):

c1 = γ1(−1)N (c1 coshβ + c2 sinhβ),

c1 coshβξ + c2 sinhβξ = γ2(−1)N
(
c1 coshβ(1− ξ) + c2 sinhβ(1− ξ)

)
.

By equating a determinant of this system to zero, after elementary rearrangement, we
obtain (31). The further proof of the theorem is analogous to that of Theorem 3.

Nonlinear Anal. Model. Control, 24(3):462–484
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The inferences analogous to Corollaries 3 and 5 are true.

Corollary 6. If γ1 = γ2 = ±1, then any number λ > 4/h2 is the eigenvalue of difference
problem (14)–(15).

Corollary 7. As N is an even number, the existence condition of the eigenvalues λ < 0
and λ > 4/h2 is the same.

Remark 3. The result of Theorems 7 and 8 on the existence conditions for the eigenvalues
λ = 4/h2 and λ > 4/h2 is proper on for a difference but not a differential problem. The
matter is that eigenvectors (28) and (32), corresponding to these eigenvalues, have no
limit as h→ 0.

4 Complex eigenvalues

Differential operator of (1)–(3) is not self-adjoint. Therefore, there may exist complex
eigenvalues. Such a statement is also right for difference operator of (14)–(15). We investi-
gate when there exist complex eigenvalues of a difference operator, since for a differential
operator, both the investigation methods and their results are analogous.

In this section, we denote an imaginary unit by the letter i, i.e., i =
√
−1. Therefore,

in equation (14), we shall use the index j instead of index i.

Lemma 5. If there exist complex eigenvalues λk of difference problem (14)–(15), they
are defined by the following formula:

λk =
4

h2
sin2

qkh

2
, (33)

where qk = αk ± iβ are complex roots of the equation

(γ1γ2 − 1) sin qξ = (γ1 − γ2) sin q(1− ξ). (34)

Proof. If λ is a complex number in equation (14), we can introduce a new complex
quantity q by the formula

cos qh = 1− λh2

2
, (35)

where q = α± iβ. Hence, it follows that

λ =
4

h2
sin2

qh

2
.

Note that, in the case where λ is a complex number, there must be α 6= 0 and β 6= 0. The
condition β = 0 is coincident with the condition that q is a real number, so λ is positive.
If α = 0, then

λ =
4

h2
sin2

iβh

2
=

4

h2

(
i sinh

βh

2

)2

= − 4

h2
sinh2

βh

2
,

i.e., the case α = 0, β 6= 0 corresponds to λ < 0. In case α = β = 0, it follows λ = 0.
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After replacement (35), equation (14) becomes as follows:

uj−1 − 2(cos qh)uj + uj+1 = 0.

Its general solution is

uj = c1 cos qjh+ c2 sin qjh, q = α± iβ,

where c1 and c2 are arbitrary complex constants.
By substituting this expression in nonlocal conditions (15) we obtain

c1 = γ1(c1 cos q + c2 sin q),

c1 cos qξ + c2 sin qξ = γ2
(
c1 cos q(1− ξ) + c2 sin q(1− ξ)

)
.

Hence just like in the proof of Lemma 3, we get that the nontrivial solution (c1, c2)
exists if and only if condition (34) is fulfilled. In case this equation has complex roots
qk = αk ± iβk, αk 6= 0, βk 6= 0, then the corresponding eigenvalue λk is defined
by (33).

We can specify three elementary cases where difference problem (14)–(15) has no
complex eigenvalues. We formulate these cases as the corollaries of Lemma 5.

Corollary 8. If γ1 = γ2 6= ±1, there are no complex eigenvalues.

Indeed, in this case, γ1 − γ2 = 0, γ1γ2 − 1 6= 0. Thus, equation (34) becomes as
follows:

sin qξ = 0.

If ξ is a real numbers, then all the roots qk are real.

Corollary 9. In case γ1 = 1/γ1 6= 1, there are no complex eigenvalues.

In this case, γ1γ2 − 1 = 0, γ1 − γ2 6= 0 and equation (34) is as follows:

sin q(1− ξ) = 0,

which implies that the roots qk are real numbers.

Corollary 10. In case γ1γ2 − 1 = γ2 − γ1 = a 6= 0, there are no complex eigenvalues.

In this case, we can rewrite equation (34) as follows:

2a sin q

(
ξ +

1

2

)
cos

q

2
= 0,

the roots qk of which are only real.
An analogous proposition is right in the case

γ1γ1 − 1 = −(γ1 − γ2) = a 6= 0.

We analyze one more complicated case where all eigenvalues of the difference opera-
tor are real.
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Let us introduce a generalized parameter

γ̃ =
γ1γ2 − 1

γ1 − γ2
. (36)

This value was used in many lemmas and theorems.

Theorem 9. If |γ̃| 6 1, then all the eigenvalues of difference operator (14)–(15) are real.

Proof. Suppose that under condition |γ̃| 6 1, equation (34) has a complex root q = α±iβ,
α 6= 0, β 6= 0. Since |γ̃| 6 1, it means that γ1 − γ2 6= 0. We rewrite equation (34) in the
following form:

sin (α± iβ)(1− ξ)− γ̃ sin (α± iβ)ξ = 0.

Hence,

sinα(1− ξ) coshβ(1− ξ)± i sinhβ(1− ξ) cosα(1− ξ)
− γ̃(sinαξ coshβξ ± i sinhβξ cosαξ) = 0.

We separate the real and imaginary parts:

sinα(1− ξ) coshβ(1− ξ)− γ̃ sinαξ coshβξ = 0, (37)

sinhβ(1− ξ) cosα(1− ξ)− γ̃ sinhβξ cosαξ = 0. (38)

We express sinα(1− ξ) from equation (37) and cosα(1− ξ) from equation (38) and
substitute the obtained expressions into the identity

sin2 α(1− ξ) + cos2 α(1− ξ) = 1.

By substituting, we get(
γ̃

coshβξ

coshβ(1− ξ)

)2

sin2 αξ +

(
γ̃

sinhβξ

sinhβ(1− ξ)

)2

cos2 αξ = 1. (39)

Since ξ < 1− ξ, β 6= 0, |γ̃| 6 1, we derive(
γ̃

coshβξ

coshβ(1− ξ)

)2

< 1,

(
γ̃

sinhβξ

sinhβ(1− ξ)

)2

< 1.

Consequently, equality (39) is impossible. We have got a contradiction from which it
follows that q cannot be complex.

Corollary 11. In case γ1 = γ2 = ±1, any complex number q is the root of equation (34),
i.e., any complex number λ is the eigenvalue of difference problem (14)–(15).
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5 The difference eigenvalue problem as a generalized matrix eigen-
value problem

In paper [3], it is stated difference eigenvalue problem (14)–(15) can be written as a matrix
eigenvalue problem

Au = λu, (40)

whereA is (N−1)-order matrix, u = (u1, u2, . . . , uN−1)
T. The expression of matrixA is

written as well. Though the expression of matrixA is written correctly, problem (14)–(15)
is not equivalent to problem (40).

We shall repeat these reasoning, presented in paper [3], and will correct one inaccu-
racy in it. At the same time, we note that the authors of paper, after writing problem (14)–
(15) in incorrect form (40), nowhere use such a form. We will write a slightly different
matrix from of problem (14)–(15), and we will comment it in Section 6.

Let us write equation (14) more in detail:

h−2(−u0 + 2u1 − u2) = λu1,

h−2(−u1 + 2u2 − u3) = λu2,

. . .

h−2(−uS−2 + 2uS−1 − uS) = λuS−1,

h−2(−uS−1 + 2uS − uS+1) = λuS , (41)

h−2(−uS + 2uS+1 − uS+2) = λuS+1,

. . .

h−2(−uN−3 + 2uN−2 − uN−1) = λuN−2,

h−2(−uN−2 + 2uN−1 − uN ) = λuN−1.

We substitute the expression u0 = γ1uN from (15) into the first equation of sys-
tem (41). Analogously, we substitute the expression uS = γ2uN−S from (15) into three
equations of system (41) as i = S− 1, S, S+1. After substitution, we obtain a new form
of problem (14)–(15)

h−2(2u1 − u2 − γ1uN ) = λu1,

h−2(−u1 + 2u2 − u3) = λu2,

. . .

h−2(−uS−2 + 2uS−1 − γ2uN−S) = λuS−1,

h−2(−uS−1 − uS+1 + 2γ2uN−S) = λuS , (42)

h−2(2uS+1 − uS+2 − γ2uN−S) = λuS+1,

. . .

h−2(−uN−3 + 2uN−2 − uN−1) = λuN−2,

h−2(−uN−2 + 2uN−1 − uN ) = λuN−1.
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System (42), together with (15), is equivalent to system (14)–(15). Now system (42) can
be written in the matrix form

Au(1) = λu(2),

where
u(1) = (u1, u2, . . . , uS−1, uS+1, . . . , uN−1, uN )T,

u(2) = (u1, u2, . . . , uS−1, uS , . . . , uN−2, uN−1)
T.

The expression of the matrix A is written correct in [3]. Since u(1) 6= u(2), the problem
Au(1) = λu(2) is not an eigenvalue problem. Note that, neither by the method proposed
in [3], not by any other way, difference eigenvalue problem (14)–(15) cannot be written
in form (40). However, this problem (14)–(15) can be written as generalized matrix
eigenvalue problem [9, 13]

Au = λBu, (43)

where A and B are the N -order matrices. A specific feature of such a problem is that B
is a singular matrix (B−1 does not exists).

Let us write system (14)–(15) in the following way:

u0 = γ1uN , (44)

ui−1 − 2ui + ui+1 + λh2ui = 0, i = 1, . . . , N − 1, (45)

uS = γ2uN−S . (46)

In this system, we take two steps of equivalent rearrangement.
The first step: write the expression u0 from (44) into equation (45) in which i = 1.

So we obtain

− 2u1 + u2 + γ1uN + λh2u1 = 0.

The second step: subtract equation (46) from equation (45) in which i = S + 1.
Instead of equation (46), we obtain the new equation

− 2uS+1 + uS+2 + γ2uN−S + λh2uS+1 = 0.

In this way, we get a new system

−2u1 + u2 + γ1uN + λh2u1 = 0,

ui−1 − 2ui + ui+1 + λh2ui = 0, i = 2, . . . , N − 1,

−2uS+1 + uS+2 + γ2uN−S + λh2uS+1 = 0.

(47)

By adding equation (44) this system is equivalent to initial system (44)–(46). Now
system (47) can be written as generalised matrix eigenvalue problem (43), where B is
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singular matrix [16]. Next, we write expressions of N -order matrices A and B:

A =



2 −1 −γ1
−1 2 −1 0

−1 2 −1 0
. . .

−1 2 −1
0 . . . 2 −1 . . . −γ2 . . . 0 0 0


,

B = h2



1 0
1 0

1 0
. . .

1 0
0 . . . . . . 0 1 0 . . . . . . 0


.

Nonzero elements on the last row of matrix A are in columns with the numbers S+1,
S + 2, N − S. Nonzero element on the last row of matrix B is in the column with
the number S + 1. Matrix B is singular matrix, its last column consists only of zeros.
The eigenvalues of eigenvalue problem (43) are the roots of a generalized characteristic
equation

det(A− λB) = 0. (48)

Since the order of matrix A and B is N , det(A − λB) is not higher than the N -order
polynomial. It would be not right assert that the characteristic polynomial is of N -order
because that is possible only in the case when exists B−1. Equation (48) yields the
following assertion.

Corollary 12. If the spectrum of difference problem (14)–(15) is not continuous (case
γ1 = γ2 = ±1), then there exist no more than N eigenvalues.

6 Illustrative example

Let us take a concrete example: ξ = 0.25, N = 4 and γ1, γ2 are varying parameters.
By means of this rather elementary example we illustrate the substance and variety of the
spectrum of difference operator with nonlocal conditions.

So we get the following eigenvalue problem:

u0 = γ1u4, (49)

u0 − 2u1 + u2 + λh2u1 = 0, (50)

u1 − 2u2 + u3 + λh2u2 = 0, (51)

u2 − 2u3 + u4 + λh2u3 = 0, (52)
u1 = γ2u3. (53)
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We transform this eigenvalue problem into a matrix form Au = λBu in accordance
with the methodology described in Section 5. To this end, we substitute u0 from (49)
into (50), and we change equation (53) by a difference of (51) and (53). Thus, we derive

−2u1 + u2 + γ1u4 + λh2u1 = 0,

u1 − 2u2 + u3 + λh2u2 = 0,

u2 − 2u3 + u4 + λh2u3 = 0,

−2u2 + (1 + γ2)u3 + λh2u2 = 0

or, in matrix form,
−2 1 0 γ1
1 −2 1 0
0 1 −2 1
0 −2 1 + γ2 0



u1
u2
u3
u4

 = λh2


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 −1 0 0



u1
u2
u3
u4

 .

Next, we calculate the fourth-order determinant:

det(A− λB)

=
(
−2 + λh2

) ∣∣∣∣∣∣
−2 + λh2 1 0

1 −2 + λh2 1
−2 + λh2 1 + γ2 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 0 γ1
1 −2 + λh2 1

−2 + λh2 1 + γ2 0

∣∣∣∣∣∣
=
(
−2 + λh2

)(
−2 + λh2 − (1 + γ2)

(
−2 + λh2

))
−
(
γ1(1 + γ2)− γ1

(
−2 + λh2

)2 − (1 + γ2)

=
(
−2 + λh2

)2
(γ1 − γ2)− (γ1 − 1)(γ2 + 1) = 0. (54)

In the general case, we obtain the second-order characteristic polynomials. To be pre-
cise, depending on the values of γ1 and γ2, we obtain not higher than the second-order
polynomial (we remind, N = 4). Besides, note that, in the case γ1 6= γ2, we can write
equation (54) as follows: (

−2 + λh2
)2

=
γ1γ2 − 1

γ1 − γ2
+ 1

or
−2 + λh2 = ±

√
γ̃ + 1. (55)

Let us take several concrete values of γ1 and γ2.
Case 1. γ1 = γ2 = ±1. Characteristic equation (54) becomes an identity 0 = 0 for

all the values λ. Thus, the spectrum of difference operator (49)–(53) is continuous (see
Corollaries 3, 4, 6).

Case 2. γ1 = γ2 6= ±1. Characteristic equation (54) becomes as follows:

(γ1 − 1)(γ2 + 1) = 0,

what it is not true. So the spectrum of difference equation is an empty set (see Remark 2).
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Case 3. Let us choose γ1 and γ2 so that

γ̃ =
γ1γ2 − 1

γ1 − γ2
=

1− ξ
ξ

.

Since ξ = 0.25, we have (1− ξ)/ξ = 3. It follows from (55) that

− 2 + λh2 = ±2

or λ1 = 0, λ2 = 4/h2 (see Corollary 5). Note that there is an infinite set of points of
parameters γ1 and γ2 with the property γ̃ = 3.

Case 4. Let us choose γ1 and γ2 so that it were

γ̃ =
γ1γ2 − 1

γ1 − γ2
>

1− ξ
ξ

= 3.

In this case,
√
γ̃ + 1 > 2, and from (55) we derive

λ1 =
2

h2
+

√
γ̃ + 1

h2
>

4

h2
,

λ2 =
2

h2
−
√
γ̃ + 1

h2
< 0

(see Corollary 7).

Case 5. We take γ1 and γ2 such that |γ̃| 6 1. It follows from (55) that both eigenvalues

λ1,2 =
2

h2
±
√
γ̃ + 1

h2

are real (see Theorem 9). Note that the condition |γ̃| 6 1 is not necessary for eigen-
values to be real. In our particular case, the necessary and sufficient condition for both
eigenvalues to be real is γ̃ > −1.

Case 6. γ̃ < −1. It follows from (55) that both eigenvalues are complex conjugate
numbers:

λ1,2 =
2

h2
±
√
γ̃ + 1

h2
=

2± i
√
|γ̃| − 1

h2
.

7 Remarks and generalization

In this paper, the spectrum structure of differential and difference operators with nonlocal
condition has been explored. The main aim was research of the eigenvalue problem of
difference operator.

It has been proved that the spectrum structure of both differential and difference opera-
tors depends not only on the type on nonlocal conditions, but particularly on the parameter
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value under nonlocal conditions. Besides, the dependence is more clearly defined not by
the values of separate parameters γ1, γ2 and ξ, but using generalized parameter values

γ̃ =
γ1γ2 − 1

γ1 − γ2
, ξ̃ =

1− ξ
ξ

as well as interdependence of these generalized values. The conditions (equalities and
inequalities) that include these generalized parameters in the coordinates plane (γ1, γ2)
are related with a hyperbola.

By comparing the published results of the considered subject, we have to note that,
perhaps for the first time, it has been proved that the spectrum of difference operators
with nonlocal conditions can be continuous or coincident with an empty set. Namely,
if the parameters γ1, γ2 satisfy the condition γ1 = γ2 = 1 or γ1 = γ2 = −1, any
real or complex number is an eigenvalue of both the difference and differential operator.
Meanwhile, the spectrum of the difference operator as an empty set can be in case ξ = h.
In addition, the number of eigenvalues of difference operator (14)–(15) depends on the
parameters γ1, γ2 and ξ rather in a complicated way.

The eigenvalue problem of a difference operator with nonlocal conditions investigated
in our paper differs by many properties from the eigenvalue problems of a differential
operator and that of matrix.

The fact that the spectrum of a difference operator with concrete values of parameters
γ1, γ2 has some unusual properties is conditioned by form of nonlocal conditions. Without
an exhaustive examination of this issue, we refer to one typical property of nonlocal
conditions analyzed in this paper.

Boundary interval points x = 0 and x = 1 are included only in one nonlocal condi-
tion. Another nonlocal condition is defined only at interior points of the interval under
consideration. In essence, that is the main reason why the eigenvalue problem of differ-
ence operator cannot be expressed in the matrix form Au = λu with the (N − 1)-order
matrix. Note that this property is typical not only of nonlocal conditions (15). Nonlocal
conditions of different type can have such property, for example, integral conditions

1∫
0

u(x) dx = 0,

ξ2∫
ξ1

u(x) dx = 0, 0 < ξ1 < ξ2 < 1.

If we exchange nonlocal condition (3) by a more general one

u(ξ) = γ2u(η),
1

2
< η < 1,

many propositions, proved in this paper, will be correct. Taking apart, conclusions about
a continuous spectrum will be true also. Without doubt, in each concrete case of new
nonlocal condition, more exhaustive researches are necessary.

The spectrum structure of difference operators is rather important in the investigation
of stability and convergence of difference schemes as well as iterative methods for systems
of difference equations. These issues are not the research object of this article as well as
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the spectrum structure of the corresponding two-dimensional differential operators. We
left these problems for future research.

The main aim of our paper was to pay attention to some unusual properties of the
spectrum structure of difference operators with nonlocal conditions. The research we
performed allows us to make the following conclusion. The spectrum of the difference
operator with nonlocal conditions may essentially differ from the spectrum of the dif-
ferential operators or the one of the matrices. Therefore, the eigenvalue problem of the
difference operator with nonlocal conditions is worth to be self-contained object of the
investigation.
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22. O. Štikonienė, M. Sapagovas, R. Čiupaila, On iterative methods for some elliptic equations
with nonlocal conditions, Nonlinear Anal. Model. Control, 19(3):517–535, 2014.

23. Y. Wang, Solutions to nonlinear elliptic equations with a nonlocal boundary conditions,
Electron. J. Differ. Equ., 2002:1–16, 2002.

https://www.mii.vu.lt/NA

https://doi.org/10.1186/s13661-016-0690-8
https://doi.org/10.1186/s13661-016-0690-8
https://doi.org/10.1186/s13661-016-0691-7
https://doi.org/10.1186/s13661-016-0691-7

	Introduction and problem statement
	Eigenvalue problem of a differential operator
	Eigenvalue problem of a difference operator
	Complex eigenvalues
	The difference eigenvalue problem as a generalized matrix eigenvalue problem
	Illustrative example
	Remarks and generalization
	References

