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Abstract. In this paper, we study the global dynamics for the solution semiflow of a fourth-
order parabolic equation describing crystal surface growth. We show that the equation has a global
attractor in H4

per(Ω) when the initial value belongs to H1
per(Ω).
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1 Introduction

In the field of infinite-dimensional dynamical systems, one of the most important issues
is to obtain the existence of global attractors for the semigroups of solutions associated
with some concrete partial differential equations. There are many studies on the existence
of global attractors for diffusion equations. For the classical results, we refer the reader
to [2, 3, 8, 19, 20, 24] and the reference cited therein.

The model we studied here arises from the study of molecular beam epitaxy. Suppose
that F denotes the incident mass flux out of the molecular beam, the height H(x, t) of the
surface above the substrate plane satisfies a continuity equation

∂

∂t
H +∇ · Jsurface{H} = F. (1)

In general, the systematic current Jsurface depends on the whole surface configuration.
Keeping only the most important terms in a gradient expansion, subtracting the mean
height H = Fu and using appropriately rescaled units of height, distance and time [18],
Eq. (1) attains the following dimensionless form:

∂u

∂t
= −∆2u−∇ ·

[
f
(
∇u2

)
∇u
]
,
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where ∆2u describes relaxation through adatom diffusion driven by the surface free
energy [13], ∇ · [f(∇u2)∇u] models the nonequilibrium current [10], respectively. As-
suming in-plane symmetry, it follows that the nonequilibrium current is (anti)parallel to
the local tilt ∇u with a magnitude f(∇u2) depending only on the magnitude of the title.
Within a Burton–Cabrera–Frank-type theory [11], for small tilts, the current is propor-
tional to |∇u|, and the opposite limit is proportional to |∇u|−1. Hence, by the interpola-
tion formula f(s2) = 1/(1 + s2) [9, 17], we obtain the following equation:

ut = −a∆2u− µ∇ ·
(

∇u
1 + |∇u|2

)
, (x, t) ∈ Ω × R+, (2)

where a and µ are positive constants, Ω ⊂ R2 is a bounded domain, respectively.
In this paper, we study the global dynamics of solutions to Eq. (2), which describes

the crystal surface growth. We suppose that Ω = [0, L]× [0, L], where L > 0. Moreover,
on the basis of physical considerations, the equation is supplemented by the following
boundary conditions:

ϕ|xi=0 = ϕ|xi=L, i = 1, 2, (3)

for u and the derivatives of u at least of order 6 3, and the initial condition

u(x, 0) = u0(x), x ∈ Ω. (4)

Remark 1. Since the derivation procedure of (2) is attached to a two-dimensional bounded
domain Ω ⊂ R2, our study focus on the 2D case, which seems meaningful in physical.

During the past years, many authors have paid much attention to Eq. (2). For example,
Rost and Krug [17] studied the unstable epitaxy on singular surfaces using Eq. (2) with
a prescribed slope-dependent surface current. In the limit of weak desorption, Pierre-
Louis et al. [15] derived Eq. (2) for a vicinal surface growing in the step flow mode. This
limit turned out to be singular, and nonlinearities of arbitrary order need to be taken into
account. Recently, Grasselli et al. [7] showed that Eq. (2) endowed with no-flux boundary
conditions generates a dissipative dynamical system under very general assumptions on
∂Ω on a phase-space ofL2-type. They proved that the system possesses a global as well as
an exponential attractor. In [27], based on the iteration technique for regularity estimates
and the classical existence theorem of global attractors, Zhao and Liu proved the existence
of global attractor for Eq. (2) on some affine space of Hk (0 6 k < +∞) when the initial
value belongs to Hk space. Zhao et al. [26] also consider the existence and uniqueness
of time-periodic generalized solutions for Eq. (2) in 1D case. Very recently, Zhao and
Cao [25], Duan and Zhao [5] invistigated the optimal control problem for Eq. (2) in one-
dimensional and two-dimensional cases, respectively. There are also some other papers
related to the well-posedness of molecular beam epitaxy equations in RN and TN ; we
refer the reader to [6, 12] and the reference cited therein.

In this paper, we are interested in the existence of global attractors for prob-
lem (2)–(4). The outline of this paper is as follows. We begin by giving some prepa-
rations and the main results on the existence of global attractor in Section 2. Then, in
Section 3, we establish some uniform estimates. In Section 4, we prove the main result.
The conclusion of this paper is postponed in the last section.

https://www.mii.vu.lt/NA
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2 Preliminaries

The weak formulation of problem (2)–(4) is obtained by multiplying (2) by a test function
v ∈ H2

per(Ω) and using the Green formula and the boundary condition. We find

d

dt
(u, v) + a(∆u,∆v) = µ

(
∇u

1 + |∇u|2
,∇v

)
∀v ∈ H2

per(Ω). (5)

It is worth pointing out that the total mass of the solution u(x, t) is conserved. Indeed,
when we replace v by 1 in (5), we find

∂

∂t

∫
Ω

u(x, t) dx = 0,

∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx ∀t > 0.

We assume that the initial function satisfies
∫
Ω
u0(x) dx = 0, then it follows that∫

Ω
u(x, t) dx = 0 for t > 0. Set

Ḣk
per =

{
u
∣∣∣ u ∈ Hk

per(Ω),

∫
Ω

u(x, t) dx = 0

}
, k = 1, 2, . . . .

For convenience, in this section, using the same method as [7], we summarize the
result on the existence and uniqueness of global solution for problem (2)–(4).

Lemma 1. Let u0 ∈ Ḣ1
per(Ω). Then problem (2)–(4) possesses a unique global solution

u(x, t) such that

u ∈ C
(
[0,∞); Ḣ1

per(Ω)
)
∩ C1

(
(0,∞);L2(Ω)

)
∩ C
(
(0,∞); Ḣ4

per(Ω)
)
.

Remark 2. A mild solution to problem (2)–(4) can also be yielded with initial data
u0 ∈ Ḣ2

per(Ω). There are also some classical results on the mild solution to higher-order
parabolic equations in the subcritical case of the scale of Banach spaces embedding into
Lq(Ω)-spaces; we refer the reader to [4, 16] and the reference cited therein.

By virtue of Lemma 1 we define the operator semigroup

S(t)u0 : Ḣ1
per(Ω)× R+ → Ḣ1

per(Ω),

which is (Ḣ1
per, Ḣ

1
per)-continuous. In what follows, we always assume that {S(t)}t>0 is

the semigroup generated by the weak solutions of problem (2)–(4). It is sufficiently to see
that the restriction of {S(t)} on the affined space Ḣ1

per(Ω) is a well-defined semigroup.
In order to prove the existence of global attractor, we give some definitions and results.

Definition 1. (See [2, 23].) Let B be a bounded subset of H4(Ω). B is said to be
a bounded (H1, H4)-absorbing set for {S(t)}t>0 if for every bounded subset E in H1,
there exists T > 0 depending on B such that

S(t)E ⊆ B ∀t > T.

Nonlinear Anal. Model. Control, 24(2):159–175
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Definition 2. (See [2, 23].) {S(t)}t>0 is said to be (H1, H4)-asymptotically compact
if for any bounded {u0,n}∞n=1 in H1 and tn → ∞, {S(tn)u0,n}∞n=1 has a convergent
subsequence in H4(Ω).

Remark 3. The assumption that the operator S(t) is compact on a separable Banach
space for all t > 0 (semigroup of compact operators) is met by large classes of dynamical
system of physical interest. Triggiani [21, 22] pointed out that parabolic PDE defined on
bounded spatial domains represent an important subclass of dynamical systems, whose
correspondent semigroups are compact for all t > 0. In this paper, in order to let the
proof process more complete and systematic, we also give the definition and proof of
compactness for S(t)—Definition 2 and Lemma 9.

Definition 3. (See [2, 23].) Let A be a subset of H4(Ω). A is said to be an (H1, H4)-
global attractor if the following conditions are satisfied:

(i) A is compact in H4(Ω);
(ii) A is invariant, i.e. S(t)A = A for all t > 0;

(iii) A attracts every bounded subset of H1 with respect to the norm of H4(Ω), that
is, if E is bounded in H1, then

distH4

(
S(t)E,A

)
→ 0 as t→∞.

Proposition 1. (See [2,23].) LetA be an (H1, H1)-global attractor for {S(t)}t>0. Then
A is also an (H1, H4)-global attractor if and only if

(i) {S(t)}t>0 has a bounded (H1, H4)-absorbing set;
(ii) {S(t)}t>0 is (H1, H4)-asymptotically compact.

The main result of this article is given by the following theorem, which provides the
existence of global attractors of problem (2)–(4).

Theorem 1. Suppose that u0 ∈ Ḣ1
per(Ω), the coefficient a is sufficiently large, then

problem (2)–(4) has a (Ḣ1
per, Ḣ

4
per)-global attractor for the solution u(x, t), which is

invariant and compact in Ḣ4
per(Ω) and attracts every bounded subset of Ḣ1

per(Ω) with
respect to the norm topology of Ḣ4

per(Ω).

Remark 4. In [27], by using iterative principle and the properties of sectorial operator, the
authors established the existence ofHk(Ω)-global attractor for problem (2)–(4), provided
that u0 ∈ Hk

per(Ω) (k ∈ R+). Here, we only assume the initial data u0 ∈ H1
per(Ω), and

we prove that problem (2)–(4) has a global attractor in H4
per(Ω). Our assumption on the

initial data seems more relax than [27].

3 Uniform estimates of solutions

In this section, we establish the uniform estimates of solutions of problem (2)–(4) as
t→∞. These estimates are necessary to prove the existence of global attractors.

https://www.mii.vu.lt/NA
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Lemma 2. Suppose that u0 ∈ L2(Ω), then for problem (2)–(4), we have

∥∥u(t)
∥∥ 6M0 and

t+1∫
t

∥∥∆u(t)
∥∥2 dτ 6M0 ∀t > T0.

Here, M0 = M0(a) is a positive constant depending on a, T0 = T0(a,R) depends on a
and R, where ‖u0‖2 6 R2.

Proof. Multiplying Eq. (2) by u and integrating the resulting relation over Ω, we derive
that

1

2

d

dt
‖u‖2 + a‖∆u‖2 + µ

∫
Ω

|∇u|2

1 + |∇u|2
dx = 0,

which yields
d

dt
‖u‖2 + 2a‖∆u‖2 6 0. (6)

Note that
∫
Ω
u(x, t) dx = 0. By virtue of Poincaré’s inequality [20], we obtain

‖u‖2 6 C ′‖∇u‖2. (7)

Moreover, we also have

‖∇u‖2 =

∫
Ω

|∇u|2 dx = −
∫
Ω

u∆udx 6
1

2
‖u‖2 +

1

2
‖∆u‖2. (8)

Combining (7) and (8) together gives

‖u‖2 6 C1‖∆u‖2. (9)

It then follows from (6) and (9) that

d

dt
‖u‖2 + C1‖u‖2 6 0.

Applying Gronwall’s inequality [20], we deduce that

‖u‖2 6 e−C1t‖u0‖2 6 C2 ∀t > T ∗, (10)

T ∗ = (1/C1) lnC2R
2. Integrating (6) over (t, t+ 1) with t > T ∗ yields

t+1∫
t

‖∆u‖2 dτ 6 C3. (11)

Applying a mean value theorem for integrals, we obtain the existence of a time t′0 ∈
(T ∗, T ∗+ 1) such that the following estimate holds uniformly:∥∥∆u(t′0)

∥∥2 6 C4.
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Lemma 3. Suppose that u0 ∈ Ḣ1
per(Ω), then for problem (2)–(4), we have

∥∥∇u(t)
∥∥ 6M1 and

t+1∫
t

∥∥∇∆u(t)
∥∥2 dτ 6M1 ∀t > T1.

Here, M1 = M1(a) is a positive constant depending on a, T1 = T1(a,R) depends on a
and R, where ‖u0‖2H1

per
6 R2.

Proof. Multiplying Eq. (2) by−∆u and integrating the resulting relation overΩ, by using
Young’s inequality [3], we obtain

1

2

d

dt
‖∇u‖2 + a‖∇∆u‖2 6

a

2
‖∇∆u‖2 +

µ2

a

∫
Ω

|∇u|2

(1 + |∇u|2)2
dx

6
a

2
‖∇∆u‖2 +

µ2

4a
|Ω|,

which implies that
d

dt
‖∇u‖2 + a‖∇∆u‖2 6 C5. (12)

Using the Gagliardo–Nirenberg inequality [3, 14], we have

‖∇u‖2 6
(
C ′1‖∇∆u‖1/3‖u‖2/3 + C ′2‖u‖

)2
6 a‖∇∆u‖2 + C. (13)

Owning to (12) and (13), we have

d

dt
‖∇u‖2 + ‖∇u‖2 6 C6.

By using Gronwall’s inequality, we derive that

‖∇u‖2 6 e−t‖∇u0‖2 + C6 6 2C6 ∀t > T ′, (14)

T ′ = max{T ∗, ln(R2/C6)}. Integrating (12) over (t, t+ 1) with t > T ′ yields

t+1∫
t

‖∇∆u‖2 dτ 6 C7.

Using a mean value theorem for integrals, we obtain the existence of a time t0∈(T ′, T ′+1)
such that the following estimate holds uniformly:∥∥∇∆u(t0)

∥∥2 6 C8,

this complete the proof.
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Lemma 4. Suppose that u0 ∈ Ḣ1
per(Ω), then for problem (2)–(4), we have

∥∥∆u(t)
∥∥ 6M2 and

t+1∫
t

‖ut‖2 dτ 6M2 ∀t > T2.

Here, M2 = M2(a) is a positive constant depending on a, T2 = T2(a,R) depends on a
and R, where ‖u0‖2H1

per
6 R2.

Proof. Multiplying Eq. (2) by ∆2u and integrating the resulting relation over Ω, using
Hölder’s inequality, we obtain

1

2

d

dt
‖∆u‖2 + a

∥∥∆2u
∥∥2

= −µ
∫
Ω

∇ ·
(

∇u
1 + |∇u|2

)
∆2udx

6
a

4

∥∥∆2u
∥∥2 +

µ2

a

∫
Ω

[
∆u

1 + |∇u|2
− 2|∇u|2∆u

(1 + |∇u|2)2

]2
dx

6
a

2

∥∥∆2u
∥∥2 + C

∫
Ω

(
∆u

1 + |∇u|2

)2

dx+ C

∫
Ω

|∇u|4|∆u|2

(1 + |∇u|2)4
dx

6
a

2

∥∥∆2u
∥∥2 + C‖∆u‖2 + C‖∆u‖2,

that is,
d

dt
‖∆u‖2 + a

∥∥∆2u
∥∥2 6 C‖∆u‖2. (15)

Applying the Gagliardo–Nirenberg inequality, it yields

‖∆u‖2 6
(
C1‖∆2u‖1/2‖u‖1/2 + C ′2‖u‖

)2
6 ε
∥∥∆2u

∥∥2 + Cε. (16)

Letting ε small enough, combining (15) and (16) together gives

d

dt
‖∆u‖2 +

a

2
‖∆2u‖2 6 C9. (17)

Owning to (17) and (16), we derive that

d

dt
‖∆u‖2 + ‖∆u‖2 6 C10.

Applying Gronwall’s inequality, we get

‖∆u‖2 6 e−(t−t
′
0)
∥∥∆u(t′0)

∥∥2 + C10 6 C4e−(t−t
′
0) + C10 6 2C10 ∀t > T ′0, (18)

Nonlinear Anal. Model. Control, 24(2):159–175
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T ′0 = max{T0, t′0 + ln(C4/C10)}. Setting t > T0
′, taking s ∈ (t, t+ 1), integrating (17)

over (s, t+ 1), it yields ∥∥∆u(t+ 1)
∥∥2 6 C +

∥∥∆u(s)
∥∥2.

Integrating the above inequality with respect to s in (t, t+ 1), using (11), we obtain

∥∥∆u(t+ 1)
∥∥2 6 C +

t+1∫
t

∥∥∆u(s)
∥∥2 dτ 6 C11 ∀t > T ′0. (19)

Multiplying Eq. (2) by ut, integrating the resulting relation over Ω, we derive that

‖ut‖2 +
a

2

d

dt
‖∆u‖2 − µ

2

d

dt

∫
Ω

ln
(
1 + |∇u|2

)
dτ = 0. (20)

Integrating (20) over (t+ 1, t+ 2), by using (19), it yields that

t+2∫
t+1

‖ut‖2 dτ 6 C12 ∀t > T ′0.

Then, by using a mean value theorem for integrals, we obtain the existence of a time
t1 ∈ (T0

′ + 1, T0
′ + 2) such that the following estimate holds uniformly:∥∥ut(t1)

∥∥2 6 C13,

this complete the proof.

Lemma 5. Suppose that u0 ∈ Ḣ1
per(Ω), then for problem (2)–(4), we have

∥∥∇∆u(t)
∥∥ 6M3 and

t+1∫
t

∥∥∇ut(t)∥∥2 dt 6M3 ∀t > T3.

Here, M3 = M3(a) is a positive constant depending on a, T3 = T3(a,R) depends on a
and R, where ‖u0‖2H1 6 R2.

Proof. Acting the Laplace operator on (2), we obtain

∂∆u

∂t
+ a∆3u+ µ∆

[
∇ ·
(

∇u
1 + |∇u|2

)]
= 0. (21)

Equation (21) is supplemented with the boundary by the following boundary conditions:

ϕ|xi=0 = ϕ|xi=Li
, i = 1, 2,

for u and the derivatives of u at least of order > 2 and 6 5.
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Multiplying (21) by ∆2u and integrating on Ω, applying the boundary conditions, we
obtain

1

2

d

dt
‖∇∆u‖2 + a

∥∥∇∆2u
∥∥2

= −µ
∫
Ω

∆

(
∇u

1 + |∇u|2

)
∇∆2udx

6
a

2

∥∥∇∆2u
∥∥2 +

µ2

2a

∫
Ω

∣∣∣∣∆( ∇u
1 + |∇u|2

)∣∣∣∣2 dx

6
a

2

∥∥∇∆2u
∥∥2 + C

(∫
Ω

|∇∆u|2

(1 + |∇u|2)2
dx+

∫
Ω

|∇u|2|∆u|4

(1 + |∇u|2)4
dx

+

∫
Ω

|∇u|4|∇∆u|2

(1 + |∇u|2)4
dx+

∫
Ω

|∇u|6|∆u|4

(1 + |∇u|2)6
dx

)

6
a

2

∥∥∇∆2u
∥∥2 +

C14

2
‖∇∆u‖2 +

C15

2
‖∆u‖44. (22)

Using the Gagliardo–Nirenberg inequality, we deduce that

‖∆u‖44 6
(
C ′1
∥∥∇∆2u

∥∥1/6‖∆u‖5/6 + C ′2‖∆u‖
)4

6 ε
∥∥∇∆2u

∥∥2 + C16, (23)

‖∇∆u‖2 6
(
C ′1
∥∥∇∆2u

∥∥1/3‖∆u‖2/3 + C ′2‖∆u‖
)2

6 ε
∥∥∇∆2u

∥∥2 + C17. (24)

Letting ε small enough in (23) and (24), combining (22)–(24) together gives

d

dt
‖∇∆u‖2 +

a

2

∥∥∇∆2u
∥∥2 6 C18. (25)

Owning to (24) and (25), we obtain

d

dt
‖∇∆u‖2 + ‖∇∆u‖2 6 C19.

Using Gronwall’s inequality, we derive that

‖∇∆u‖2 6 e−(t−t0)
∥∥∇∆u(t0)

∥∥2 + C19 6 C8e−(t−t0) + C19

6 2C19 ∀t > T ∗1, (26)

T ∗1 = max{T2, t0 + ln(C8/C19)}. Combining (10), (14), (18) and (26) together gives

‖∇u‖∞ 6 C20, ‖∆u‖q 6 C21, 1 6 q < +∞, t > T ∗1 .

Nonlinear Anal. Model. Control, 24(2):159–175
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Setting v = ut, multiplying Eq. (21) by v, integrating the resulting relation over Ω, we
obtain

‖∇v‖2 +
a

2

d

dt
‖∇∆u‖2 = −µ

∫
Ω

∆

[
∇u

1 + |∇u|2

]
∇v dx

6
1

2
‖∇v‖2 +

µ2

2

∫
Ω

∣∣∣∣∆( ∇u
1 + |∇u|2

)∣∣∣∣2 dx

6
1

2
‖∇v‖2 + C22

(
‖∇∆u‖2 + ‖∆u‖44

)
6

1

2
‖∇v‖2 +

C23

2
,

which yields

‖∇v‖2 + a
d

dt
‖∇∆u‖2 6 C23, (27)

that is,

a
d

dt
‖∇∆u‖2 6 C23.

Letting t > T ∗1 , taking s ∈ (t, t+ 1), integrating the above inequality over (s, t+ 1), we
obtain ∥∥∇∆u(t+ 1)

∥∥2 6
1

a

(
C23 +

∥∥∇∆u(s)
∥∥2).

Integrating the above inequality with respect to s in (t, t+ 1), we have

∥∥∇∆u(t+ 1)
∥∥2 6

1

a

(
C23 +

t+1∫
t

∥∥∇∆u(s)
∥∥2 ds

)
6 C24 ∀t > T ∗1 . (28)

Integrating (27) over (t+ 1, t+ 2), using (28), we get

t+2∫
t+1

‖∇v‖2 dτ 6 C25 ∀t > T ∗1 .

Applying a mean value theorem for integrals, we obtain the existence of a time t2 ∈
(T ∗1 + 1, T ∗1 + 2) such that the following estimate holds uniformly:∥∥∇v(t2)

∥∥2 6 C26,

this complete the proof.

Lemma 6. Suppose that u0 ∈ Ḣ1
per(Ω), a is sufficiently large, then for problem (2)–(4),

we have
‖ut‖ 6M4 ∀t > T4.

Here, M4 = M4(a) is a positive constant depending on a, T4 = T4(a,R) depends on a
and R, where ‖u0‖2H1

per
6 R2.
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Proof. Differentiating (2) with respect to the time t, setting v = ut, we deduce that

vt + a∆2v + µ

[
∇ ·
(

∇u
1 + |∇u|2

)]
t

= 0. (29)

Multiplying (29) by v, integrating the resulting relation over Ω, we derive that

1

2

d

dt
‖v‖2 + a‖∆v‖2 = µ

∫
Ω

(
∇u

1 + |∇u|2

)
t

∇v dx

= µ

∫
Ω

|∇v|2

1 + |∇u|2
dx+ µ

∫
Ω

2|∇u|2|∇v|2

(1 + |∇u|2)2
dx

6
3µ

2
‖∇v‖2 6

a

2
‖∆v‖2 +

9µ2

8a
‖v‖2,

which means
d

dt
‖v‖2 + a‖∆v‖2 6

9µ2

2a
‖v‖2. (30)

Using Poincaré’s inequality two times, we have

‖v‖2 6
1

C ′
‖∆v‖2.

It follows from (30) and the above inequality that

d

dt
‖v‖2 +

(
C ′a− 9µ2

2a

)
‖v‖2 6 C27,

where a is sufficiently large, it satisfiesC ′a−9µ2/(2a) > 0. Using Gronwall’s inequality,
we derive that

‖v‖2 6 e−(C
′a−9µ2/(2a))(t−t1)

∥∥v(t1)
∥∥2 +

2aC27

2a2C ′ − 9µ2

6 C13e−(C
′a−9µ2/(2a))(t−t1) +

2aC27

2a2C ′ − 9µ2

6
4aC27

2a2C ′ − 9µ2
∀t > t1 +

2a

2a2C ′ − 9µ2
ln
C13(2a2C ′ − 9µ2)

2aC27
.

The proof is complete.

Lemma 7. Suppose that u0 ∈ Ḣ1
per(Ω), the coefficient a is sufficiently large, then for

problem (2)–(4), we have ∥∥∇vt(t)∥∥ 6M5 ∀t > T5.

Here, M5 = M5(a) is a positive constant depending on a, T5 = T5(a,R) depends on a
and R, where ‖u0‖2H1

per
6 R2.
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Proof. Multiplying (30) by ∆v, integrating the resulting relation over Ω, we obtain

1

2

d

dt
‖∇v‖2 + a‖∇∆v‖2

= µ

∫
Ω

(
∇u

1 + |∇u|2

)
t

∇∆v dx 6
a

4
‖∇∆v‖2 +

µ2

a

∫
Ω

(
∇u

1 + |∇u|2

)2

t

dx

6
a

4
‖∇∆v‖2 + C

∫
Ω

(
∇v

1 + |∇u|2

)2

dx+ C

∫
Ω

(
2|∇u|2∇v

(1 + |∇u|2)2

)2

dx

6
a

4
‖∇∆v‖2 + C‖∇v‖2. (31)

Applying the Gagliardo–Nirenberg inequality, we arrive at

‖∇v‖2 6
(
C ′1‖∇∆v‖1/3‖v‖2/3 + C ′2‖v‖

)2
6 ε‖∇∆v‖2 + C28. (32)

Letting ε small enough in (32), combining (31) and (32) together gives

d

dt
‖∇v‖2 + a‖∇∆v‖2 6 C29.

Owning to (32) and (30), we deduce that

d

dt
‖∇v‖2 + ‖∇v‖2 6 C30.

Then, by Gronwall’s inequality, we derive that

‖∇v‖2 6 e−(t−t2)
∥∥∇v(t2)

∥∥2 + C30 6 C26e−(t−t2) + C30

6 2C30 ∀t > t2 + ln
C26

C30
.

The proof is complete.

Lemma 8. Suppose that u0 ∈ Ḣ1
per(Ω), the coefficient a is sufficiently large, then for

problem (2)–(4), we have ∥∥∆2u(t)
∥∥ 6M6 ∀t > T6.

Here, M6 = M6(a) is a positive constant depending on a, T6 = T6(a,R) depends on a
and R, where ‖u0‖2H1

per
6 R2.

Proof. For Eq. (2), by Lemmas 2–7, we have∥∥∆2u
∥∥ 6

1

a

(
‖ut‖+

∥∥∥∥∇ · ( ∇u
1 + |∇u|2

)∥∥∥∥)
6

1

a

(
‖ut‖+ 2

∥∥∥∥ ∆u

1 + |∇u|2

∥∥∥∥+ 4

∥∥∥∥ |∇u|2∆u

(1 + |∇u|2)2

∥∥∥∥)
6

1

a

(
‖ut‖+ 2‖∆u‖+ ‖∆u‖

)
6 C31 ∀t > T.
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By using Sobolev’s embedding theorem [1], we arrive at

‖∆u‖∞ 6 C32.

Then, the proof is complete.

4 Proof of Theorem 1

Consider problem (2)–(4), we first show that {S(t)}t>0 has a (H1
per, H

1
per)-global at-

tractor, and then we prove that this attractor is actually an (H1
per, H

4
per)-attractor for the

solution u of problem (2)–(4) by Proposition 1.
We suppose that M1 and M6 are the constants in Lemmas 3 and 8, respectively.

Denote

B1 =
{
u ∈ Ḣ1

per: ‖∇u‖ 6M1

}
,

B2 =
{
u ∈ Ḣ4

per:
∥∥∆2u

∥∥ 6M6

}
. (33)

Using Lemmas 3 and 8, we know that B1 is a bounded (Ḣ1
per, Ḣ

1
per)-absorbing set for

{S(t)}t>0 and B2 is a bounded (Ḣ1
per, Ḣ

4
per)-absorbing set for {S(t)}t>0, respectively.

Applying the compactness of embedding Ḣ4
per ↪→ Ḣ1

per and Lemma 4, we find that
{S(t)}t>0 is (Ḣ1

per, Ḣ
1
per)-asymptotically compact. Therefore, based on the standard

attractors theory (see [8, 19, 20]), {S(t)}t>0 has a (Ḣ1
per, Ḣ

1
per)-global attractor A. In

the following, we show that A is actually an (Ḣ1
per, Ḣ

4
per)-global attractor for {S(t)}t>0.

To this end, we have to prove that {S(t)}t>0 is (H1
per, Ḣ

4
per)-asymptotically compact,

which is given by the following lemma.

Lemma 9. Suppose that u0 ∈ Ḣ1
per(Ω), the coefficient a is sufficiently large, then for

the solution u(x, t) of problem (2)–(4), the dynamical system {S(t)}t>0 is (Ḣ1
per, Ḣ

4
per)-

asymptotically compact.

Proof. Suppose that {u0,n}∞n=1 is bounded in Ḣ1
per(Ω) and tn → ∞. In the following,

we prove that {S(tn)u0,n}∞n=1 has a convergent subsequence in Ḣ4
per(Ω). Denote

un(t) = S(t)u0,n and vn(tn) =
dvn
dt

∣∣∣∣
t=tn

.

It follows from (2) that

a∆2u = −ut − µ∇ ·
(

∇u
1 + |∇u|2

)
.

Since {u0,n}∞n=1 is bounded in Ḣ1
per, there exists R > 0 such that

‖u0,n +∇u0,n‖ 6 R ∀n = 1, 2, . . . .

By Lemmas 7 and 8 there exists T > 0 such that for all t > T ,∥∥∥∥dun
dt

∥∥∥∥
H1

per

6M5, ‖un‖H4
per

6M6 ∀n = 1, 2, . . . , (34)
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where M5 and M6 are positive constants in Section 2, respectively. Since tn →∞, there
exists N > 0 such that tn > T for all n > N . Therefore, owning to (34), we arrive at∥∥vn(tn)

∥∥
H1

per
6M5,

∥∥un(tn)
∥∥
H4

per
6M6 ∀n > N. (35)

On the basis of the compactness of embedding H1 ↪→ H and H4 ↪→ H2, we find
from (34) that there exist v ∈ Ḣ1

per(Ω), ∆u ∈ Ḣ2
per(Ω), ∇u ∈ Ḣ3

per(Ω) and u ∈
Ḣ4

per(Ω) such that, up to a subsequence,

vn(tn)→ v strongly in H,

∆un(tn)→ ∆u strongly in Ḣ1
per,

(36)
∇un(tn)→ ∇u strongly in Ḣ2

per,

un(tn)→ u strongly in Ḣ3
per.

Hence, it follows from (35) and Sobolev’s embedding theorem [1] that∥∥un(tn)
∥∥
W 2,∞ 6 C ∀n > N.

Owning to (34) and (36), we derive that∥∥un(tn)− u
∥∥→ 0,

∥∥vn(tn)− v
∥∥2 → 0,

∥∥∆un(tn)−∆u
∥∥2 → 0,

and ∥∥∥∥∇ · ( ∇un(tn)

1 + |∇un(tn)|2

)
−∇ ·

(
∇u

1 + |∇u|2

)∥∥∥∥
6 C

∥∥∥∥ ∆un(tn)

1 + |∇un(tn)|2
− ∆u

1 + |∇un(tn)|2
+

∆u

1 + |∇un(tn)|2
− ∆u

1 + |∇u|2

∥∥∥∥
+ C

∥∥∥∥ |∇un(tn)|2

(1 + |∇un(tn)|2)2
(
∆un(tn)−∆u

)
+ ∆u

(
|∇un(tn)|2

(1 + |∇un(tn)|2)2
− |∇u|2

(1 + |∇u|2)2

)∥∥∥∥.
A simple calculation shows that∥∥∥∥∇ · ( ∇un(tn)

1 + |∇un(tn)|2

)
−∇ ·

(
∇u

1 + |∇u|2

)∥∥∥∥
6 C

(∥∥∥∥ 1

1 + |∇un(tn)|2

∥∥∥∥
∞

∥∥∆un(tn)−∆u
∥∥

+ ‖∆u‖∞
∥∥∥∥ 2∇ψ∆ψ

(1 + |∇ψ|2)2

∥∥∥∥
∞

∥∥∇un(tn)−∇u
∥∥
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+

∥∥∥∥ |∇un(tn)|2

(1 + |∇un(tn)|2)2

∥∥∥∥
∞

∥∥∆un(tn)−∆u
∥∥

+ ‖∆u‖∞
∥∥∥∥ 2∇κ∆κ

(1 + |∇κ|2)2
− 4∇κ3∆κ

(1 + |∇κ|2)3

∥∥∥∥
∞

∥∥∇un(tn)−∇u
∥∥)

6 C
(∥∥∆un(tn)−∆u

∥∥+
∥∥∇un(tn)−∇u

∥∥)→ 0,

where ψ = θ1un(tn) + (1− θ1)u, κ = θ2un(tn) + (1− θ2)u, θ1, θ2 ∈ (0, 1). Therefore,

a∆2un(tn)→ −ut − µ∇ ·
(

∇u
1 + |∇u|2

)
strongly in H,

that is, {un(tn)}∞n=1 converges to (1/a)∆−2[−ut−µ∇· (∇u/(1+ |∇u|2))] in Ḣ4
per(Ω),

this complete the proof.

Now we give the proof of the main result.

Proof of Theorem 1. Note that {S(t)}t>0 has a (Ḣ1
per, Ḣ

1
per)-global attractor A as men-

tioned above. By Lemma 8, the bounded set B2 given by (33) is a bounded (Ḣ1
per, Ḣ

4
per)-

absorbing set for {S(t)}t>0. In addition, Lemma 9 shows that {S(t)}t>0 is (Ḣ1
per, Ḣ

4
per)-

asymptotically compact. Then, by Proposition 1, A is actually an (Ḣ1
per, Ḣ

4
per)-global

attractor for {S(t)}t>0. The proof is complete.

5 Conclusion

The dynamic properties of diffusion equation and diffusion system such as the global
asymptotical behaviors of solutions and global attractors are important for the study of
diffusion model. In this paper, we show that problem (2)–(4), which models the crystal
surface growth, has a H4

per-global attractor provided that the initial data u0 ∈ H1
per(Ω).

The results on the existence of global attractor have an analytical complexity slightly
about what material scientists normally encounter, then potentially making the analysis
more difficult to interpret for a non-mathematician. We also believe that our approach
is more satisfying than multiple numerical simulations because with computed solutions
there is always the question of whether all interesting states of the system have been
detected.

Acknowledgment. We would like to thank the referees for the valuable comments and
suggestions about this paper.
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