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Abstract. In this manuscript, we introduce a spectral technique for approximating the variable-
order fractional Riccati differential equation (VOFRDE). Firstly, the solution and its space fractional
derivatives is expanded as shifted Chebyshev polynomials series. Then we determine the expansion
coefficients by reducing the VOFRDEs and its conditions to a system of algebraic equations. We
show the accuracy and applicability of our numerical approach through four numerical examples.
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1 Introduction

Fractional differential equations [14, 31] are presented as powerful mathematical tools
for factual and more accurate description of different phenomena. They appear in vari-
ous areas, including mathematical chemistry [19, 23], viscoelasticity [30], biology [27],
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physics [20]. As the increasing of employing fractional differential equations [18, 21, 24,
29, 32, 33, 35, 38, 41] in several fields, the great defy we face is getting the solutions for
them. Regrettably, the largest part of the fractional differential equations have no exact
solutions. The author in [18,32,33,35] have a great effort in fractional differential equation
and variable-order fractional differential equation (VOFDE). VOFDE may be considered
as a straightforward development of the classical fractional differential equation. Thus,
the studies related to them have received considerable attention in more recently years.

In the last few years, a variety of numerical methods has been investigated and devel-
oped for solving VOFDEs. The author in [36] solved variable-order fractional integral-
differential equation by using Chebyshev polynomials. Chen et al. [15] derived a solution
for the variable-order linear cable equation using Bernstein polynomials, while Bhrawy
and Zaky [12] used the collocation method for solving the two-dimensional variable-
order nonlinear cable equation. The author in [34, 37] solved variable-order fractional
differential equations. Machado and Moghaddam solved variable-order fractional control
systems and distributed order in [25, 26], and the author in [22, 28] solved variable-order
fractional functional integral and fractional integro-differential equations.

In this paper, we will consider the following nonlinear VOFRDEs type:

Dλ(z)F (z) + η(z)F (z) + δ(z)F 2(z) = g(z),

uk(0) = dk, k = 0, . . . ,m− 1,

where Dλ(z) denotes the variable-order Riemann–Liouville fractional (RLF) derivative,
η(z), δ(z), and g(z) are given real functions.

Several numerical techniques are presented to solve the fractional differential equa-
tion. On the top of this list, the spectral methods [2–5, 7, 10, 11, 39] have been improved
recently. Spectral methods are exceedingly used to construct numerical algorithms for
solving fractional differential equations [1, 13, 16, 17, 40, 42]. In the spectral methods,
the numerical solution is approximated as a truncated sum of assured basis functions.
Then we choose the coefficients such that the error is minimized. For spectral collocation
method [6,8,9], the approximate solution is compelled to satisfy the discussed problem as
possible. In other words, the residuals is letting to be zero at confirmed collocation points.

In the present paper, we extend the shifted Chebyshev–Gauss-collocation (SCGC)
method and RLF derivative to solve the VOFRDEs. Numerical solution of such equation
is putted as a truncated series of basis functions of shifted Chebyshev polynomials. We
reduce such problems into those consisting of systems of algebraic equations. Thus, these
equations together with the given conditions give usN+1 algebraic equations, which can
be easily solved. We apply this technique to numerically solve several examples to prove
efficient and accurate method.

The paper is organized as follows. We list some mathematical fundamentals in Sec-
tion 2. In Section 3, we suggest novel numerical techniques to solve the VOFRDEs with
initial conditions. Section 4 execute the suggested method on some examples to offer its
accuracy, activity, and competence. Finally, in Section 5 conclusions are outlined.
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2 Preliminaries and notations

2.1 Basic tools

The definition of fractional integration of order λ > 0 can be expressed by several
formulas, and in general, they are not equal to each other. The most used definitions
are Caputo and Riemann–Liouville definitions.

Definition 1. RLF integral Jλ is defined as

JλF (z) =

{
1

Γ(λ)

∫ z
0

(z − ξ)λ−1F (ξ) dξ, λ > 0, z > 0,

F (z), λ = 0,

where

Γ(λ) =

∞∫
0

zλ−1e−z dz.

The properties of operator Jλ:

JλJµF (z) = Jλ+µF (z), JλJµF (z) = JµJλF (z),

Jλzk =
Γ(k + 1)

Γ(k + 1 + λ)
zk+λ.

Definition 2. RLF derivative Dγ of order γ is defined by

DλF (z) =
1

Γ(m− λ)

dm

dzm

( z∫
0

(z − ξ)m−λ−1
F (ξ) dξ

)
, (1)

where m− 1 < λ 6 m, z > 0, m is the ceiling function of λ.

Definition 3. RLF integral operator of variable order λ(z) is defined by

Iλ(z)F (z) =
1

Γ(λ(z))

z∫
0

(z − ξ)λ(z)−1F (ξ) dξ. (2)

Definition 4. RLF derivative of variable order λ(z) is defined by

Dλ(z)F (z) =
1

Γ(m− λ(z))

dm

dzm

z∫
0

(z − ξ)m−λ(z)−1
F (z) dz, (3)

where m− 1 < λ(z) 6 m, z > 0.

Remark 1. Zhuang et al. and Bhrawy et al. in [13, 42] stated the variable-order RLF
derivative in the form

Dλ(z)F (z) =

[
1

Γ(m− λ(z))

dm

dτm

τ∫
0

(τ − ξ)m−λ(τ)−1F (τ) dτ

]
τ=z

.
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2.2 The properties of shifted Chebyshev polynomials

The well-known Chebyshev polynomials are defined on the interval (−1, 1) by the fol-
lowing recurrence formula:

Tk+1(z) = 3xTk(z)− Tk−1(z), k = 1, . . . ,

where T0(z) = 1 and T1(z) = z. In order to use these polynomials on the interval
z ∈ (0, L), we defined shifted Chebyshev polynomials by introducing the change of
variable z = 2z/L− 1. Let shifted Chebyshev polynomials Tk(2z/L− 1) be denoted by
TL,k(z). Then TL,k(z) can be generated by using the following recurrence relation:

TL,j+1(z) = 2

(
2z

L
− 1

)
TL,i(z)− TL,j−1(z), i = 1, . . . ,

where TL,0(z) = 1 and TL,1(z) = 2z/L − 1. The analytic form of shifted Chebyshev
polynomials TL,i(z) of degree i is given by

TL,i(z) = i

i∑
k=0

(−1)i−k
(i+ k − 1)!22k

(i− k)!(2k)!Lk
zk,

where TL,i(0) = (−1)i and TL,i(L) = 1. The orthogonality condition is

L∫
0

TL,j(z)TL,k(z)wL(z) dz = δjkhk,

where wL(z) = 1/
√
Lz − z2 and hk = ckπ/2 with c0 = 2, ci = 1, i > 1. Any

function u(z), square integrable in (0, L), may be expressed in terms of shifted Chebyshev
polynomials as

u(z) =

∞∑
j=0

ajTL,j(z),

where the coefficients aj are given by

aj =
1

hj

L∫
0

u(z)TL,j(z)wL(z) dz, j = 0, . . . .

In practice, only the first (N + 1)-terms shifted Chebyshev polynomials are considered.
Hence we can write

uN (z) =

N∑
j=0

ajTL,j(z).

The special values

T qL,i(0) = (−1)(i−q) i(i+ q − 1)!

Γ(q + 1
2 )(i− q)!Lq

√
π, q 6 i.
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3 Nonlinear VOFRDEs

In this section, we introduce a numerical algorithm based on the SCGC method for solving
nonlinear VOFRDE

Dλ(z)F (z) + η(z)F (z) + δ(z)F 2(z) = G(z) (4)

with the initial condition

uk(0) = dk, k = 0, . . . ,m− 1, (5)

where λ(z) is variable-order fractional derivative, F (z) is unknown function, and η(z),
δ(z), G(z) are known functions.

Define FApprox(z) as an approximate solution of (4)

FApprox(z) =

N∑
k=0

ekTL,k(z), (6)

the VOFD Dλ(z) of the approximate solution FApprox(z) is then estimated as

Dλ(z)FApprox(z) =

N∑
k=0

ekD
λ(z)
(
TL,k(z)

)
.

The RLF derivative of variable-order λ(z) is given by

Dλ(z)zk =
1

Γ(1− λ(z))
∂

( z∫
0

χk

(z − χ)λ(z)
dχ

)
=
zk−λ(z)Γ(1 + k)

Γ(1 + k − λ(z))
.

Thus

Dλ(z)TL,j(z) = ΛL,j(z) =

j∑
k=0

(−1)j−kΓ(j + k + 1)

Γ(k + 1)(j − k)! k!Lk
Dλ(z)zk

=

j∑
k=dλ(z)e

(−1)i−k Γ(1 + λk)Γ(j + k + 1)

Γ(k + 1)(j − k)!k!Γ(λk − λ(z) + 1)Lk
zk−λ(z).

Accordingly,

Dλ(z)FApprox(z) =

N∑
j=0

ejD
λ(z)
(
TL,j(z)

)
=

N∑
j=0

ej∆L,j(z). (7)

Then

F 2
Approx(z) =

(
N∑
k=0

ekTL,k(z)

)2

. (8)
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By using Eqs. (7) and (8) we can rewrite Eq. (4) as

N∑
j=0

ej∆L,j(z) + η(z)

N∑
k=0

ekTL,k(z) + δ(z)

(
N∑
k=0

ekTL,k(z)

)2

= G(z). (9)

By using SCGC method the residual of (9) is set to zero at N −m+ 1 of the SCG points.
Employing (6)–(9), then we write (4) in the following form:

N∑
j=0

ej∆L,j(zL,N,i) + η(zL,N,i)

N∑
k=0

ekTL,k(zL,N,i) + δ(zL,N,i)

(
N∑
k=0

ekTL,k(zL,N,i)

)2

= G(zL,N,i), i = 1, . . . , N −m+ 1.

We can rewrite the previous equation

N∑
j=0

ej
[
∆L,j + η(zL,N,i)TL,k

]
(zL,N,i) + δ(zL,N,i)

(
N∑
k=0

ekTL,k(zL,N,i)

)2

= G(zL,N,i), i = 1, . . . , N.

Then
N∑
j=0

ejΘL,j(zL,N,i) + δ(zL,N,i)

(
N∑
k=0

ekTL,k(zL,N,i)

)2

= G(zL,N,i), i = 1, . . . , N, (10)

where ΘL,j = [∆L,j + η(zL,N,i)TL,k]. Combining Eqs. (5) and (6), we obtain

N∑
j=0

aj
(
TL,j

)(k)
(0) = dk, k = 0, . . . ,m− 1. (11)

Finally, from Eqs. (10) and (11) we obtain a system of algebraic equations, which can be
easily solved for the unknown coefficients.

4 Numerical results

In this section, we report numerical results of four examples using the proposed algorithm
in the previous sections. Also, we compare our results with another methods. We conclude
that our method is very convenient and effective. The difference between the value of
approximate solution and exact solution is called the absolute error (AE) given by

E(z) =
∣∣F (z)− FApprox(z)

∣∣,
where F (z) and FApprox(z) are the exact and the approximate solutions at the point (z),
furthermore, the maximum absolute error (MAE) is given by

MAE = max
{
E(z): z ∈ [0, 1]

}
.
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Example 1. We start with the nonlinear VOFRDE as

Dλ(z)F (z) + F 2(z) = g(z), z ∈ [0, 1],

F (0) = 0,

where

λ(z) = sin z, g(z) = z2 + z4 +
2z2−sin z

Γ(3− sin z)
,

keeping in mind that the exact solution is F (z) = z2. We list the AEs of Example 1 in
Table 1 with various value ofN and z in order to test the convergence rate of the suggested
method. The results show that, we have a numerical solution of preferable accuracy with
far fewer nodes. Figure 1 shows the numerical solution of AE curve. In Fig. 2, we can
observe that our numerical solutions coincide closely with the exact ones.

Taking N = 9, we get the numerical solution of Example 1

FApprox(z) = 0− 9.99201 · 10−16z + z2 − 2.55258 · 10−13z3

+ 1.38088 · 10−12z4 − 4.1684 · 10−12z5

+ 7.34872 · 10−12z6 − 7.51191 · 10−12z7

+ 4.12301 · 10−12z8 − 9.39602 · 10−13z9.

Table 1. Numerical result of AEs for Example 1 with
difference of N and z.

z New method at
N = 4 N = 7 N = 9

0 0 0 0
0.2 1.39 · 10−16 1.17 · 10−16 1.25 · 10−16

0.4 0 1.39 · 10−17 0
0.6 0 0 0
0.8 5.55 · 10−17 5.55 · 10−17 5.55 · 10−17

1.0 0 0 0

Figure 1. The AE using SCGC method with
versus z in Example 1 for N = 9 and λ(z) =
sin z.

Figure 2. Graph of exact solution F (z) and
approximate solution FApprox(z) of Example 1
for N = 9.
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Example 2. Consider the nonlinear VOFRDE

Dλ(z)F (z) + F (z) + F 2(z) = g(z), z ∈ [0, 1],

F (0) = 0,

where
λ(z) = z sin z,

g(z) = 1 +
(
−2 + 2λ(z)

)
e2z + e4z − 2λ(z)e2zΓ(1− λ(z), 2z)

Γ(1− λ(z))
,

keeping in mind that the exact solution is F (z) = e2z − 1. Based on the ME acquired by
our method, we summarized some numerical results in Table 2 with different choice of
z and N . The results reveal the effectiveness, appropriateness, and high accuracy of our
method. The graph of the AEs of Example 2 is showed in Fig. 3. Also, we can observe
that our numerical solutions coincide closely with the exact ones; see Fig. 4. Moreover,
we sketched in Fig. 5 the logarithmic graphs of ME (i.e., log10ME) obtained by the
present method with different values of N .

Taking N = 12, we get the numerical solution of Example 2 in the form

FApprox(z) = 0 + 2z + 2z2 + 1.33333z3 + 0.666667z4 + 0.266664z5

+ 0.0888994z6 + 0.025365z7 + 0.00641413z8 + 0.0013211z9

+ 0.000364559z10 + 4.18184 · 10−6z11 + 0.0000230205z12.

Table 2. The results obtained by SCGC method for Example 2 at difference of N
.

z New method at
N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

0.2 7.32 · 10−2 2.96 · 10−4 4.12 · 10−6 1.45 · 10−8 1.49 · 10−11 6.83 · 10−14

0.4 7.94 · 10−4 3.97 · 10−4 4.53 · 10−6 2.06 · 10−8 5.07 · 10−11 7.41 · 10−14

0.6 9.84 · 10−2 1.29 · 10−3 6, 78 · 10−6 1.67 · 10−8 1.52 · 10−11 1.73 · 10−14

0.8 4.68 · 10−2 1.47 · 10−3 9.58 · 10−6 9.99 · 10−9 9.18 · 10−11 5.33 · 10−14

1.0 4.20 · 10−1 5.98 · 10−3 3.51 · 10−5 1.14 · 10−7 2.43 · 10−10 3.71 · 10−13

Figure 3. The AE using SCGC method with
versus z in Example 2 for λ(z) = z sin z and
N = 12.

Figure 4. Graph of exact solution F (z) and
approximate solution FApprox(z) of Example 2
for N = 12.

Nonlinear Anal. Model. Control, 24(2):176–188
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Figure 5. ME convergence for Example 2 with various choices of N .

Table 3. The Maximum absolute errors for Example 2 with various choices of N
.

N 2 4 6 8 10 12

MAE 4.2 · 10−1 5.98 · 10−3 3.51 · 10−4 1.14 · 10−7 2.43 · 10−10 3.71 · 10−13

Example 3. Here, we test the following VOFRDE:

Dλ(z)F (z) +D2F (z) + F (z) = g(z), z ∈ [0, 1],

F (0) = 1, F ′(0) = 1,

where

λ(z) = ez, g(z) = 1 + z +
z−λ(z)(1 + z − λ(z))

Γ(2− λ(z))
,

keeping in mind that the exact solution is F (z) = z+ 1. Applying the method mentioned
in Section 3 with different choice of N , we obtain results given in Table 4. The curve of
the AE of Example 3 for N = 10 is displayed in Fig. 6.

Taking N = 10, we get the numerical solution of Example 3 in the form

FApprox(z) = 1 + z − 2.82369 · 10−15z2 − 1.77001 · 10−14z3

+ 1.02814 · 10−13z4 − 3.34339 · 10−13z5

+ 6.8861 · 10−13z6 − 8.86254 · 10−13z7

+ 6.88274 · 10−13z8 − 2.95128 · 10−13z9

+ 5.37018 · 10−14z10.

Table 4. Numerical solution of AEs for Example 3 with N = 8, 10

.

z New method at New method at
N = 8 N = 10 z N = 8 N = 10

0 5.55 · 10−17 1.67 · 10−16 0.6 9.44 · 10−15 3.11 · 10−15

0.1 2.08 · 10−15 5.55 · 10−16 0.7 1.07 · 10−14 3.50 · 10−15

0.2 3.91 · 10−15 1.17 · 10−15 0.8 1.18 · 10−14 3.89 · 10−15

0.3 5.53 · 10−15 1.78 · 10−15 0.9 1.28 · 10−14 4.33 · 10−15

0.4 6.94 · 10−15 2.30 · 10−15 1.0 1.38 · 10−14 4.55 · 10−15

0.5 8.27 · 10−15 2.72 · 10−15
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Figure 6. The AE using SCGC method with versus z in Example 3 for N = 10 and λ(z) = ez .

Example 4. Finally, we consider the nonlinear VOFRDE [29]

Dλ(z)F (z) + F (z) +
√
zF 2(z) = g(z), z ∈ [0, 1],

F (0) = 0,

where
λ(z) = z cos z,

g(z) = xq
(
−1− x1/2+q +

x−λ(z)Γ(1 + q)

Γ(1 + q − λ(z))

)
,

keeping in mind that the exact solution is F (z) = zq . We compare our method with that
proposed in [29]. For various values of q, the MAE at difference N are listed in Table 5.
For all choices of N and q, our method is more accurate than the method in [29]. The
graph of the AEs of Example 4 is showed in Fig. 7. Moreover, we sketched in Fig. 8 the
logarithmic graphs of ME (i.e., log10ME) obtained by the present method with different
values of N .

Table 5. Comparison of the MAE with the other method Example 4 with various choices of N and q

N Chebyshev bases [29] New method Chebyshev bases [29] New method
q = 1.2 q = 1.4

5 5.28 · 10−2 4.17 · 10−2 3.53 · 10−2 2.56 · 10−2

8 8.06 · 10−3 7.33 · 10−3 4.46 · 10−3 3.99 · 10−3

11 2.68 · 10−3 2.28 · 10−3 1.29 · 10−3 1.10 · 10−3

14 1.17 · 10−3 9.32 · 10−4 5.11 · 10−4 4.14 · 10−4

17 6.01 · 10−4 4.40 · 10−4 2.43 · 10−4 1.80 · 10−4

20 3.44 · 10−4 2.37 · 10−4 1.31 · 10−4 9.21 · 10−5

N Chebyshev bases [29] New method Chebyshev bases [29] New method
q = 1.2 q = 1.4

5 1.57 · 10−2 1.12 · 10−2 4.68 · 10−3 3.41 · 10−3

8 1.66 · 10−3 1.52 · 10−3 4.07 · 10−4 4.0 · 10−4

11 4.21 · 10−4 3.72 · 10−4 9.01 · 10−5 8.57 · 10−5

14 1.49 · 10−4 1.29 · 10−4 2.91 · 10−5 2.74 · 10−5

17 6.57 · 10−5 5.18 · 10−5 1.17 · 10−5 1.01 · 10−5

20 3.29 · 10−5 2.51 · 10−5 5.51 · 10−6 4.68 · 10−6

Nonlinear Anal. Model. Control, 24(2):176–188
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Figure 7. The AE using SCGC method with
versus z in Example 4 for N = 20 and λ(z) =
z cos z.

Figure 8. ME convergence for Example 4 with
various choices of N .

5 Conclusion

Our main goal is to provide and improve spectral algorithms to solve VOFRDEs, and it
is acquired by means of the SJGC method. The novel algorithms are based upon decrease
the aforementioned problems into a system of algebraic equations. We listed illustra-
tive examples to examine the legality and applicability of the current algorithms. The
given comparisons demonstrated the effectiveness and accuracy of the spectral collection
method.
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18. A. Dzieliński, D. Sierociuk, G. Sarwas, Some applications of fractional order calculus, Bull.
Pol. Acad. Sci., Tech. Sci., 58(4):583–592, 2010.

19. M. Giona, H.E. Roman, Fractional diffusion equation for transport phenomena in random
media, Physica A, 185(1-4):87–97, 1992.

20. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore,
2000.

21. B.S.H. Kashkari, M.I Syam, Fractional-order Legendre operational matrix of fractional
integration for solving the Riccati equation with fractional order, Appl. Math. Comput., 290:
281–291, 2016.

22. F.K. Keshi, B.P. Moghaddam, A. Aghili, A numerical approach for solving a class of variable-
order fractional functional integral equations, Comput. Appl. Math., 37(4):4821–4834, 2018.

23. J.W. Kirchner, X. Feng, C. Neal, Fractal stream chemistry and its implications for contaminant
transport in catchments, Nature, 403(6769):524, 2000.

24. Y. Li, N. Sun, B. Zheng, Q. Wang, Y. Zhang, Wavelet operational matrix method for solving the
Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., 19(3):483–493, 2014.

25. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators, Nonlinear
Dyn., 29(1–4):57–98, 2002.

Nonlinear Anal. Model. Control, 24(2):176–188



188 E.H. Doha et al.

26. J.A.T. Machado, B.P. Moghaddam, A robust algorithm for nonlinear variable-order fractional
control systems with delay, Int. J. Nonlinear Sci. Numer. Simul., 19(3–4):231–238, 2018.

27. R.L. Magin, Fractional Calculus in Bioengineering, Begell House, Danbury, CT, 2006.

28. B.P. Moghaddam, J.A.T. Machado, A computational approach for the solution of a class of
variable-order fractional integro-differential equations with weakly singular kernels, Fract.
Calc. Appl. Anal., 20(4):1023–1042, 2017.

29. P. Mokhtary, F. Ghoreishi, Convergence analysis of spectral tau method for fractional Riccati
differential equations, Bull. Iran. Math. Soc., 40(5):1275–1290, 2014.

30. I. Podlubny, Fractional Differential Equations. Vol. 198: An Introduction to Fractional De-
rivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their
Applications, Elsevier, 1998.

31. M.G. Sakar, A. Akgül, D. Baleanu, On solutions of fractional Riccati differential equations,
Adv. Difference Equ., 2017(1):39, 2017.

32. S.G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21(3):
213–236, 1995.

33. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integral
Transforms Spec. Funct., 1(4):277–300, 1993.

34. D. Sierociuk, W. Malesza, M. Macias, Numerical schemes for initialized constant and variable
fractional-order derivatives: Matrix approach and its analog verification, J. Vib. Control, 22(8):
2032–2044, 2016.

35. D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, P. Ziubinski,
Diffusion process modeling by using fractional-order models, Appl. Math. Comput., 257:
2–11, 2015.

36. K. Sun, M. Zhu, Numerical algorithm to solve a class of variable order fractional integral-
differential equation based on Chebyshev polynomials, Math. Probl. Eng., 2015, 2015.

37. S. Yaghoobi, B.P. Moghaddam, K. Ivaz, An efficient cubic spline approximation for variable-
order fractional differential equations with time delay, Nonlinear Dyn., 87(2):815–826, 2017.
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