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Abstract. In this paper, we mainly consider a control system governed by a Hilfer fractional
evolution hemivariational inequality with a nonlocal initial condition. We first establish sufficient
conditions for the existence of mild solutions to the addressed control system via properties of
generalized Clarke subdifferential and a fixed point theorem for condensing multivalued maps.
Then we present the existence of optimal state-control pairs of the limited Lagrange optimal
systems governed by a Hilfer fractional evolution hemivariational inequality with a nonlocal initial
condition. The optimal control results are derived without uniqueness of solutions for the control
system.

Keywords: Hilfer fractional evolution equation, optimal state-control pairs, hemivariational
inequalities, nonlocal initial condition.

1 Introduction

As a generalization of the ordinary differentiation and integration to arbitrary noninte-
ger order, fractional calculus has been recognized as one of the most powerful tools
to describe long-memory processes in the last decades. Many phenomena from vis-
coelasticity, electrochemistry, nonlinear oscillation in mechanics et al. can be modelled
by ordinary and partial differential equations involving fractional derivatives; see, for
instance, [1, 2, 5, 7, 8, 15, 24, 28, 29] and references therein. In [13], Hilfer proposed the
Hilfer fractional derivative, which covers Riemann–Liouville fractional derivative and
Caputo fractional derivative as special cases and appears in theoretical simulation of
dielectric relaxation in glass forming materials. In [11], Gu and Trujillo studied existence
of mild solutions to an evolution equation with Hilfer fractional derivative. In [12], Harrat
et al. investigated solvability and optimal controls of impulsive Hilfer fractional delay
evolution inclusions with Clarke subdifferential. As indicated in [9], the nonlocal initial
condition can be more natural and more precise in describing some phenomena than the
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classical initial condition since some additional information is taken into account. There
are some interesting results involved in nonlocal initial conditions for Hilfer fractional
evolution equations. For example, in [26], Yang and Wang investigated approximate
controllability of a Hilfer fractional differential inclusion with nonlocal initial conditions.
In [27], Yang and Wang considered existence of mild solutions for a Hilfer fractional
differential equation with nonlocal initial conditions.

The optimal control is one of the important and fundamental topics in the field of
mathematical control theory, which plays a key role in control systems [17]. In recent
years, solvability and optimal control governed by fractional evolution equations has
attracted great interest. For instance, the existence and optimal control for semilinear
Caputo fractional finite time delay evolution systems of the order (0, 1) was concerned
in [28, Chapter 4]. Agarwal et al. investigated a survey on fuzzy fractional differential
and optimal control nonlocal evolution equations in [3]. Kumar considered the existence
of optimal control for the system governed by semilinear Caputo fractional evolution
equation of order (0, 1) with fixed delay in [16]. Liu and Wang in [18] dealt with optimal
controls of systems governed by semilinear Caputo fractional differential equations of
order (0, 1) with not instantaneous impulses. Yan and Jia in [25] discussed optimal con-
trols for Caputo fractional impulsive neutral stochastic integro-differential equations of
order (1, 2). On the other hand, hemivariational inequality finds its important applications
to models in mechanics with nonsmooth and nonconvex energy superpotentials [22].
Much attention has been paid to fractional evolution hemivariational inequalities recently.
For example, Lu and Liu [19] studied the existence and controllability for a stochastic
evolution hemivariational inequality in Caputo fractional derivative of order (0, 1). Lu,
Liu et al. [20] investigated solvability and optimal controls for a semilinear fractional
evolution hemivariational inequality in Caputo sense of order (0, 1).

Motivated by above mentioned work, the main objective of this paper is to consider
the following Hilfer fractional evolution hemivariational inequality with a nonlocal initial
condition:〈

−Dβ,γ
0+ x(t) +Ax(t) + B(t)u(t), d

〉
X

+ F0
(
t, x(t); d

)
> 0 ∀d ∈ X,

J
(1−β)(1−γ)
0+

[
x(t)

]
t=0

+ g(x) = x0,
(1)

where Dβ,γ
0+ denotes the Hilfer fractional derivative, t ∈ I ′ := (0, b], β ∈ [0, 1], γ ∈

(0, 1), 〈·, ·〉 denotes the inner product (induced by the duality paring) of a separable
reflexible Banach space X . The notation F0(t, ·; ·) represents the generalized (Clarke)
directional derivative of a locally Lipschitz function F(t, ·) : X → R. The state x takes
values in the separable reflexible Banach space X . The control u takes its value from
a separable reflexive Banach Y , and is given in a suitable admissible control set Uad.
The operator B : I → B(Y,X), where B(Y,X) denotes the space of all bounded linear
operators from Y into X . The operator A is the infinitesimal generator of a strongly
continuous semigroup of a bounded linear operator family {S(t)}t>0 on Banach spaceX .
Let I = [0, b], the function g : C(I,X)→ X is continuous and compact.

In this paper, we shall establish sufficient conditions for the existence of mild solu-
tions to system (1) and present the existence of optimal state-control pairs of the limited
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Lagrange optimal systems governed by system (1). We note that the solvability for sys-
tem (1) has a relation to a suitable fractional evolution inclusion with a nonlocal initial
condition here. Thus the uniqueness of solutions to system (1) cannot be guaranteed by
the usual condition (see condition (C3), Section 3). We shall establish optimal control
results based upon the compactness result of a certain operator (see Lemma 9, Section 4).

The rest of this paper is organized as follows. Section 2 is preliminaries. Section 3
is devoted to solvability for system (1). Section 4 is involved in the existence of opti-
mal state-control pairs of the limited Lagrange optimal control problems governed by
system (1).

2 Preliminaries

In this section, we introduce some notations, definitions, and lemmas on fractional cal-
culus, multivalued analysis and the generalized directional derivative. We can refer to
[2, 6, 10, 13–15, 21, 28, 29] for detailed results and topics.

Denote by B(X) the space of all bounded linear operators from X into itself. Let
C(I,X), C(I ′, X) denote the spaces of all continuous functions from I or I ′ to X ,
respectively. Denote ν = β + γ − βγ, then 1− ν = (1− β)(1− γ). Define C(I,X) :=
{x: t1−νx(t) ∈ C(I,X)} with the norm given by

‖x‖ν = sup
{
t1−ν

∥∥x(t)
∥∥, ν = β + γ − βγ, t ∈ I ′

}
.

Thus, C(I,X) is a Banach space. Let Lp(I,X) (1 6 p < +∞) be the Banach space
of all X-valued Bochner-integrable functions defined on I with the norm ‖x‖Lp
= (
∫
I
‖x(t)‖pdt)1/p. For γ > 0, we define

gγ(t) =

{
tγ−1

Γ(γ) , t > 0,

0, t 6 0,

where Γ(·) is the gamma function. We also define g0 ≡ δ0, the Dirac delta.

Definition 1. Let γ > 0. The γ-order Riemann–Liouville fractional integral of x is
defined by Jγ0+x(t) :=

∫ t
0
gγ(t− s)x(s) ds, t > 0. Also, we define J0

0+x(t) = x(t).

Lemma 1. The Hilfer fractional derivative of order 0 6 β 6 1, 0 < γ < 1 for the
function x is defined by Dβ,γ

0+ x(t) = J
β(1−γ)
0+ (d/dt)J

(1−β)(1−γ)
0+ x(t).

Lemma 2. For κ ∈ (0, 1] and a, b > 0, the inequality |aκ − bκ| 6 |a− b|κ is true.

For a Banach space Z, we denote its dual by Z∗ and write the duality pairing of Z
and Z∗ as 〈·, ·〉. Denote by P(Z) a class of nonempty subsets of Z. Denote Pcl(Z) =
{Ω ∈ P(Z): Ω is closed}, Pb(Z) = {Ω ∈ P(Z): Ω is bounded}, and Pcv(Z) = {Ω ∈
P(Z): Ω is convex}.

A multivalued map G : Z → P(Z) has convex (closed) values if G(z) is convex
(closed) for all z ∈ Z. G is bounded on bounded sets if G(B) =

⋃
z∈BG(z) is bounded

in Z for all B ∈ Pb(Z), i.e., supz∈B{sup{‖y‖: y ∈ G(z)}} <∞.
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The multivalued map G : Z → P(Z) is called upper semicontinuous (u.s.c.) on Z
if for each z0 ∈ Z, the set G(z0) is a nonempty, closed subset of Z, and if for each
open set O of Z containing G(z0), there exists an open neighborhood V of z0 such that
G(V) ⊆ O. Also, G is said to be completely continuous if G(B) is relatively compact for
every B ∈ Pb(Z). G has a fixed point if there exists z ∈ Z such that z ∈ G(Z).

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph, i.e., zn → z∗, hn → h∗, hn ∈ G(zn)
imply h∗ ∈ G(z∗).

A multivalued map z : I → P(Z) is said to be measurable if z−1(C) = {t ∈ I:
z(t)∩C 6= ∅} ∈ Σ for each closed set C ⊆ Z. If z : I×Z → P(Z), then measurability
of z means that z−1(C) ∈ Σ⊗BZ , where Σ⊗BZ is the σ-algebra of subsets in I ×Z
generated by the sets A× B, A ∈ Σ, B ∈ BZ , and BZ is the σ-algebra of the Borel sets
in Z.

The generalized directional derivative (in the sense of Clarke) of a locally Lipshitz
function h : Z → R at x in the direction d is denoted by h0(x, d), which is given by

h0(x, d) = lim sup
y→x, t↓0

h(y + td)− h(y)

t
.

The Clarke subdifferential or the generalized gradient of h at x is denoted by ∂h(x),
which is a subset of Z∗ defined by

∂h(x) =
{
y ∈ Z∗: h0(x, d) > 〈y, d〉 ∀d ∈ Z

}
.

We have the following facts, which can be referred to [6] for more details.

Lemma 3. Let h : O → R be a locally Lipschitz function on an open set O of Z. Then
the following results hold:

(i) For each d ∈ Z, one has h0(x; d) = max{〈y, d〉, y ∈ ∂h(x)}.
(ii) For each x ∈ O, the generalized gradient ∂h(x) is a nonempty, convex, weak∗-

compact subset of Z∗, and ‖y‖Z∗ 6 L for each y ∈ ∂h(x) (where L > 0 is the
Lipschitz constant of h near y).

(iii) The graph of the generalized gradient ∂h is close in Z × Z∗w∗ topology, i.e., if
{xn} ⊂ O and {yn} ⊂ Z∗ are sequences such that yn ∈ ∂h(xn) and xn → x
in Z, yn → y weak∗ in Z∗, then y ∈ ∂h(x) (where Z∗w∗ denotes the Banach
space Z∗ equipped with the w∗-topology).

(iv) The multifunction O 3 x→ ∂h(x) ⊆ Z∗ is u.s.c. from O into Z∗w∗ .

We list the following results, which can be found in [10].

Lemma 4. The closure and weak closure of a convex subset of a normed space are the
same.

Lemma 5. Let D be a nonempty bounded and convex subset of a Banach space Z.
Suppose that Υ : D → P(D) is an u.s.c., condensing multivalued map. If for each
x ∈ D, Υ (x) is a closed convex set in D. Then Υ has a fixed point.
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In what follows, we introduce the admissible control set as [28, p. 141]. Let Y be
another separable reflexive Banach space from which the control u takes values. Let 1 <
p < +∞ and Lp(I, Y ) denote the usual Banach space of all Y -valued Bochner integrable
functions having pth power summable norms. We assume that the multivalued map U :
I → Pcl, cv(Y ) is graph measurable, U(·) ⊂ Ω, where Ω is a bounded set of Y . The
admissible control set is defined as

Uad = SpU =
{
u ∈ Lp(I,Ω): u(t) ∈ U(t), a.e. t ∈ I

}
,

1

γ
< p < +∞.

Then Uad 6= ∅, which can be found in [14].

3 Existence results

In order to investigate system (1), we can consider the following fractional evolution
inclusion:

Dβ,γ
0+ x(t) ∈ Ax(t) + B(t)u(t) + ∂F

(
t, x(t)

)
, t ∈ I ′,

J
(1−ν)
0+

[
x(t)

]
t=0

+ g(x) = x0.
(2)

We see that each solution of system (2) is also a solution of system (1). In fact, if x(t) ∈
C(I,X) is a solution of system (1), then there exists a function f(t) ∈ ∂F (t, x(t)), a.e.
t ∈ I , and satisfies the following equation:

Dβ,γ
0+ x(t) = Ax(t) + B(t)u(t) + f(t), t ∈ I ′,

J
(1−ν)
0+

[
x(t)

]
t=0

+ g(x) = x0.

In view of above equation, we obtain〈
−Dβ,γ

0+ x(t) +Ax(t) + B(t)u(t), d
〉
X

+
〈
f(t), d

〉
X

= 0, a.e. t ∈ I ′, ∀d ∈ X,

J
(1−ν)
0+

[
x(t)

]
t=0

+ g(x) = x0.

Owing to the facts that f(t) ∈ ∂F(t, x(t)) and 〈f(t), d)〉X 6 F0(t, x(t); d), we have〈
−Dβ,γ

0+ x(t) +Ax(t) + B(t)u(t), d
〉
X

+ F0
(
t, x(t); d

)
> 0, t ∈ I ′, ∀d ∈ X,

J
(1−ν)
0+

[
x(t)

]
t=0

+ g(x) = x0.

It is shown that we can investigate system (1) by the corresponding evolution inclusion
system (2).

In order to define the mild solution to system (2), we now introduce the following
Wright function:

Mγ(θ) =

∞∑
n=1

(−θ)n−1

(n− 1)Γ(1− µn)
, 0 < µ < 1, θ ∈ C,
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which satisfies the equality

∞∫
0

θτMγ(θ) dθ =
Γ(1 + τ)

Γ(1 + γτ)
, θ > 0.

Definition 2. (See [11].) A function x ∈ C(I,X) is said to be a mild solution to sys-
tem (2) if there exists a function f ∈ Lp(I,X) such that f(t) ∈ ∂F(t, x(t)), a.e. t ∈ I ,
and the following equation holds:

x(t) = Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)
[
f(s) + B(s)u(s)

]
ds, t ∈ I ′,

where Tγ(t) = tγ−1Pγ(t), Pγ(t) =
∫∞

0
γθMγ(θ)S(tγθ) dθ, Sβ,γ(t) = J

β(1−γ)
0+ Tγ(t).

We now list the following conditions:

(C1) The function t 7→ S(t) is continuous in B(X) for all t > 0, and there exists
a constant M > 1 such that ‖S(t)‖ 6M .

(C2) The operator S(t) is compact for t > 0.
(C3) The function F : I ×X → R satisfies the following conditions:

(a) For all x ∈ X , F(·, x) is measurable;
(b) For a.e. t ∈ I , F(t, ·) is locally Lipschitz continuous;
(c) For a.e. t ∈ I and x ∈ X , there exists a function ψ(·) ∈ Lp(I,R+)

(p > 1/γ) and a constant % > 0 such that for a.e. t ∈ I and all x ∈ X ,∥∥∂F(t, x)
∥∥ := sup

{∥∥f(t)
∥∥: f(t) ∈ ∂F(t, x)

}
6 ψ(t) + %‖x‖.

(C4) B : I → B(Y,X) is essentially bounded, i.e., B ∈ L∞(I,B(Y,X)).
(C5) There exists a constant Lg such that for every x1, x2 ∈ C, ‖g(x1) − g(x2)‖ 6

Lg‖x1 − x2‖ν .

Define the operator N : Lq(I,X)→ P(Lp(I,X)) (1/p+ 1/q = 1) as

N (x) =
{
w ∈ Lp(I,X): w(t) ∈ ∂F

(
t, x(t)

)
, a.e. t ∈ I, ∀x ∈ Lq(J,X)

}
.

Now we have the following basic results.

Lemma 6. (See [11].) Under condition (C2), the following results hold true:

(i) The operator Pγ(t) is continuous in the uniform operator topology for t > 0.
(ii) For any fixed t > 0, {Tγ(t)}t>0 and {Sβ,γ(t)}t>0 are linear operators, and for

each x ∈ X ,∥∥Tγ(t)x
∥∥ 6

Mtγ−1

Γ(γ)
‖x‖,

∥∥Sβ,γ(t)x
∥∥ 6

Mtν−1

Γ(β(1− γ) + γ)
‖x‖.
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(iii) {Tγ(t)}t>0 and {Sβ,γ(t)}t>0 are strongly continuous, i.e., for any x ∈ X and
0 < t1, t2 6 b, as t1 → t2, we have∥∥Tγ(t1)x− Tγ(t2)x

∥∥→ 0 and
∥∥Sβ,γ(t1)x− Sβ,γ(t2)x

∥∥→ 0.

Lemma 7. (See [20].) If condition (C3) holds, then for x ∈ Lq(I,X), the set N (x) has
nonempty, convex, and weakly compact values.

Lemma 8. (See [20].) Assume that condition (C3) holds. Let the operator N satisfy:
zn → z in Lq(I,X), wn ∈ N (zn), and wn ⇀ w in Lp(I,X), then we have w ∈ N (z).

Remark 1. (See [28, p. 141]) According to condition (C4) and the definition of the
admissible set Uad, it is concluded that Bu ∈ Lp(I,X) with 1/γ < p < ∞ for all
u ∈ Uad.

In what follows, we define Br = {x ∈ C(I,X): ‖x‖ν 6 r} for each r > 0.

Theorem 1. Assume that conditions (C1)–(C5) are satisfied. Then system (2) admits at
least one mild solution in a suitable ball Br on I , provided that[

Mb1+β(γ−1)%

Γ(1 + γ)
+

MLg
Γ(β(1− γ) + γ)

]
< 1. (3)

Proof. Now, we define the multivalued map Φ : C(I,X)→ P(C(I,X)) as

Φ(x) =

{
φ ∈ C(I,X): φ(t) = Sβ,γ(t)

[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)f(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds, f ∈ N (x), t ∈ I ′
}
,

where u(t) ∈ Uad. Clearly, the fixed points of Φ are mild solutions to system (2). We
show that Φ admits a fixed point. The proof will be given in several steps.

Step 1. We show that there exists r > 0 such that Φ(Br) ⊆ Br.
For each x ∈ C(I,X) and φ ∈ Φ(x), there exists f ∈ N (x) such that for t ∈ I ′,

φ(t) = Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)f(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds.

Nonlinear Anal. Model. Control, 24(2):189–209
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From condition (C3), Lemma 6, and Hölder inequality we obtain

t1−ν

∥∥∥∥∥
t∫

0

Tγ(t− s)f(s) ds

∥∥∥∥∥
6 b1−ν

M

Γ(γ)

t∫
0

(t− s)γ−1
[
ψ(s) + %

∥∥x(s)
∥∥]ds

6 b1−1/p−β(1−γ) M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p

‖ψ‖Lp +
Mb1+β(γ−1)%

Γ(1 + γ)
r. (4)

Similarly, according to condition (C4), we also have

t1−ν

∥∥∥∥∥
t∫

0

Tγ(t− s)B(s)u(s) ds

∥∥∥∥∥
6 b1−ν

M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p

bγ−1/p‖Bu‖Lp

6 b1−1/p−β(1−γ) M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p

‖Bu‖Lp . (5)

Meanwhile, taking into account condition (C5), we get

t1−ν
∥∥Sβ,γ(t)

[
x0 − g(x)

]∥∥ 6 t1−ν
∥∥Sβ,γ(t)

{
x0 − [g(x)− g(0)]− g(0)

}∥∥
6

M

Γ(β(1− γ) + γ)

[
‖x0‖+

∥∥g(0)
∥∥+ Lgr

]
. (6)

Combined with relations (4)–(6), we have

t1−ν
∥∥φ(t)

∥∥ 6 b1−1/p−β(1−γ) M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p[
‖ψ‖Lp + ‖Bu‖Lp

]
+
Mb1+β(γ−1)%

Γ(1 + γ)
r +

M

Γ(β(1− γ) + γ)

[
‖x0‖+

∥∥g(0)
∥∥+ Lgr

]
.

Owing to relation (3), we can choose a constant r > 0 such that

∥∥Φ(x)
∥∥
ν
6 b1−1/p−β(1−γ) M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p[
‖ψ‖Lp + ‖Bu‖Lp

]
+

M

Γ(β(1− γ) + γ)

[
‖x0‖+

∥∥g(0)
∥∥]

+

[
M

Γ(β(1− γ) + γ)
Lg +

Mb1+β(γ−1)%

Γ(1 + γ)

]
r 6 r.

Hence, we obtain that Φ(Br) ⊆ Br.
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Step 2. For each x ∈ C(I,X), Φ is convex.
In fact, for any φ1, φ2 ∈ Φ(x), there exist f1, f2 ∈ N (x) such that for t ∈ I ′,

φi(t) = Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)fi(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds, i = 1, 2.

Let ϑ ∈ [0, 1], then for each t ∈ I ′, we have[
ϑφ1 + (1− ϑ)φ2

]
(t)

= Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)
[
ϑf1 + (1− ϑ)f2

]
(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds.

Thanks to Lemma 7, ϑf1 +(1−ϑ)f2 ∈ N (x) for ϑ ∈ [0, 1], and then ϑφ1(t)+(1−ϑ)×
φ2(t) ∈ Φ(x), i.e., Φ is convex for each x ∈ C(I,X).

Step 3. Φ is closed for each x ∈ Br.
Let {φn}n>1 ∈ Φ(x) such that φn → φ in C(I,X). Then there exists fn ∈ N (x)

such that for each t ∈ I ′,

φn(t) = Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)fn(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds.

From (C3) and Step 1 we know that {fn}n>1 ⊆ Lp(I,X) is bounded. In view of
Lemma 7, N (x) is weakly compact, and we may assume, passing to a subsequence if
necessary, that fn → f̃ , weakly in Lp(I,X). Then for each t ∈ I ′,

φn(t)→ φ(t)

= Sβ,γ(t)
[
x0 − g(x)

]
+

t∫
0

Tγ(t− s)f(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds as n→∞.

Thus, φ ∈ Φ(x).

Nonlinear Anal. Model. Control, 24(2):189–209



198 Y. Pei, Y.-K. Chang

Step 4. Φ is u.s.c. and condensing.
Now we define Φ := Φ1 + Φ2 as

(Φ1x)(t) = Sβ,γ(t)
[
x0 − g(x)

]
;

Φ2(x) =

{
φ2 ∈ C(I,X): φ2(t) =

t∫
0

Tγ(t− s)f(s) ds

+

t∫
0

Tγ(t− s)B(s)u(s) ds, t ∈ I ′
}
.

We first show that Φ1 is a contraction. For arbitrary x1, x2 ∈ Br and each t ∈ I ′, we have
from Lemma 6 and condition (C5)

t1−ν
∥∥(Φ1x1)(t)− (Φ1x2)(t)

∥∥
= t1−ν

∥∥Sβ,γ(t)
[
x0 − g(x1)

]
− Sβ,γ(t)

[
x0 − g(x2)

]∥∥
6

M

Γ(β(1− γ) + γ)

∥∥g(x1)− g(x2)
∥∥ 6

MLg
Γ(β(1− γ) + γ)

‖x1 − x2‖ν .

Thus
‖Φ1(x1)− Φ1(x2)‖ν 6

MLg
Γ(β(1− γ) + γ)

‖x1 − x2‖ν .

In view of relation (3), we conclude that Φ1 is a contraction.
Next, we show that Φ2 is u.s.c.

(i) Φ2(Br) is obviously bounded.
(ii) Φ2(Br) is equicontinuous.

In fact, for any x ∈ Br, φ2 ∈ Φ2(x), there exists a function f ∈ N (x) such that

φ2(t) =

t∫
0

Tγ(t− s)f(s) ds+

t∫
0

Tγ(t− s)B(s)u(s) ds, t ∈ I ′.

Denote by Y = {y∈C(I,X): y(t) = t1−νΦ2(x)(t), y(0) = y(0+), x∈Br}. For t1 = 0,
0 < t2 6 b, we can easily obtain ‖y(t2) − y(0)‖ → 0 as t2 → 0. For 0 < t1 < t2 6 b
and an arbitrarily small number ε > 0, we have

∥∥y(t2)− y(t1)
∥∥ 6 t1−ν2

∥∥∥∥∥
t2∫
t1

Tγ(t2 − s)f(s) ds

∥∥∥∥∥
+
(
t1−ν2 − t1−ν1

)∥∥∥∥∥
t1∫

0

Tγ(t2 − s)f(s) ds

∥∥∥∥∥
+ t1−ν1

∥∥∥∥∥
t1−ε∫
0

[
Tγ(t2 − s)− Tγ(t1 − s)

]
f(s) ds

∥∥∥∥∥
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+ t1−ν1

∥∥∥∥∥
t1∫

t1−ε

[
Tγ(t2 − s)− Tγ(t1 − s)

]
f(s) ds

∥∥∥∥∥
+ t1−ν2

∥∥∥∥∥
t2∫
t1

Tγ(t2 − s)B(s)u(s) ds

∥∥∥∥∥
+
(
t1−ν2 − t1−ν1

)∥∥∥∥∥
t1∫

0

Tγ(t2 − s)B(s)u(s) ds

∥∥∥∥∥
+ t1−ν1

∥∥∥∥∥
t1−ε∫
0

[
Tγ(t2 − s)− Tγ(t1 − s)

]
B(s)u(s) ds

∥∥∥∥∥
+ t1−ν1

∥∥∥∥∥
t1∫

t1−ε

[
Tγ(t2 − s)− Tγ(t1 − s)

]
B(s)u(s) ds

∥∥∥∥∥
:= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

For terms I1, I5, we have as t2 → t1,

I1 6 b1−ν
M

Γ(γ)

t2∫
t1

(t2 − s)γ−1(ψ(s) + r%) ds

6 b1−ν
[
M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p

‖ψ‖Lp(t2 − t1)γ−1/p +
Mr%

Γ(1 + γ)
(t2 − t1)γ

]
→ 0,

I5 6 b1−ν
M

Γ(γ)

(
p− 1

pγ − 1

)1−1/p

‖Bu‖Lp(t2 − t1)γ−1/p → 0.

As for terms I2, I6, based upon Lemmas 2 and 6, Hölder inequality, and conditions (C3)–
(C4), we obtain when t2 → t1,

I2 6
(
t1−ν2 − t1−ν1

) M

Γ(γ)

t1∫
0

(t2 − s)γ−1
[
ψ(s) + r%

]
ds

6
(
t1−ν2 − t1−ν1

) M

Γ(γ)

{
‖ψ‖Lp

(
p− 1

pγ − 1

)1−1/p[
(t2)(pγ−1)/(p−1)

− (t2 − t1)(pγ−1)/(p−1)
]1−1/p

}
+
(
t1−ν2 − t1−ν1

) M

Γ(γ)
r%b1−1/p

[
(t2)1−p(1−γ) − (t2 − t1)1−p(1−γ)

]1/p
6 (t2 − t1)1−ν M

Γ(γ)
‖ψ‖Lp

(
p− 1

pγ − 1

)1−1/p

bγ−1/p + (t2 − t1)1−ν M

Γ(γ)
r%bγ → 0,
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I6 6
(
t1−ν2 − t1−ν1

) M

Γ(γ)

t1∫
0

(t2 − s)γ−1
∥∥B(s)u(s)

∥∥ds

6
(
t1−ν2 − t1−ν1

) M

Γ(γ)
‖Bu‖Lp

(
p− 1

pγ − 1

)1−1/p

bγ−1/p

6 (t2 − t1)1−ν M

Γ(γ)
‖Bu‖Lp

(
p− 1

pγ − 1

)1−1/p

bγ−1/p → 0.

For terms I3, I7, we have

I3 6 b1−ν
M

Γ(γ)

t1−ε∫
0

[
(t2 − s)γ−1 + (t1 − s)γ−1

](
ψ(s) + r%

)
ds,

I7 6 b1−ν
M

Γ(γ)

t1−ε∫
0

[
(t2 − s)γ−1 + (t1 − s)γ−1

]∥∥B(s)u(s)
∥∥ds.

Owing to

s 7→
[
(t2 − s)γ−1 + (t1 − s)γ−1

]
(ψ(s) + r%) ∈ L1

(
[0, t1 − ε],R+

)
,

s 7→
[
(t2 − s)γ−1 + (t1 − s)γ−1

]
‖B(s)u(s)‖ ∈ L1

(
[0, t1 − ε],R+

)
,

we conclude that I3, I7 → 0 as t2 → t1 by the Lebesgue dominated convergence
theorem.

For terms I4, I8, taking into account Lemmas 2 and 6, Hölder inequality, and condi-
tions (C3)–(C4), we have as ε→ 0,

I4 6 b1−ν

[
2r%ε+

M

Γ(γ)

t1∫
t1−ε

(t2 − s)γ−1ψ(s) ds+
M

Γ(γ)

t1∫
t1−ε

(t1 − s)γ−1ψ(s) ds

]

6 2b1−ν
[
r%ε+

M

Γ(γ)
‖ψ‖Lp

(
p− 1

pγ − 1

)1−1/p

εγ−1/p

]
→ 0,

I8 6 2b1−ν
M

Γ(γ)
‖Bu‖Lp

(
p− 1

pγ − 1

)1−1/p

εγ−1/p → 0.

The right-hand side of above inequalities tends to zero independently of x ∈ Br, and thus
Φ2(Br) is equicontinuous.

(iii) The set V (t) = {φ2(t): φ2(t) ∈ Φ2(Br)} is relatively compact in X .
For t = 0, the conclusion obviously holds. Let 0 < t 6 b be fixed. Taking into

account that Tγ(t) = tγ−1Pγ(t), Pγ(t) =
∫∞

0
γθMγ(θ)S(tγθ) dθ, for any x ∈ Br,

φ2 ∈ Φ2(x), there exists f ∈ N (x) such that

φ2(t) =

t∫
0

(t− s)γ−1Pγ(t− s)f(s) ds+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)u(s) ds.
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For each ε ∈ (0, t), t ∈ (0, b], x ∈ Br, and any δ > 0, we define an operator Φε,δ2 on Br
by Φε,δ2 (x) the set of φε,δ2 such that

φε,δ2 (t) = γS
(
εγδ
)

×
t−ε∫
0

∞∫
δ

θMγ(θ)(t− s)γ−1S
(
(t− s)γθ − εγδ

)[
f(s) + B(s)u(s)

]
dθ ds.

From the compactness of S(εγδ) (εγδ > 0) we deduce that the set V ε,δ(t) = {φε,δ2 (t):
φε,δ2 (t) ∈ Φε,δ2 (Br)} is relatively compact in X for any ε ∈ (0, t) and any δ > 0.
Furthermore, we have

t1−ν
∥∥φ2(t)− φε,δ2 (t)

∥∥
= t1−ν

∥∥∥∥∥γ
t∫

0

∞∫
0

θMγ(θ)(t− s)γ−1S
(
(t− s)γθ

)[
f(s) + B(s)u(s)

]
dθ ds

−
t−ε∫
0

∞∫
δ

θMγ(θ)(t− s)γ−1S
(
(t− s)γθ

)[
f(s) + B(s)u(s)

]
dθ dsγ

∥∥∥∥∥
6 γb1−νM

(
p− 1

pγ − 1

)1−1/p

‖ψ‖Lp
[
bγ−1/p

δ∫
0

θMγ(θ) dθ +
1

Γ(1 + γ)
εγ−1/p

]

+ b1−νM%r

[
1

Γ(1 + γ)
εγ + bγ

δ∫
0

θMγ(θ) dθ

]

+ γb1−νM

(
p− 1

pγ − 1

)1−1/p

‖Bu‖Lp
[
bγ−1/p

δ∫
0

θMγ(θ) dθ +
b1/p

Γ(1 + γ)
εγ−1/p

]
.

Since
∫∞

0
θMγ(θ) dθ=1/(Γ(1 +γ)), the last inequality tends to zero as ε→0 and δ→0,

i.e., there are relatively compact sets arbitrarily close to the set V (t) (t > 0). Hence, V (t)
is relatively compact in X for all t ∈ (0, b]. As a consequence of above steps (i)–(iii) and
the Arzela–Ascoli theorem, we can deduce that Φ2 is completely continuous.

(iv) Φ2 has a closed graph.
Let xn → x̃, φ(n)

2 ∈ Φ2(xn), and φ(n)
2 → φ̃2. We need to show that φ̃2 ∈ Φ2(x̃). The

fact φ(n)
2 ∈ Φ2(xn) implies that there exists fn ∈ N (xn) satisfying

φ
(n)
2 (t) =

t∫
0

Tγ(t− s)fn(s) ds+

t∫
0

Tγ(t− s)B(s)u(s) ds. (7)
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From condition (C3) and Step 1 we know that {fn}n>1 ⊆ Lp(I,X) is bounded. Thus,
we may assume, passing to a subsequence if necessary, that

fn → f̃ weakly in Lp(I,X). (8)

Since φ(n)
2 (t)→ φ̃2, it follows from (7)–(8) and Lemma 8 that, as n→∞,

φn(t)→ φ̃2(t) =

t∫
0

Tγ(t− s)f̃(s) ds+

t∫
0

Tγ(t− s)B(s)u(s) ds. (9)

Since xn → x̃ and fn ∈ N (xn), Lemma 8 and (8)–(9) infer that f̃ ∈ N (x̃), and thus
φ̃2 ∈ Φ2(x̃), i.e., Φ2 has a closed graph.

As a consequence, Φ2 is an u.s.c. multivalued map. On the other hand, Φ1 is a con-
traction, hence Φ = Φ1 + Φ2 is u.s.c and condensing. By Lemma 5, there exists a fixed
point x(·) for Φ on Br. Thus, system (2) admits a mild solution in a suitable ball Br. The
proof is completed.

4 Optimal controls

In this section, we investigate the existence of optimal state-control pairs of the limited
Lagrange optimal control problems governed by system (1). Taking into account that
condition (C3) cannot guarantee the uniqueness of solutions to system (2), we need the
following auxiliary results.

Lemma 9. Assume that conditions (C1), (C4), (3) hold. Then the operator Ψ : Lp(I, Y )→
C(I,X), p > 1/γ, defined by

(Ψu)(·) :=

·∫
0

(· − s)γ−1Pγ(· − s)B(s)u(s) ds ∀u(·) ∈ Uad ⊂ Lp(I, Y ),

is compact.

Proof. Let {uk}k>1 be a bounded sequence in Lp(I, Y ) (p > 1/γ). Then condition (C4)
leads to the boundedness of {Buk}k>1 ⊆ Lp(I, Y ). Thus, by a similarly conducted as
Step 4(i)–(iii) in the proof of Theorem 1, we can obtain the compactness of the opera-
tor Ψ .

Lemma 10. Assume conditions (C1), (3) and the following condition (C5′) are satisfied:

(C5′) The function g : C(I,X)→ X is compact, and there exists a constant Lg such
that for every x1, x2 ∈ C, ‖g(x1)− g(x2)‖ 6 Lg‖x1 − x2‖ν .

Then the operator (Φ1x)(t) = Sβ,γ(t)[x0 − g(x)] is completely continuous.
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Proof. Note that for each x ∈ Br,

Sβ,γ(t)
[
x0 − g(x)

]
= J

β(1−γ)
0+ Tγ(t)

[
x0 − g(x)

]
=

1

Γ(β(1− γ))

t∫
0

(t− s)β(1−γ)−1Tγ(s)
[
x0 − g(x)

]
ds

=
γ

Γ(β(1− γ))

t∫
0

(t− s)β(1−γ)−1sγ−1

∞∫
0

θMγ(θ)S(sγθ)
[
x0 − g(x)

]
dθ ds,

and define(
Φε,δ1 x

)
(t) =

γ

Γ(β(1− γ))

×
t−ε∫
0

∞∫
δ

θMγ(θ)(t− s)β(1−γ)−1sγ−1S(sγθ)
[
x0 − g(x)

]
dθ ds.

Analogously to Steps 4(i)–(iii) in the proof of Theorem 1, we can show that (Φ1x)(t) is
completely continuous.

For any u ∈ Uad, let S(u) denote all mild solutions to systems (1) in Br defined in
Theorem 1. Denote xu ∈ Br by the mild solution of system (1) corresponding to the
control u ∈ Uad, we consider the following limited Lagrange problem:

Problem. Find x0 ∈ Br ⊆ C(I,X) and u0 ∈ Uad such that for all u ∈ Uad,J (x0, u0) 6
J (xu, u), where

J (xu, u) =

b∫
0

L
(
t, xu(t), u(t)

)
dt, (10)

and x0 ∈ Br denotes the mild solution to system (1) related to the control u0 ∈ Uad.

We remark that under the conditions of Theorem 1, a pair (x(·), u(·)) is feasible if it
verifies system (1) for x(·) ∈ Br, and if (xu(·), u(·)) is feasible, then xu ∈ S(u) ⊆ Br.

In order to deal with the existence of optimal state-control pairs for problem (10), we
further impose the following condition:

(C6) The function L : I ×X × Y → R
⋃
{∞} satisfies:

(a) The function L : I ×X × Y → R
⋃
{∞} is Borel measurable;

(b) L(t, ·, ·) is sequentially lower semicontinuous on X × Y for a.e. t ∈ I;
(c) L(t, x, ·) is convex on Y for each x ∈ X and a.e. t ∈ I;
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(d) There exist constants c > 0, d > 0, ζ is nonnegative and ζ ∈ L1(I,R) such
that

L(t, x, u) > ζ(t) + c‖x‖+ d‖u‖pY , 1 < p <∞.

Theorem 2. Assume that conditions (C1)–(C4), (C5′)–(C6), and (3) are satisfied. Then
problem (10) governed by system (1) admits at least one optimal state-control pair.

Proof. For any given u ∈ Uad, we define

J (u) = inf
xu∈S(u)

J
(
xu, u

)
.

If the set S(u) admits only finitely many elements, there exists some x̃u ∈ S(u) such
that J (x̃u, u) = infxu∈S(u) J (xu, u) = J (u). It is trivial if the set S(u) admits in-
finitely many elements and infxu∈S(u) J (xu, u) = +∞. Now, we assume that J (u) =
infxu∈S(u) J (xu, u) < +∞. By condition (C6) we have J (u) > −∞. For the sake of
convenience, we divide the proof into the following several steps.

Step 1. Based upon the definition of infimum, there exists a sequence {xun} ⊆ S(u)
satisfying J(xun, u) → J(u) as n → ∞. Taking into account that {xun, u} is a sequence
of feasible pairs, we have

xun(t) = Sβ,γ(t)
[
x0 − g(xun)

]
+

t∫
0

(t− s)γ−1Pγ(t− s)fun (s) ds

+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)u(s) ds, fun ∈ N (xun), t ∈ I ′. (11)

Step 2. It is shown that there exists some x̃u ∈ S(u) such that J (x̃u, u) =
infxu∈S(u) J (xu, u) = J (u).

To achieve this aim, we first prove that for each u ∈ Uad, {xun} is relatively compact
in C(I,X). From Step 1 we have

xun(t) = Sβ,γ(t)
[
x0 − g(xun)

]
+

t∫
0

(t− s)γ−1Pγ(t− s)fun (s) ds

+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)u(s) ds

:= I1x
u
n + I2x

u
n + I3x

u
n.

In view of Lemma 10 and Steps 4(i)–(iii) in the proof of Theorem 1, we can conclude
that {I1x

u
n}, {I2x

u
n}, {I3x

u
n} are all relatively compact subsets of C(I,X). In con-

sequence, the set {xun} is relatively compact in C(I,X) for u ∈ Uad. Without loss
of generality, we may assume that xun → x̃u in CI,X) for u ∈ Uad as n → ∞.
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Moreover, by conditions (C3), (C5′), we have fun (t) → f̃(t), a.e. t ∈ I , and ‖fun (t)‖ 6
ψ(t)+r%, g(xun)→ g(x̃u). Let n→∞ on both sides of (11), by the Lebesgue dominated
convergence theorem, we obtain that

x̃u(t) = Sβ,γ(t)
[
x0 − g(x̃u)

]
+

t∫
0

(t− s)γ−1Pγ(t− s)f̃(s) ds

+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)u(s) ds, t ∈ I ′,

which implies that x̃u ∈ S(u). Thus, through the definition of a feasible pair, condi-
tion (C6) and Balder theorem [4], we have

J (u) = lim
n→∞

b∫
0

L
(
t, xun(t), u(t)

)
dt >

b∫
0

L
(
t, x̃u(t), u(t)

)
dt

= J
(
x̃u, u

)
> J (u),

i.e., J (x̃u, u) = J (u). This implies that J (u) admits its minimum at x̃u ∈ C(I,X) for
each u ∈ Uad.

Step 3. It is shown that there exists u0 ∈ Uad such that J (u0) 6 J (u) for all
u ∈ Uad.

If infu∈Uad
J (u) = +∞, it is trivial. Assume that infu∈Uad

J (u) < +∞. By condi-
tion (C6) again, we can prove that infu∈Uad

J (u) > −∞, and similarly to Step 1, there
exists a sequence {un} ⊆ Uad such that J (un) → infu∈Uad

J (u) as n → ∞. Since
{un} ⊆ Uad, {un} is bounded in Lp(I, Y ) and Lp(I, Y ) is a reflexive Banach space for
1/γ < p < +∞, there exists a subsequence still denoted by {un} weakly converges to
some u0 ∈ Lp(I, Y ) as n → ∞. Note that Uad is closed and convex, by Lemma 4 it
follows that u0 ∈ Uad.

Let x̃un be the mild solution to system (1) related to un, where J (un) attains its
minimum. Then (x̃un , un) is a feasible pair and verifies the following integral equation

x̃un(t) = Sβ,γ(t)
[
x0 − g(x̃un)

]
+

t∫
0

(t− s)γ−1Pγ(t− s)f̃n(s) ds

+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)un(s) ds, f̃n ∈ N
(
x̃un

)
, t ∈ I ′. (12)

Let us define
Λ1x̃

un(t) := Sβ,γ(t)
[
x0 − g(x̃un)

]
,
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Λ2x̃
un(t) :=

t∫
0

(t− s)γ−1Pγ(t− s)f̃n(s) ds, f̃n ∈ N
(
x̃un

)
,

Λ3un(t) :=

t∫
0

(t− s)γ−1Pγ(t− s)B(s)un(s) ds.

Then
x̃un(t) = Λ1x̃

un(t) + Λ2x̃
un(t) + Λ3un(t), t ∈ I ′.

From Lemma 10, and similarly to Steps 5(i)–(iii) in the proof of Theorem 1, we can con-
clude that {Λ1x̃

un}, {Λ2x̃
un} are all relatively compact subsets of C(I,X). Additionally,

by the fact {un} weakly converges to some u0 ∈ Lp(I, Y ) and Lemma 9, Λ3 is compact
and Λ3un → Λ3u

0 as n→∞. Thus, the set {x̃un} ⊂ C(I,X) is relatively compact, and
there exists a subsequence still denoted by {x̃un}, x̃u0 ∈ C(I,X) such that x̃un → x̃u

0

in
C(I,X) as n→∞. Furthermore, by conditions (C3), (C5′), we have f̃n(t)→ f̃∗(t), a.e.
t ∈ I , and ‖f̃n(t)‖ 6 ψ(t) + r%, g(x̃un)→ g(x̃u

0

). Let n→∞ in both sides of (12), by
the Lebesgue dominated convergence theorem, we have

x̃u
0

(t) = Sβ,γ(t)
[
x0 − g(x̃u

0

)
]

+

t∫
0

(t− s)γ−1Pγ(t− s)f̃∗(s)(s) ds

+

t∫
0

(t− s)γ−1Pγ(t− s)B(s)u0(s) ds, t ∈ I ′,

which implies that (x̃u
0

, u0) is a feasible pair.
Thus, by condition (C6) and Balder theorem again [4], we obtain

inf
u∈Uad

J (u) = lim
n→∞

b∫
0

L
(
t, x̃un(t), un(t)

)
dt >

b∫
0

L
(
t, x̃u

0

(t), u0(t)
)

dt

= J (x̃u
0

, u0) > inf
u∈Uad

J (u).

Therefore,
J (x̃u

0

, u0) = J(u0) = inf
xu0∈S(u0)

J
(
xu

0

, u0
)
.

Furthermore,
J (u0) = inf

u∈Uad

J (u),

i.e., J admits its minimum at u0 ∈ Uad. This finishes the proof.

https://www.mii.vu.lt/NA
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Example 1. Finally, we end this paper with a simple example. For numerical stimulation
of Hilfer fractional derivatives and approximate solutions of some fractional differential
systems, we can refer to references [3, 12]. Consider the following inclusion problem:

D
β,4/7
0+ x(t, ξ) ∈ ∂2x

∂ξ2
(t, ξ) + ∂F

(
t, x(t, ξ)

)
+ u(t, ξ), t ∈ (0, 1], ξ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],

J
(3/7)(1−β)
0+

(
x(0, ξ)

)
+

m∑
i=0

π∫
0

k(t, s)x(ti, s) ds = x0(ξ), ξ ∈ [0, π],

(13)

whereDβ,4/7
0+ is the Hilfer fractional derivative of order 4/7 and type β∈ [0, 1], J (3/7)(1−β)

0+

is the Riemann–Liouville integral of order (3/7)(1− β). k(t, s) ∈ L2([0, π]× [0, π]), m
is a positive integer and 0 < t0 < t1 < · · · < tm 6 1. Take X = Y = L2[0, π]. Let
x(·)(ξ) = x(·, ξ), B(·)u(·)(ξ) = u(·, ξ), and

J (x, u) =

π∫
0

1∫
0

∣∣x(t, ξ)
∣∣2 dtdξ +

π∫
0

1∫
0

∣∣u(t, ξ)
∣∣2 dtdξ.

Here ∂F denotes generalized gradient of a locally Lipschitz function F . A simple ex-
ample of F satisfying condition (A2) is F (t, η) = F (η) = min{f1(η), f2(η)}, where
fi : R→ R, i = 1, 2, are convex quadratic functions (see [20, 21]).

Let operator A : D(A) ⊂ X → X be defined by Av = v′′ with the domain D(A) :=
{v ∈ X: v ∈ H2([0, π]), v(0) = v(π) = 0}. Then A generates a strongly continuous
semigroup {S(t)}t>0, which is compact for t > 0, analytic and self-adjoint. It is known
that A has discrete spectrum with eigenvalues of the form −n2, n ∈ N, and the cor-
responding normalized eigenvectors are given by en(s) :=

√
2/π sin(ns). Moreover,

{en: n ∈ N} is an orthonormal basis for X , and thus A can be written as Az =∑∞
n=1 n

2〈z, en〉en, z ∈ D(A). Particularly, ‖S(t)‖ 6 e−t (see [23] for details). Let
g(x)(y) =

∑m
i=0

∫ π
0
k(y, z)x(ti)(z) dz =

∑m
i=0

∫ π
0
k(y, z)x(ti, z) dz, thus g satisfies

condition (C5′)(see [26]). Note that problem (13) can be rewritten in the abstract form (2).
According to Theorems 1–2, Eq. (13) has a mild solution for %, Lg properly small, and its
corresponding limited Lagrange problem admits at least one optimal feasible pair.
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