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Abstract. This paper obtains the dark, bright, dark-bright, dark-singular optical and singular soliton
solutions to the nonlinear Schrödinger equation with quadratic-cubic nonlinearity (QC-NLSE),
which describes the propagation of solitons through optical fibers. The adopted integration scheme
is the sine-Gordon expansion method (SGEM). Further more, the modulation instability analysis
(MI) of the equation is studied based on the standard linear-stability analysis, and the MI gain
spectrum is got. Physical interpretations of the acquired results are demonstrated. It is hoped that
the results reported in this paper can enrich the nonlinear dynamical behaviors of the PNSE.
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1 Introduction

Nonlinear Schrödinger equations (NLSEs) appear in various areas of engineering sci-
ences, physical and biological sciences. In particular, the NLSEs appears in fluid dy-
namics, nonlinear optics, plasma and nuclear physics [1, 30, 56]. The previous studies
provide a test bed to investigate soliton solutions in presence of many different nonlin-
earities [16]. These days QC-NLSE has gathered significant attention. This paper will
study a newly proposed form of nonlinearity called the quadratic-cubic law. The law first
appeared in 2011 [22]. The model supports soliton solutions (both temporal and spatial)
with applications in soliton lasers, optical communications, ultra fast soliton switches
and logic gate devices [47]. Recently, we observe many new progresses in the field of
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nonlinear optics [2–15, 17–26, 28, 29, 31–46, 48–55, 57–60]. The NLSE with quadratic-
cubic nonlinearity is given by [6, 19, 25, 27, 47, 54]:

iψt + aψxx − b1ψ|ψ|+ b2ψ|ψ|2 = 0, i =
√
−1. (1)

In Eq. (1), t and x are the independent variables representing the temporal and spatial
variables, respectively. ψ(x, t) is the dependent variable. The real-valued constant a rep-
resents group velocity dispersion (GVD), while b1 and b2 are real-valued constants. The
chaotic phenomena of the equation was studied in [27]. In [47], the analytical self-similar
wave solutions of the equation were constructed. In [54], the method of undetermined
coefficients was adopted to extract the soliton solutions and the conservation laws of the
equation were reported. In [19], the He’s semi-inverse variational principle was adopted
to study the equation. In [6], the Jaccobi elliptic function ansatz method was used to
study the equation. In [25], the extended trial equation method was utilized to retrieve
some soliton solutions of the equation.

This paper determines the dark, bright, dark-singular and a new dark-bright soliton
solutions to the model by SGEM [23, 57]. The SGEM is a very strong approach to to
retrieve the soliton solutions of nonlinear models. It has been used to study several NLSEs
by several authors in [23, 34, 36–39, 57]. One advantage of this approach is that it has
the capability to retrieve dark-bright or combined optical solitons and combined singular
solitons, which are special types of soliton solutions combining the futures of bright and
dark optical solitons in one expression, and dark-singular and singular solitons in another
expression. The subsequent section gives a full description of the integration scheme that
will be applied retrieve the soliton solutions of the governing equation. Finally, the MI of
the equation will be studied using the standard linear-stability analysis [1, 2, 36, 48].

2 Description of the sine-Gordon expansion method

Consider the following sine-Gordon equation:

ψxt = α sinψ, (2)

where α is a non-zero constant. We apply the transformation

ψ(x, t) = u(ξ), ξ = η(x+ vt), (3)

where v is the traveling wave velocity. Substituting Eq. (3) into Eq. (2), we obtain

u′′ =
α

vη2
sin
(
u(ξ)

)
. (4)

Equation (4) can be simplified to give[(
u(ξ)

2

)′ ]2
=

α

vη2
sin2

u(ξ)

2
+K, (5)
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where K is a constant of integration. By letting K = 0, w(ξ) = u(ξ)/2 and f2 =
α/(vη2), Eq. (5) reduces to

w′(ξ)2 = f2 sin2
(
w(ξ)

)
, (6)

and in a more simplified form gives

w′(ξ) = f sin
(
w(ξ)

)
. (7)

Setting f = 1 in Eq. (7), we get

w′(ξ) = sin
(
w(ξ)

)
. (8)

Equation (8) has the following solutions:

sin
(
w(ξ)

)
= sech ξ or cos

(
w(ξ)

)
= tanh ξ, (9)

and
sin
(
w(ξ)

)
= i csch ξ or cos

(
w(ξ)r

)
= coth ξ. (10)

To obtain the solution of the nonlinear partial differential equation of the form

P (ψ,ψt, ψx, ψtt, ψxx, ψxt, . . .) = 0, (11)

we use the following series solution:

u(w) =

n∑
j=1

cosj−1 w · [Bj sinw +Aj cosw] +A0. (12)

From Eqs. (9) and (10), the solution of Eq. (12) can be written as

u1(ξ) =

n∑
j=1

tanhj−1 ξ · [Bj sech ξ +Aj tanh ξ] +A0, (13)

and

u2(ξ) =

n∑
j=1

cothj−1 ξ · [Bj csch ξ +Aj coth ξ] +A0. (14)

To obtain the value of n, we use the balancing principle. Substituting n into Eq. (12)
and putting of the result into the reduced ordinary differential equation using Eq. (8) give
a system of algebraic equations. Equating the coefficients of sini w and cosi w to zero
and solving the result gives the values of Ai, Bi and v. Subsequently, one can retrieve the
soliton solutions of Eq. (11).
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2.1 Application to Eq. (1)(1)(1)

To solve Eq. (1), we apply the transformation

ψ(x, t) = u(ξ)eiφ(x,t), ξ = K(x− vt), (15)
where

φ = −kx+ ωt+ θ. (16)

In Eq. (16), φ(x, t) represents the phase component, k is the frequency, ω represents the
wave number, θ represents the phase constant. In Eq. (15), v is the velocity, while K
represents the width of the traveling wave [54]. Putting Eq. (15) in Eq. (1) and separating
into real and imaginary components, a pair of equation is acquired. The imaginary part
yields

v = −2ak, (17)

the speed of the soliton stays the same irrespective of the type of soliton in question real
part, therefore, (

ak2 + ω
)
u+ b1u

2 − b2u3 − aK2u′′ = 0. (18)

Balancing the terms of u3 and u′′ in Eqs. (18) and (19) gives n = 1. Substituting n = 1
into Eq. (12), we obtain

u(w) = B1 sinw +A1 cosw +A0. (19)

Substituting Eq. (19) and the necessary derivatives into Eq. (18) using Eq. (8) substi-
tuting trigonometric identities where necessary, we obtain the following algebraic expres-
sion:

ak2A0 + ωA0 + ak2 coswA1 + ω coswA1 + 2aK2 cosw sin2 wA1

+A2
0b1 + 2 coswA0A1b1 +A2

1b1 − sin2 wA2
1b1 −A3

0b2 − 3 coswA2
0A1

+ b2 − 3A0A
2
1b2 + 3 sin2 wA0A

2
1b2 − coswA3

1b2 + cosw sin2 wA3
1b2

+ ak2 sinwB1 + aK2 sinwB1 + ω sinwB1 − 2aK2 cos2 w sinw

+B1 + 2 sinwA0b1B1 + 2 cosw sinwA1b1B1 − 3 sinwA2
0b2B1

− 6 cosw sinwA0A1b2B1 − 3 cos2 w sinwA2
1b2B1 + sin2 w

+ b1B
2
1 − 3 sin2 wA0b2B

2
1 − 3 cosw sin2 wA1b2B

2
1 − sinwb2B

3
1

+ cos2 w sinwb2B
3
1 = 0. (20)

Equating each summation of the coefficients of trigonometric functions having the same
power to zero, we obtain the following independent parametric equations.

cosw:
A1

(
ak2 + ω + 2A0b1 − 3A2

0b2 −A2
1b2
)
= 0, (21)

constants:

A2
0b1 +A2

1b1 −A3
0b2 +A0

(
ak2 + ω − 3A2

1b2
)
= 0, (22)
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sinw cosw:
2A1(b1 − 3A0b2)B1 = 0, (23)

sin2 w:
− (b1 − 3A0b2)

(
A2

1 −B2
1

)
= 0, (24)

sinw:
B1

(
ak2 + aK2 + ω + 2A0b1 − 3A2

0b2 − b2B2
1

)
= 0, (25)

sinw cos2 w:
B1

(
−2aK2 − 3A2

1b2 + b2B
2
1

)
= 0, (26)

sin2 w cosw:
A1

(
2aK2 +A2

1b2 − 3b2B
2
1

)
= 0. (27)

Solving Eqs. (21)–(27), we obtain the following families.

With the aid of Mathematica, from Eqs. (21)–(27) we can get

Case 1. A0 = b1/3b2, A1 = ±b1/(3b2), a = b21/(18K
2b2), B1 = 0, ω = −2b21/

(9b2) + k2b21/(18K
2b2).

Case 2. A0 = b1/(3b2), A1 = 0, a = b21/(9K
2b2), B1 = ±

√
2K
√
b21/(K

2b2)/
(3
√
b2), ω = −2b21/(9b2)− k2b21/(9K2b2).

Case 3. A0 = b1/(3b2), A1 = ±b1/(3b2), a = −2b21/(9K2b2), B1 = ib1/(3b2),
ω = −2b21/(9b2) + 2k2b21/(9K

2b2).

2.1.1 Dark optical soliton

From the coefficients in case 1 above we obtain the dark optical solitary solution

ψ(x, t) =

{
b1
3b2
± b1

3b2
tanh

[
Kx− 2ktb21

18Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2

+
k2b21

18K2b2

)
t+ θ

)}
. (28)

2.1.2 Bright optical soliton

From the coefficients in case 2 above we obtain the bright optical solitary solution

ψ(x, t) =

{
b1
3b2
±

√
2K
√

b21
K2b2

3
√
b2

sech

[
Kx− 2ktb21

9Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2
− k2b21

9K2b2

)
t+ θ

)}
. (29)
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2.1.3 Dark-bright optical soliton

From the coefficients in case 3 above we obtain the dark optical solitary solution

ψ(x, t) =

{
b1
3b2
± i

b1
3b2

sech

[
Kx− 2ktb21

9Kb2

]
± b1

3b2
tanh

[
Kx− 2ktb21

9Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2

+
2k2b21
9K2b2

)
t+ θ

)}
. (30)

2.1.4 Singular solitons

From the coefficients in case 1 we obtain the dark-singular solution

ψ(x, t) =

{
b1
3b2
± b1

3b2
coth

[
Kx− 2ktb21

18Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2

+
k2b21

18K2b2

)
t+ θ

)}
, (31)

while the coefficients in case 2 give the dark-singular solitary wave

ψ(x, t) =

{
b1
3b2
− i

√
2K
√

b21
K2b2

3
√
b2

csch

[
Kx− 2ktb21

9Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2
− k2b21

9K2b2

)
t+ θ

)}
. (32)

2.1.5 Combined singular soliton

From the coefficients in case 3 above we acquire the dark optical solitary wave

ψ(x, t) =

{
b1
3b2
− b1

3b2
csch

[
Kx− 2ktb21

9Kb2

]
± b1

3b2
coth

[
Kx− 2ktb21

9Kb2

]}
× exp

{
i

(
−kx+

(
−2b21
9b2

+
2k2b21
9K2b2

)
t+ θ

)}
. (33)

3 Physical expressions, discussion and comparative study

In this section, we compare the obtained solutions in this manuscript with the existing
results in [6,19,25,54]. We observe that some of the solutions in this manuscript are newly
constructed solutions. It is observed that our solutions are related to the physical features
of optical and singular soliton solutions, which play a vital role in understanding various
physical phenomena in nonlinear systems. The dark optical soliton Eq. (28) and the bright
optical soliton Eq. (28) are similar to the ones obtained in [6, 19, 25, 54]. Singular soliton
solutions similar to Eq. (28) and Eq. (28) have also been reported in [47].

Nonlinear Anal. Model. Control, 24(1):20–33
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Figure 1. The 3D and 2D evolution of dark soliton Eq. (28) for some chosen parameters mentioned in the text.

Figure 2. The 3D and 2D evolution of intensity of the bright soliton Eq. (29) for some chosen parameters
mentioned in the text.

Figure 3. The 3D and 2D evolution of intensity of the dark-bright soliton Eq. (30) for some chosen parameters
mentioned in the text.

https://www.mii.vu.lt/NA
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Figure 4. The 3D and 2D evolution of intensity of the dark-bright soliton Eq. (31) for some chosen parameters
mentioned in the text.

Figure 5. The 3D and 2D evolution of intensity of the dark-singular soliton Eq. (32) for some chosen parameters
mentioned in the text.

Finally, the dark-bright optical soliton Eq. (30) and the combined singular soliton Eq. (33)
are, to the best of our knowledge, new forms of solutions introduced into the literature for
the first time in this work. To understand the physical nature and evolution of the optical
soliton solutions Eqs. (28)–(33), we consider Figs. 1–5 for the dispersion parameters k,
K, b1 and b2. For the dark optical soliton Eq. (28) and the dark-singular soliton Eq. (28),
we choose k = 0.2, K = 1, b1 = 0.1 and b2 = 0.4. Plotting the 3D profiles of the
bright optical soliton Eq. (28) and the singular soliton Eq. (28), we choose k = 0.2,
K = 1, b1 = 0.2 and b2 = 0.1. On close observation, the intensity profiles of the
optical soliton solutions Eqs. (28)–(33) are demonstrated in Figs. 1–5. We have found
that the wave number k, associated with the phase component, plays a significant role in
defining the trajectory of the pulses as they propagate through the waveguide. This may
find applications in some optical devices such as counter, amplifier, etc. Moreover, we
have verified that the solutions obtained in this paper are indeed solutions of Eq. (1), this
is carried out with the assistance of Wolfram Mathematica 9.

Nonlinear Anal. Model. Control, 24(1):20–33
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4 Modulation instability analysis

In the previous section, optical solitons to Eq. (1) are got by employing the complex
envelope function ansatz. Now we will study the MI. We apply the linear stability analysis
technique. We suppose that Eq. (1) has the perturbed steady-state solution of the form

ψ(x, t) =
[√

P0 + ρ(x, t)
]
· eiφNL , φNL = P0x, (34)

where P0 represent the incident power. We investigate the evolution of the perturbation
ρ(x, t) using the concept of linear stability analysis. Substituting Eq. (34) into Eq. (1) and
linearizing the result in ρ(x, t), we acquire

iρt + aρxx − b1
√
P0 (ρ+ ρ∗) + b2P0(ρ+ ρ∗) = 0. (35)

The linear equation Eq. (35) can be solved in the frequency domain easily. But because of
the ρ∗ component, the Fourier terms at frequencies Ω and −Ω are coupled. So, we seek
for

ρ(t, x) = a1 · ei(Kx−Ωt) + a2 · e−i(Kx−Ωt), (36)

whereK is the wave number,Ω is the frequency of the perturbation, respectively. Eqs. (35)
and (36) give a set of two homogeneous equations in a1 and a2. Substituting Eq. (36) into
Eq. (35), we get the following system of equations for a1 and a2 upon separating the
coefficients of ei(Kx−Ωt) and e−i(Kx−Ωt):(

aK2 −Ω
)
a1 + (a1 + a2)b1

√
P0 − (a1 + a2)b2P0 = 0,(

aK2 +Ω
)
a2 + (a1 + a2)b1

√
P0 − (a1 + a2)b2P0 = 0.

(37)

From Eq. (37) one can easily obtain the following coefficient matrix of a1 and a2:(
aK2 −Ω + b1

√
P0 − b2P0 b1

√
P0 − b2P0

b1
√
P0 − b2P0 aK2 +Ω + b1

√
P0 − b2P0

)(
a1
a2

)
=

(
0
0

)
. (38)

The coefficient matrix Eq. (38) has a nontrivial solution if the determinant vanishes. By
expanding the determinant, we obtain the following dispersion relation:

a2K4 −Ω2 + 2aK2b1
√
P0 − 2aK2b2P0 = 0. (39)

The dispersion relation Eq. (39) has the following solution:

K =
1

a

√
−ab1

√
P0 + ab2P0 −

√
a2
(
Ω2 + b21P0 − 2b1b2P

3/2
0 + b22P

2
0

)
. (40)

The stability of the steady state is determined by Eq. (40). If the wave number K has
an imaginary part, the steady-state solution is unstable since the perturbation grows ex-
ponentially. But if the wave number K is real, the steady state is stable against small

https://www.mii.vu.lt/NA
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Figure 6. Regions of modulation instability gain spectrum Eq. (1) for different values.

perturbations. Thus, the necessary condition necessary for the existence of modulation
instability to occur from Eq. (36) is when either

P0 < 0, a2
(
Ω2 + b21P0 − 2b1b2P

3/2
0 + b22P

2
0

)
< 0,

or

−ab1
√
P0 + ab2P0 −

√
a2
(
Ω2 + b21P0 − 2b1b2P

3/2
0 + b22P

2
0

)
< 0.

Finally, we obtain the MI gain spectrum as

g(Ω) = 2 Im k

= 2

{
1

a

√
−ab1

√
P0 + ab2P0 −

√
a2
(
Ω2 + b21P0 − 2b1b2P

3/2
0 + b22P

2
0

)}
.

The MI gain is significantly affected by the incident power P0. From Fig. 3 it can
be seen that the MI growth rates increases with increase in incidence power values. The
main reason is due to increase in the gain along the fiber length. It is observed that two
different side bands appear in the MI gain, but the intensity of the MI gain remains closely
the same with increase of incident power.

5 Concluding remarks

This paper secured the dark, bright, dark-singular and dark-bright or combined and sin-
gular solitons to the QC-NLSE in optical fibers. The adopted integration algorithm is
the sine-Gordon equation expansion method. Acquired dark-bright optical soliton and the
combined singular soliton solutions are added to existing solutions in the literature. By
applying the concept of linear stability analysis, the modulation instability analysis is

Nonlinear Anal. Model. Control, 24(1):20–33
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studied and the MI gain spectrum is reported. All the acquired solutions satisfy the origi-
nal equation. The results of the paper are truly encouraging to conduct further research in
this avenue. Some interesting figures are also presented in Figs. 1–3.
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