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Abstract. In this paper, an integrable KP equation is studied using symmetry and conservation
laws. First, on the basis of various cases of coefficients, we construct the infinitesimal generators.
For the special case, we get the corresponding geometry vector fields, and then from known soliton
solutions we derive new soliton solutions. In addition, the explicit power series solutions are derived.
Lastly, nonlinear self-adjointness and conservation laws are constructed with symmetries.
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1 Introduction

It is well known that Kadomtsev–Petviashvili (KP) equation is mainly used to describe
the nonlinear wave phenomenon. It is first derived by physicists Boris B. Kadomtsev and
Vladimir I. Petviashvili in 1970 [5]. This equation play a very key role in the field of
mathematical physics. There are many authors studied various versions of KP equation
with different method. In [12], the authors studied (3 + 1)-dimensional generalized KP
and BKP (Bogoyavlenskii–Kadomtsev–Petviashvili) equations using the multiple exp-
function algorithm. The authors [7] investigated extended KP-like equation. The authors
[22, 23] considered mixed lump-kink solutions to the KP, BKP equation. In [10], the
authors studied diversity of interaction solutions to the (2 + 1)-dimensional Itô equation.
The authors [6], with the use of the normal form, derived an extended KP equation with
higher-order correction.

Recently, the authors [20] derived a new integrable KP equation from pseudo-differ-
ential formalism perspective. Motivated by the above papers, we study the more general
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case of KP equation with arbitrary coefficients

mt + amxxy + b∂−2x myyy + cmx∂
−1
x my + emmy = 0.

For the special case, a = b = −1/2, c = −2, d = −4, this equation reduce the case in
paper [20]. In [21], the authors considered the multiple solitons of the special coefficients
of the equation. Using the same transformation [21]

m(x, y, t) = uxx(x, y, t),

one can get

uxxt + auxxxxy + buyyy + cuxxxuxy + duxxyuxx = 0, (1)

here a, b, c and d are constants.
In this paper, we try to use the symmetry and conservation laws to study this equation.

Symmetry [1–3, 13–19] and conservation laws play a key roles in the fields of applied
mathematics and physics. Ibragimov [4] give a new theorem to derive the conservation
laws. Recently, Ma [8, 9] studied the conservation laws by using symmetries and adjoint
symmetries in details. The authors [11] investigated a few generalized KP and BKP
equations via Hirota bilinear forms. The paper is divided as follows. In Section 2, we
deal with differen cases for different coefficients, and then, the corresponding infinites-
imal generators are derived. In Section 3, we consider the symmetry reductions and
explicit solutions. In Section 4, first, the nonlinear self-adjointness are considered, and
then conservation laws are derived with symmetries.

2 Symmetry analysis

Based on the symmetry analysis [1–3, 13–19], for the vector fields,

V = ξt(x, y, t, u)
∂

∂t
+ ξx(x, y, t, u)

∂

∂x
+ ξy(x, y, t, u)

∂

∂y
+ η(x, y, t, u)

∂

∂u
,

we directly get the following results for various cases of coefficients.

Case 1. a = 0, b = 0, c = 0, d = 0:

η = F3[y, t] + xF4[y, t] + F5[x, y] + u
(
F8[y] + xF9[y] + F10[y] + xF11[y]

)
,

ξx = F6[y] + x
(
F7[y] + x

(
F9[y] + F11[y]

))
, ξy = F2[y], ξt = F1[y, t].

Case 2. a 6= 0, b = 0, c = 0, d = 0:

η = uc2 + F1[x, y, t],

ξx = c1 +
1

2
x(c4 − c6), ξy = c5 + yc6, ξt = c3 + tc4.
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Case 3. a = 0, b = 0, c 6= 0, d = −c:

η = −6dtuc2 + x2(c1 + yc2) + uc3 + F1[y, t] + xF2[y, t],

ξx =
1

2

(
x(−4dtc2 + c3 − c5 + c7)− 2d

∫
F2y dt+ 2F3[y]

)
,

ξy = 2dt(c1 + yc2) + c4 + yc5, ξt = 2dt2c2 + c6 + tc7.

Case 4. a = 0, b = 0, c 6= 0, d = 0:

η = u(4ctc2 + c3) + F1[y, t] + x

(
x(c1 + yc2) + F3[t] +

yF ′2
c

)
,

ξx =
1

2

(
x(4ctc2 + c3 − c5 + c7) + 2F2[t]

)
,

ξy = c4 + yc5, ξt = c6 + tc7.

Case 5. a 6= 0, b = 0, c = 0, d 6= 0:

η =
x2c2
2d

+ F1[y, t] + xF2[y, t],

ξx = c1 +
1

2
x(−c4 + c6), ξy = tc2 + c3 + yc4, ξt = c5 + tc6.

Case 6. a = 0, b = 0, cd(c+ d) 6= 0:

η = 4ctuc2 − 2dtuc2 + x2(c1 + yc2) + uc3 + F1[y, t]

+ x

(
F3[t] +

yF ′2
c

)
,

ξx =
1

2

(
x(4ctc2 + c3 − c5 + c7) + 2F2[t]

)
,

ξy = 2dt(c1 + yc2) + c4 + yc5, ξt = 2dt2c2 + c6 + tc7.

Case 7. a = 0, b = 0, c = 0, d 6= 0:

η = c1 + xc2 + x2c3 + x2c5 − 2dtuc6 + x2yc6 + uc7

+ F1[y, t] + xF2[y, t] + F3[y] + xF4[y],

ξx = c4 +
1

2
x(c7 − c9 + c11), ξy = 2dt(c3 + c5 + yc6) + c8 + yc9,

ξt = 2dt2c6 + c10 + tc11.

Case 8. a = 0, b 6= 0, c = 0, d = 0:

η = uc1 + F1[x, y, t],

ξx = c2 + xc3, ξy = c4 + yc5, ξt = −2tc3 + 3tc5 + c6,

https://www.mii.vu.lt/NA



Group analysis and conservation laws of an integrable KP equation 37

in addition,
−bF1yyy −F1xxt = 0.

Case 9. a 6= 0, b = 0, c 6= 0, d = 2c:

η = x2(c1 + yc2) + F1[y, t] + x

(
F3[t] +

2yF ′2
d

)
,

ξx =
1

2
x(2dtc2 − c4 + c6) + F2[t], ξy = 2dt(c1 + yc2) + c3 + yc4,

ξt = 2dt2c2 + c5 + tc6.

Case 0. a 6= 0, b = 0, c(2c− d)d 6= 0:

η = F1[y, t] + x

(
xc1 + F3[t] +

yF ′2
c

)
,

ξx =
1

2
x(−c3 + c5) + F2[t], ξy = 2dtc1 + c2 + yc3, ξt = c4 + tc5.

Case 11. a 6= 0, b = 0, c 6= 0, d = 0:

η = F1[y, t] + x

(
xc1 + F3[t] +

yF ′2
c

)
,

ξx =
1

2
x(−c3 + c5) + F2[t], ξy = c2 + yc3, ξt = c4 + tc5.

Case 12. a 6= 0, b 6= 0, c = 0, d = 0:

η = uc1 + F1[x, y, t],

ξx = xc3 + c4, ξy = c2 + 2yc3, ξt = 4tc3 + c5,

and
−bF1yyy −F1xxt − aF1xxxxy = 0.

Case 13. a = 0, b 6= 0, c(2c− d)d 6= 0:

η = 2uc1 + 2uc2 + xF3[t] + F4[t] + yF5[t] + y2F6[t]

+
x2F ′1
2d

+
xyF ′2
c
− y3F ′′1

6bd
,

ξx =
cx(2c1 + c2) + (2c− d)F2[t]

2c− d
,

ξy =
y(2cc1 + d(c1 + c2)) + (2c− d)F1[t]

2c− d
,

ξt =
t(2c(c1 − c2) + 3d(c1 + c2))

2c− d
+ c3.

Nonlinear Anal. Model. Control, 24(1):34–46



38 G. Wang et al.

Case 14. a = 0, b 6= 0, c 6= 0, d = 0:

η = 2uc2 + 2uc3 + x2F2[t] + xF3[t] + F4[t] + yF5[t] + y2F6[t]

+
xyF ′1
c
− y3F ′2

3b
,

ξx = xc2 +
xc3
2

+ F1[t], ξy = c1 + yc2, ξt = t(c2 − c3) + c4.

Case 15. a 6= 0, b 6= 0, c(2c− d)d 6= 0:

η = xF3[t] + F4[t] + yF5[t] + y2F6[t] +
x2F ′1
2d

+
xyF ′2
c
− y3F ′′1

6bd
,

ξx =
−cxc1 + (2c− d)F2[t]

2c− d
, ξy =

−2cyc1 + (2c− d)F1[t]

2c− d
,

ξt = −
4ctc1
2c− d

+ c2.

Case 16. a = 0, b 6= 0, c 6= 0, d = 2c:

η = uc1 + F5[t] + yF6[t] + y2F7[t]

+
x(4dF4[t] + 2xF ′2 + 8yF ′3 + xyF ′′1 )

4d
− y3F ′′2

6bd
− y4F ′′′1

48bd
,

ξx = F3[t] +
1

8
x(3c1 + 2F ′1), ξy = F2[t] +

1

4
y(c1 + 2F ′1),

ξt = F1[t].

Case 17. a = 0, b 6= 0, c = 0, d 6= 0:

η = −4uc1 + 2uc3 + xF2[t] + xyF3[t] + xy2F4[t] + F5[t] + yF6[t]

+ y2F7[t] +
x2F ′1
2d
− y3F ′′1

6bd
,

ξx = xc1 + c2, ξy = 4yc1 − yc3 + F1[t], ξt = 10tc1 − 3tc3 + c4.

Case 18. a 6= 0, b 6= 0, c 6= 0, d = 0:

η = F4[t] + yF5[t] + y2F6[t] + x

(
xF2[t] + F3[t] +

yF ′1
c

)
− y3F ′2

3b
,

ξx = xc2 + F1[t], ξy = c1 + 2yc2, ξt = 4tc2 + c3.

Case 19. a 6= 0, b 6= 0, c 6= 0, d = 2c:

η = F5[t] + yF6[t] + y2F7[t] +
x(4dF4[t] + 2xF ′2 + 8yF ′3 + xyF ′′1 )

4d

− y3F ′′2
6bd

− y4F ′′′1
48bd

,

ξx = F3[t] +
xF ′1
4
, ξy = F2[t] +

yF ′1
2
, ξt = F1[t].
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Case 20. a 6= 0, b 6= 0, c = 0, d 6= 0:

η = c4 + xc5 + F2[t] + xF3[t] + xF4[t] + xyF5[t]

+ xy2F6[t] + F7[t] + yF8[t] + y2F9[t] +
x2F ′1
2d
− y3F ′′1

6bd
,

ξx = xc1 + c2, ξy = 2yc1 + F1[t], ξt = 4tc1 + c3.

Case 21. a = b = 1/2, c = −2, d = −4:

η = F5[t] + xF6[t]−
1

8
x2F ′3 + y

(
F7[t]−

1

16
x(8F ′1 + xF ′′2 )

)
− 1

96
y2
(
−96F4[t] + y(8F ′′3 + yF ′′′2 )

)
,

ξx = F1[t] +
xF ′2
4
, ξy = F3[t] +

yF ′2
2
, ξt = F2[t].

It is clear that, for the case F2[t] = 4c1t+ c2,F3[t] = c3,F1[t] = c4,F5[t] = c5,F4[t] =
F6[t] = F7[t] = 0, we have the following results:

η = c5, ξx = c1x+ c4, ξy = 2c1y + c3, ξt = 4c1t+ c2.

It is easily get the following vector fields

v1 = ∂u, v2 = ∂x, v3 = ∂y, v4 = ∂t,

v5 = x∂x + 2y∂y + 4t∂t.

Consequently, we get the following invariant group:

g(x, y, t, u) 7→ g(x+ ε, y, t, u),

g(x, y, t, u) 7→ g(x, y + ε, t, u),

g(x, y, t, u) 7→ g(x, y, t+ ε, u),

g(x, y, t, u) 7→ g(x, y, t, u+ ε),

g(x, y, t, u) 7→ g
(
e−εx, e−2εy, e−4εt, u

)
.

Therefore, based the obtained results, we can construct new exact solutions of KP equa-
tion for known exact solutions. We will show these results in the next section.

For various cases of coefficients, we get different vector fields. In the following, we
try to derive symmetry reductions and exact solutions.

3 Symmetry reductions and exact solutions

3.1 Symmetry reduction

Here, we just consider the following case, as other cases can derived in a similar way.
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Case A. Travelling wave reduction

For this case, we let ξ = x+y−vt, where v is the speed of wave. We can get the reduced
equation is

(b− v)f ′′′ + af (5) + (c+ d)f ′′′f ′′ = 0.

Integral once, and let the integral constant equal to zero, one can arrive at

(b− v)f ′′ + af (4) +
(c+ d)

2
(f ′′)2 = 0. (2)

In order to further simplify the equation, let h = f ′′, which leads to the following results:

(b− v)h+ ah′′ +
(c+ d)

2
h2 = 0.

So, now, if we get the h, we can get the exact solutions of the original equation.

3.1.1 Case B. Scalar reduction

For the case v5, we can get the invariant solutions and invariants are

u = f(ξ, η), ξ = xt−1/4, η = yt−1/2.

In this way, we get the reduced equation is

−1

4
ξfξξξ −

1

2
ηfξξη −

1

2
fξξ + afξξξξη + bfηηη + cfξξξfξη + dfξξηfξξ = 0.

In fact, we can further reduce this equation based on the symmetry analysis. We, however,
for brevity, do not list all of them.

3.2 Soliton solutions via the known soliton solutions

For one-parameter groups, that is space-invariance, g(x, y, t, u) 7→ g(x + ε, y, t, u), we
can construct new exact solutions via the known soliton solutions. For example, for the
single soliton solution [21], we have the following new exact solutions

u(x, y, t) = ln

(
1 + exp

{
k1(x+ ε) + r1y +

k41r1 + r31
2k21t

})
,

so, the final soliton solutions of original equation is

v(x, y, t) = k21 exp

{
k1(x+ ε) + r1y +

k41r1 + r31
2k21

t

}
×
(
1 + exp

{
k1(x+ ε) + r1y +

k41r1 + r31
2k21

t

})−2
.
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For two soliton solutions [21],

u(x, y, t) = ln

(
1 + exp

{
k1(x+ ε) + r1y +

k41r1+r
3
1

2k21
t

}
+ exp

{
k2(x+ ε) + r2y +

k42r2+r
3
2

2k22
t

}
+
k21k

2
2(k1 − k2)2 − (k1r2 − k2r1)2

k21k
2
2(k1 + k2)2 − (k1r2 − k2r1)2

× exp

{
(k1 + k2)(x+ ε) + (r1 + r2)y +

(
k41r1+r

3
1

2k21
+
k42r2+r

3
2

2k22

)
t

})
.

For the invariant group g(x, y, t, u) 7→ g(e−εx, e−2εy, e−4εt, u), we can get new two
soliton solutions are

u(x, y, t)

= ln

(
1 + exp

{
k1
(
e−εx

)
+ r1e

−2εy +
k41r1+r

3
1

2k21
e−4εt

}
+ exp

{
k2
(
e−εx

)
+ r2e

−2εy +
k42r2+r

3
2

2k22
e−4εt

}
+
k21k

2
2(k1 − k2)2 − (k1r2 − k2r1)2

k21k
2
2(k1 + k2)2 − (k1r2 − k2r1)2

× exp

{
(k1 + k2)

(
e−εx

)
+ (r1 + r2)e

−2εy +

(
k41r1+r

3
1

2k21
+
k42r2+r

3
2

2k22

)
e−4εt

})
.

We can also construct other new explicit soliton solutions via other invariant group.
Here, we do not list all of them.

3.3 The explicit power series solutions

Now, we deal with (2). Assume that (2) has the following solution:

f(ξ) =

∞∑
n=0

cnξ
n. (3)

Putting (3) into (2), one has

24ac4 + a

∞∑
n=1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)cn+4ξ
n

+ 2(b− v)c2 + (b− v)
∞∑
n=1

(n+ 1)(n+ 2)cn+2ξ
n + 4

c+ d

2
c22

+
c+ d

2

∞∑
n=1

n∑
k=1

(k + 1)(n+ 2− k)(n+ 3− k)ck+1cn+3−kξ
n = 0.
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Consider the case when n = 0, one leads to

c4 =
(v − b)c2 − (c+ d)c22

12a
.

For this case, it requires that a 6= 0. Consider the general case n > 1, one gets

cn+4 =
1

a(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
(v − b)(n+ 1)(n+ 2)cn+2

− c+ d

2

n∑
k=1

(k + 1)(n+ 2− k)(n+ 3− k)ck+1cn+3−k

)
.

Therefore, we have the following results:

f(ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 +

∞∑
n=1

cn+4ξ
n+4

= c0 + c1ξ + c2ξ
2 + c3ξ

3 +
(v − b)c2 − (c+ d)c22

12a
ξ4

+

∞∑
n=1

(
1

a(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
(v − b)(n+ 1)(n+ 2)cn+2

− c+ d

2

n∑
k=1

(k + 1)(n+ 2− k)(n+ 3− k)ck+1cn+3−k

))
ξn+4.

At last, we get the explicit solutions of (1)

u(x, t) =

[
c0 + c1(x+ y − vt) + c2(x+ y − vt)2 + c3(x+ y − vt)3

+
(v − b)c2 − (c+ d)c22

12a
(x+ y − vt)4

+

∞∑
n=1

(
1

a(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
(v − b)(n+ 1)(n+ 2)cn+2

− c+d

2

n∑
k=1

(k + 1)(n+ 2− k)(n+ 3− k)ck+1cn+3−k

))
(x+ y − vt)n+4

]
.

Here ci (i = 0, 1, 2, 3) are arbitrary constants, one can get the other coefficients cn
(n > 4) from the similar way.

In order to provide the help for numerical results, we rewrite it in approximate form

u(x, y, t) = c0 + c1(x+ y − vt) + c2(x+ y − vt)2 + c3(x+ y − vt)3

+
(v − b)c2 − (c+ d)c22

12a
(x+ y − vt)4 + · · · .

Remark: It is easily to verify the convergence, we do not give the proof for simplicity.
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4 Nonlinear self-adjointness and conservation laws

In this section, we consider the nonlinear self-adjointness and conservation laws of (1).
We need to use the following results [4]

Theorem 1. Every Lie point, Lie–Bäcklund and nonlocal symmetry provides a conser-
vation law for (1) and the adjoint equation. Then the elements of conservation vector
(C1, C2, C3) are defined by the following expression:

Ci = ξiL+Wα

[
∂L

∂uαi
−Dj

∂L

∂uαij
+DjDk

∂L

∂uαijk

]
+DjW

α

[
∂L

∂uαij
−Dk

∂L

∂uαijk
+ · · ·

]
,

where Wα = ηα − ξjuαj .

Based on the definition in [4], we get the adjoint equation of (1) as follows:

−bυyyy − υxxt − 3cυxxuxxy − duxxυxxy + cυxyuxxx − 2dυxyuxxx

− cuxyυxxx − 2cυxuxxxy + cυyuxxxx − dυyuxxxx − aυxxxxy = 0.

It is easily found that this equation is not self-adjointness. In order to get the conditions,
we let υ = F (u),

− b
(
F ′′′u3y + 3F ′′uyuyy + F ′uyyy

)
− F ′′′utu2x − 2F ′′uxuxt − F ′′utuxx

− 3c
(
F ′′u2x + F ′uxx

)
uxxy − duxx

(
F ′′′uyu

2
x + 2F ′′uxuxy + F ′′uyuxx + F ′uxxy

)
+ c(F ′′uyux + F ′uxy)uxxx − 2d(F ′′uyux + F ′uxy)uxxx

− cuxy
(
F ′′′u3x + 3F ′′uxuxx + F ′uxxx

)
− 2cF ′uxuxxxy + cF ′uyuxxxx

− dF ′uyuxxxx − F ′(−buyyy − duxxuxxy − cuxyuxxx − auxxxxy)
− a
(
F (5)uyu

4
x + 4F ′′′′u3xuxy + 3F ′′′′uyu

2
xuxx + 6F ′′′uxuxyuxx

)
+ a
(
3ux(F

′′′′uyux + F ′′′uxy)uxx + 3F ′′′u2xuxxy + 3F ′′uxxuxxy
)

+ a
(
uxx(F

′′′uyuxx + F ′′uxxy) + uxx(2F
′′′uyuxx + 2F ′′uxxy)

)
+ a
(
F ′′′ux(uxyuxx + uxuxxy) + F ′′′ux(2uxyuxx + 2uxuxxy)

)
+ a
(
F ′′′uyuxuxxx + F ′′uxyuxxx + (F ′′′uyux + F ′′uxy)uxxx

)
+ (2F ′′′uyux + 2F ′′uxy)uxxx + 4F ′′uxuxxxy + F ′′uyuxxxx + F ′uxxxxy = 0.

It is clear that for this case F = c1y + c2, this equation is strictly self adjoint for all
parameters.

Based on Theorem 1, we get

Ct = ξtL+W

(
Dxx

∂L

∂uxxt

)
+DxW

(
−Dx

∂L

∂uxxt

)
+DxxW

(
∂L

∂uxxt

)
,
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Cx = ξxL+W

(
−Dx

∂L

∂uxx
−Dy

∂L

∂uxy
+Dxx

∂L

∂uxxx
+Dxy

∂L

∂uxxy

+Dxt
∂L

∂uxxt
+Dxxxy

∂L

∂uxxxxy

)
+DxW

(
∂L

∂uxx
−Dx

∂L

∂uxxx
−Dy

∂L

∂uxxy
−Dt

∂L

∂uxxt
−Dxxy

∂L

∂uxxxxy

)
+DyW

(
∂L

∂uxy
−Dx

∂L

∂uxxy
−Dxx

∂L

∂uxxxxy

)
+DtW

(
−Dx

∂L

∂uxxt

)
+DxxW

(
∂L

∂uxxx
+Dxy

∂L

∂uxxxxy

)
+DxxxW

(
−Dy

∂L

∂uxxxxy

)
,

Cy = ξyL+W

(
−Dx

∂L

∂uxy
+Dxx

∂L

∂uxxy
+Dyy

∂L

∂uyyy
+Dxxxx

∂L

∂uxxxxy

)
+DxW

(
∂L

∂uxy
−Dx

∂L

∂uxxy
−Dxxx

∂L

∂uxxxxy

)
+DyW

(
−Dy

∂L

∂uyyy

)
+DyyW

(
∂L

∂uyyy

)
+DxxW

(
∂L

∂uxxy
+Dxx

∂L

∂uxxxxy

)
+DxxxW

(
−Dx

∂L

∂uxxxxy

)
+DxxxxW

(
∂L

∂uxxxxy

)
.

Now, for the special case of w = −ut, we derive the following results:

Ct = ξtL+ (−ut)
(
Dxx

∂L

∂uxxt

)
+Dx(−ut)

(
−Dx

∂L

∂uxxt

)
+Dxx(−ut)

(
∂L

∂uxxt

)
= −utvxx + uxtvx − uxxtv,

Cx = ξxL+ (−ut)
(
−Dx

∂L

∂uxx
−Dy

∂L

∂uxy
+Dxx

∂L

∂uxxx
+Dxy

∂L

∂uxxy

+Dxt
∂L

∂uxxt
+Dxxxy

∂L

∂uxxxxy

)
+Dx(−ut)

(
∂L

∂uxx
−Dx

∂L

∂uxxx
−Dy

∂L

∂uxxy
−Dt

∂L

∂uxxt
−Dxxy

∂L

∂uxxxxy

)
+Dy(−ut)

(
∂L

∂uxy
−Dx

∂L

∂uxxy
−Dxx

∂L

∂uxxxxy

)
+Dt(−ut)

(
−Dx

∂L

∂uxxt

)
+Dxx(−ut)

(
∂L

∂uxxx
+Dxy

∂L

∂uxxxxy

)
+Dxxx(−ut)

(
−Dy

∂L

∂uxxxxy

)
= (−ut)(vxt + avxxxy − cvyuxxx + cvxxuxy + 2cvxuxxy + dvxyuxx + dvyuxxx)

− uxt(−cvxuxy − cvuxxy − dvyuxx − vt − avxxy)
− uyt(cvuxxx − dvxuxx − dvuxxx − avxx) + uttvx

− utxx(cvuxy + avvxy) + utxxxavy,
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Cy = ξyL+ (−ut)
(
−Dx

∂L

∂uxy
+Dxx

∂L

∂uxxy
+Dyy

∂L

∂uyyy
+Dxxxx

∂L

∂uxxxxy

)
+Dx(−ut)

(
∂L

∂uxy
−Dx

∂L

∂uxxy
−Dxxx

∂L

∂uxxxxy

)
+Dy(−ut)

(
−Dy

∂L

∂uyyy

)
+Dyy(−ut)

(
∂L

∂uyyy

)
+Dxx(−ut)

(
∂L

∂uxxy
+Dxx

∂L

∂uxxxxy

)
+Dxxx(−ut)

(
−Dx

∂L

∂uxxxxy

)
+Dxxxx(−ut)

(
∂L

∂uxxxxy

)
= (−ut)(−cvxuxxx− cvuxxxx+ dvuxxxx+ 2dvxuxxx+ dvxxuxx+ bvyy+ avxxxx)

− utx(avuxxx − dvuxxx − dvxuxx − avxxx) + utybvyyy

− utyybv − utxx(dvuxx + avxx) + utxxxavx − utxxxxav.

5 Conclusions

In this paper, based on symmetries and conservation laws, we studied a new integrable
KP equation. First, we considered the corresponding infinitesimal generators for different
coefficients. In particular, for the special case, we get the geometric vector fields and get
the corresponding invariant group. Then, based on the invariant group, some new soliton
solutions are presented. In addition, the explicit power series solutions are derived. Mean-
while, the recursive relationship between the coefficients is found. Subsequently, nonlin-
ear self-adjointness of this equation are presented. Particulary, strictly self-adjointness
conditions is explained. Lastly, conservation laws are obtained. In future works, we will
study the nonlocal symmetries, inverse scattering and other properties, also including
other solutions using various method.
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