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Abstract. In this article, we study a class of nonlinear fractional differential equations with mixed-
type boundary conditions. The fractional derivatives are involved in the nonlinear term and the
boundary conditions. By using the properties of the Green function, the fixed point index theory
and the Banach contraction mapping principle based on some available operators, we obtain the
existence of positive solutions and a unique positive solution of the problem. Finally, two examples
are given to demonstrate the validity of our main results.
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1 Introduction

In this article, we consider the following class of boundary value problem (BVP):

Dγ
0+x(t) + f

(
t, x(t), Dα

0+x(t), Dβ
0+x(t)

)
= 0, 0 < t < 1, n− 1 < γ 6 n,

x(j)(0) = 0, Dβ
0+x(0) = 0, j = 0, 1, . . . , n− 3,

(11)
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Dβ
0+x(1) = a1

1∫
0

p1(s)Dβ
0+x(s) dA1(s) + a2

η∫
0

p2(s)Dβ
0+x(s) dA2(s)

+ a3

∞∑
i=1

µiD
β
0+x(ζi), (12)

whereDγ
0+ is the Riemann–Liouville’s fractional derivative, 0 < α < n−2 6 β < n−1,

γ − β > 1, β − α > 1; aj > 0 (j = 1, 2, 3); µi > 0, 0 < η < ζ1 < ζ2 < · · · < ζi <
· · · < 1 (i = 1, 2, . . . ); 1 − a3

∑∞
i=1 µiζ

δ−1
i > 0; p1, p2 : (0, 1) → R+ = [0,+∞)

are continuous with p1, p2 ∈ L1(0, 1);
∫ 1

0
p1(s)u(s) dA1(s) and

∫ 1

0
p2(s)u(s) dA2(s)

denote the Riemann–Stieltjes integrals, in which A1, A2 : [0, 1] → R are function of
bounded variation. The nonlinearity f : [0, 1]× R+ × R+ × R+ → R+ is continuous.

Fractional differential equations with boundary value conditions have been investi-
gated by many researchers due to its wide range of applications in many fields of sciences,
robotics and electrical networks, etc. For details, we refer the reader to [5, 11, 15, 17, 26].
Recently, many results have been obtained for the existence of positive solutions or the
uniqueness of solution of fractional differential equations in [1–4,6–10,12–14,16,18–25,
27–37]. In [12,13,30], the authors studied fractional differential equation with multi-point
boundary conditions; [7,8,21] deal with fractional differential equations with infinite point
boundary; integral type boundary value conditions of fractional differential equations
are investigated in [1, 2, 18, 19, 27, 36]. Moreover, in [1, 2, 4, 7], the conditions for the
existence of positive solutions to various fractional differential equations are established;
while in [14], the conditions for the existence of two positive solutions has been achieved.
For results on the uniqueness of solutions, we refer the reader to [3, 10, 19–21, 27, 33].
Some interesting results obtained by using the reduced order method can be found in
[9, 10, 22, 23, 28, 31–33, 35, 36] and the references therein.

In [36], Zhang et al. studied the following fractional differential equation:

−Dα
t x(t) = f

(
t, x(t), Dβ

t x(t)
)
, 0 < t < 1,

Dβ
t x(0) = 0, Dβ

t x(1) =

1∫
0

g(s)Dβ
t x(s) dA(s),

where Dα
t is Riemann–Liouville’s fractional derivative, 0 < β 6 1 < α 6 2, α− β > 1,

A is a function of bounded variation and dA can be a signed measure, f : (0, 1) ×
(0,+∞)× (0,+∞)→ R+ is continuous, and f(t, x, y) may be singular at both t = 0, 1
and x = y = 0. By analyzing the spectral of the relevant linear operator, they obtained
positive solutions of the singular fractional differential equation.

In [30], Zhang studied the following nonlinear fractional differential equation with
infinite-point boundary value conditions:

Dα
0+u(t) + q(t)f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(i)(1) =

∞∑
j=1

αiu(ξi),
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where α > 2, n − 1 < α 6 n, i ∈ [1, n − 2] is a fixed integer, αj > 0, 0 < ξ1 <
ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j = 1, 2, . . . ), (α − 1)(α − 2) · · · (α − i) −∑∞
j=1 αiu(ξi) > 0, Dα

0+ is the standard Riemann–Liouville derivative, q : (0, 1) → R+

and f : (0, 1) × (0,+∞) → R+ are continuous functions, and q(t) may be singular at
t = 0, 1. By using height functions of the nonlinear term on some bounded sets, the author
obtained the positive solutions of the problem.

In [25], Qarout et al. studied the following semi-linear Caputo fractional differential
equation:

cDq
0+x(t) = f

(
t, x(t)

)
, 0 < t < 1, n− 1 < q 6 n,

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0,

x(1) = a

ξ∫
0

x(s) d(s) + b

m−2∑
i=1

αix(ηi),

where cDq
0+ denotes the Caputo fractional derivative of order q, f : [0, 1]× R+ → R+ is

a continuous function, a and b are real constants and αi are positive real constants. They
got the existence of solutions by using some standard tools of fixed point theory.

Motivated by the above mentioned work, the purpose of this article is to investigate
the existence of solutions for the BVP (1). The main new features presented in this paper
are as follows. Firstly, the boundary value problem has wider and more general boundary
conditions; it includes many situations, which were investigated before as special cases.
Secondly, the presence of the fractional derivatives in the nonlinear term f and the bound-
ary conditions makes the study extremely difficult. By using some available operators, the
BVP (1) is transformed into a class of relatively simple low-order fractional differential
equations. Thirdly, our technique and tools are novel. Consequently, conditions for the
positive solutions and a unique positive solution of the BVP (1) are obtained.

The rest of the paper is organized as follows. In Section 2, we present some prelim-
inaries and lemmas that are used to prove our main results, and we also develop some
properties of the Green function, and reduce the original equation to a class of relatively
simple equations by using some available operators. In Section 3, we discuss the existence
of positive solutions of the BVP (1) by the tool of the fixed point index theory, and give an
example to demonstrate the application of our theoretical results. In Section 4, we create
a appropriate operator and discuss a unique positive solution of the BVP (1), and give an
example to emphasize our two theories.

2 Preliminaries and lemmas

In this section, for the convenience of reader, we present some necessary definitions and
lemmas that will be used in the proof of our main results.
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Definition 1. (See [24].) The Riemann–Liouville fractional integral of order α > 0 of
a function y : (0,∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

t∫
0

(t− s)α−1y(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2. (See [24].) The Riemann–Liouville fractional derivative of order α > 0 of
a continuous function y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0,∞).

Lemma 1. (See [24].) Let α > 0. If we assume u ∈ C(0, 1)∩L1(0, 1), then the fractional
differential equationDα

0+u(t) = 0 has u(t) = C1t
α−1+C2t

α−2+· · ·+CN tα−N ,Ci ∈ R
(i = 1, 2, . . . , N ), as the unique solution, where N is the smallest integer greater than or
equal to α.

Lemma 2. (See [24].) Assume that u ∈ C(0, 1)∩L1(0, 1) with a fractional derivative of
order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then Iα0+D

α
0+u(t) = u(t) + C1t

α−1 +
C2t

α−2 + · · · + CN t
α−N for some Ci ∈ R (i = 1, 2, . . . , N ), where N is the smallest

integer greater than or equal to α.

Now, we consider the following modified boundary value problem (BVP):

Dδ
0+u(t) + f

(
t, Iβ0+u(t), Iβ−α0+ u(t), u(t)

)
= 0, 0 < t < 1, 1 < δ 6 2,

u(0) = 0,

u(1) = a1

1∫
0

p1(s)u(s) dA1(s) + a2

η∫
0

p2(s)u(s) dA2(s) + a3

∞∑
i=1

µiu(ζi),

(2)

where δ = γ − β.

Lemma 3. If u ∈ C[0, 1] is a solution of BVP (2), then Iβ0+u(t) is a solution of BVP (1).

Proof. We assume u ∈ C[0, 1] is a solution for BVP (2). Let x(t) = Iβ0+u(t). We have

Dβ
0+x(t) = u(t), Dα

0+x(t) = Dα
0+I

β
0+u(t) = Iβ−α0+ u(t),

Dγ
0+x(t) =

dn

dtn
In−γ0+ x(t) =

dn

dtn
In−γ0+ Iβu(t) =

dn

dtn
In−γ+β0+ u(t) = Dγ−β

0+ u(t),
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which means that

Dγ
0+x(t) + f

(
t, x(t), Dα

0+x(t), Dβ
0+x(t)

)
= Dγ−β

0+ u(t) + f
(
t, Iβ0+u(t), Iβ−α0+ u(t), u(t)

)
= Dδ

0+u(t) + f
(
t, Iβ0+u(t), Iβ−α0+ u(t), u(t)

)
= 0,

x(i)(t) = Di
0+I

β
0+u(t) = Iβ−i0+ u(t), i = 1, 2, . . . , n− 3.

(3)

By x(t) = Iβ0+u(t) and (3), we obtain

Dβ
0+x(0) = 0, x(0) = x′(0) = · · · = x(n−3)(0) = 0,

Dβ
0+x(1) = a1

1∫
0

p1(s)Dβ
0+x(t) dA1(s) + a2

η∫
0

p2(s)Dβ
0+x(t) dA2(s)

+ a3

∞∑
i=1

µiD
β
0+x(ζi).

Hence, we claim that Iβ0+u(t) is a solution of the BVP (1). The proof is completed.

Lemma 4. Let y ∈ C(0, 1)∩L1(0, 1) be a given function. Then the function u ∈ C[0, 1]
given by

u(t) =

1∫
0

G(t, s)y(s) ds, t ∈ [0, 1],

is a solution of the following boundary value problem:

Dδ
0+u(t) + y(t) = 0, 0 < t < 1, 1 < δ 6 2,

u(0) = 0,

u(1) = a1

1∫
0

p1(s)u(s) dA1(s) + a2

η∫
0

p2(s)u(s) dA2(s) + a3

∞∑
i=1

µiu(ζi),

(4)

where
G(t, s) = G1(t, s) + κ1t

δ−1P1(s) + κ2t
δ−1P2(s), (5)

G1(t, s) =
1

σΓ(δ)

{
[t(1− s)]δ−1l(s)− σ(t− s)δ−1, 0 6 s 6 t 6 1,

[t(1− s)]δ−1l(s), 0 6 t 6 s 6 1,

P1(s) =

1∫
0

G1(t, s)p1(t) dA1(t), P2(s) =

η∫
0

G1(t, s)p2(t) dA2(t), s ∈ [0, 1],
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σ = 1− a3
∞∑
i=1

µiζ
δ−1
i > 0, l(s) = 1− a3

b(s)

(1− s)δ−1
, s ∈ [0, 1],

b(s) =



∑∞
i=1 µi(ζi − s)δ−1, 0 6 s < ζ1,∑∞
i=2 µi(ζi − s)δ−1, ζ1 6 s < ζ2,

. . .∑∞
i=i0

µi(ζi − s)δ−1, ζi0−1 6 s < ζi0 ,

. . .

0, limi→∞ ζi 6 s 6 1,

κ1 =
a1
σρ1

(
1 +

(
a1ρ1
σρ1

+ 1

)
a2ρ2
σρ2

)
, κ2 =

(
a1ρ1
σρ1

+ 1

)
a2
σρ2

,

ρ1 =

1∫
0

tδ−1p1(t) dA1(t) > 0, ρ1 = 1− a1ρ1
σ

> 0,

ρ2 =

η∫
0

tδ−1p2(t) dA2(t) > 0, ρ2 = 1−
(
a1a2ρ1
σ2ρ1

+
a2
σ

)
ρ2 > 0.

Obviously, G(t, s) is a continuous function on [0, 1]× [0, 1].

Proof. By means of Lemma 2, we can turn (4) to an equivalent integral equation

u(t) = c1t
δ−1 + c2t

δ−2 −
t∫

0

(t− s)δ−1

Γ(δ)
y(s) ds.

Considering the fact that u(0) = 0, we get that c2 = 0. Then

u(t) = c1t
δ−1 −

t∫
0

(t− s)δ−1

Γ(δ)
y(s) ds. (6)

On the other hand, by the condition

u(1) = a1

1∫
0

p1(s)u(s) dA1(s) + a2

η∫
0

p2(s)u(s) dA2(s) + a3

∞∑
i=1

µiu(ζi),

we have

c1 =
1

σΓ(δ)

1∫
0

(1− s)δ−1y(s) ds+
a1
σ

1∫
0

p1(s)u(s) dA1(s)

+
a2
σ

η∫
0

p2(s)u(s) dA2(s)− a3
σΓ(δ)

∞∑
i=1

µi

ζi∫
0

(ζi − s)δ−1y(s) ds. (7)
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By (6) and (7), we have

u(t) = − 1

Γ(δ)

t∫
0

(t− s)δ−1y(s) ds+
1

σΓ(δ)

1∫
0

(
t(1− s)

)δ−1
y(s) ds

+
a1t

δ−1

σ

1∫
0

p1(s)u(s) dA1(s) +
a2t

δ−1

σ

η∫
0

p2(s)u(s) dA2(s)

− a3
σΓ(δ)

∞∑
i=1

µi

ζi∫
0

(
t(ζi − s)

)δ−1
y(s) ds

=
1

σΓ(δ)

t∫
0

tδ−1(1− s)δ−1
(

1− a3
∞∑
i=1

bi(s)

(1− s)δ−1

)
y(s) ds

− 1

σΓ(δ)

t∫
0

σ(t− s)δ−1y(s) ds

+
1

σΓ(δ)

1∫
t

tδ−1(1− s)δ−1
(

1− a3
∞∑
i=1

bi(s)

(1− s)δ−1

)
y(s) ds

+
a1t

δ−1

σ

1∫
0

p1(s)u(s) dA1(s) +
a2t

δ−1

σ

η∫
0

p2(s)u(s) dA2(s), (8)

where

bi(s) =

{
µi(ζi − s)δ−1, 0 6 s < ζi,

0, ζi 6 s 6 1,
i = 1, 2, . . . .

Then, by (8), we have

u(t) =

1∫
0

G1(t, s)y(s) ds+
a1t

δ−1

σ

1∫
0

p1(s)u(s) dA1(s)

+
a2t

δ−1

σ

η∫
0

p2(s)u(s) dA2(s). (9)

Multiplying both sides of (9) by p1(t) and integrating from 0 to 1, we have

1∫
0

p1(t)u(t) dA1(t) =

1∫
0

p1(t)

( 1∫
0

G1(t, s)y(s) ds

)
dA1(t)

Nonlinear Anal. Model. Control, 24(1):73–94
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+
a1
σ

1∫
0

tδ−1p1(t) dA1(t)

1∫
0

p1(s)u(s) dA1(s)

+
a2
σ

1∫
0

tδ−1p1(t) dA1(t)

η∫
0

p2(s)u(s) dA2(s). (10)

Then, from (10) we obtain

1∫
0

p1(t)u(t) dA1(t) =
1

ρ1

1∫
0

P1(s)y(s) ds+
a2ρ1
σρ1

η∫
0

p2(s)u(s) dA2(s). (11)

Substituting (11) into (9), we have

u(t) =

1∫
0

G1(t, s)y(s) ds+
a1t

δ−1

σρ1

1∫
0

P1(s)y(s) ds

+

(
a1a2ρ1
σ2ρ1

+
a2
σ

)
tδ−1

η∫
0

p2(s)u(s) dA2(s). (12)

Multiplying both sides of (12) by p2(t) and integrating from 0 to η, we have

η∫
0

p2(t)u(t) dA2(t) =
1

ρ2

1∫
0

P2(s)y(s) ds+
a1ρ2
σρ1ρ2

1∫
0

P1(s)y(s) ds. (13)

From (12) and (13) we have

u(t) =

1∫
0

G1(t, s)y(s) ds+ κ1

1∫
0

tδ−1P1(s)y(s) ds+ κ2

1∫
0

tδ−1P2(s)y(s) ds

=

1∫
0

G(t, s)y(s) ds.

The proof is complete.

Lemma 5. Suppose that a3
∑∞
i=1 µiζ

δ−1
i < 1, then the function l(s) = 1 − a3b(s)/

(1− s)δ−1 defined in Lemma 4 satisfies l(s) > 0, s ∈ [0, 1].

Proof. According to the property in convergence of sequence, there exists 0 6 ζ0 6 1
such that limi→∞ ζi = ζ0. For s ∈ [0, 1], we may discuss in two aspects:
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(i) If 0 6 s < ζ0, then there exists N ∈ N+ such that ζN−1 6 s < ζN . Hence,

l(s) = 1− a3
b(s)

(1− s)δ−1
= 1− a3

∞∑
i=N

µi
(ζi − s)δ−1

(1− s)δ−1
.

The assumption a3
∑∞
i=1 µiζ

δ−1
i < 1 gives a guarantee that the above function is well

defined. Moreover,

l′(s) = a3

∞∑
i=N

µi
[
(δ − 1)(ζi − s)δ−2(1− s)1−δ + (1− δ)(ζi − s)δ−1(1− s)−δ

]
= a3

∞∑
i=N

µi(ζi − s)δ−2(1− s)−δ(δ − 1)(1− ζi) > 0.

(ii) If s > ζ0, then s > ζi for all i ∈ N+. In view of the definition of b(s) in Lemma 4,
we know that b(s) = 0, s ∈ [ζ0, 1]. Thus, l(s) = 1, s ∈ [ζ0, 1].

Hence, from (1) and (2) we know that l(s) is nondecreasing on [0, 1], and l(s) >
l(0) > 0, s ∈ [0, 1]. The proof is complete.

Lemma 6. Let a3
∑∞
i=1 µiζ

δ−1
i < 1, and Ai(t) is increasing on t ∈ [0, 1] (i = 1, 2).

Then the Green function G(t, s) defined by (5) satisfies:

(i) G(t, s) > 0, (t, s) ∈ [0, 1]× [0, 1];
(ii) tδ−1G(1, s) 6 G(t, s) 6 tδ−1Q(s), t, s ∈ [0, 1], where

Q(s) =
(1− s)δ−1

σΓ(δ)
l(s) + κ1P1(s) + κ2P2(s).

Proof. (i) For 0 6 s 6 t 6 1,

G(t, s) =
1

σΓ(δ)

[(
t(1− s)

)δ−1
l(s)− σ(t− s)δ−1

]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

>
1

σΓ(δ)

[(
t(1− s)

)δ−1
l(s)− σ(t(1− s))δ−1

]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

=
(t(1− s))δ−1

σΓ(δ)
[l(s)− l(0)] + κ1t

δ−1P1(s) + κ2t
δ−1P2(s) > 0.

For 0 6 t 6 s 6 1,

G(t, s) =
1

σΓ(δ)

(
t(1− s)

)δ−1
l(s) + κ1t

δ−1P1(s) + κ2t
δ−1P2(s) > 0.

(ii) For 0 6 s 6 t 6 1,

G(t, s) =
1

σΓ(δ)

[(
t(1− s)

)δ−1
l(s)− σ(t− s)δ−1

]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

>
1

σΓ(δ)

[(
t(1− s)

)δ−1
l(s)− σ

(
t(1− s)

)δ−1]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

= tδ−1G(1, s),

Nonlinear Anal. Model. Control, 24(1):73–94
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G(t, s) =
1

σΓ(δ)

[(
t(1− s)

)δ−1
l(s)− σ(t− s)δ−1

]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

6
1

σΓ(δ)

(
t(1− s)

)δ−1[
l(s)− l(0)

]
+
l(0)(δ − 1)

σΓ(δ)

t(1−s)∫
t−s

xδ−2 dx

+ κ1t
δ−1P1(s) + κ2t

δ−1P2(s)

6
1

σΓ(δ)

(
t(1− s)

)δ−1[
l(s)− l(0)

]
+
l(0)(δ − 1)

σΓ(δ)

(
t(1− s)

)δ−2
s(1− t)

+ κ1t
δ−1P1(s) + κ2t

δ−1P2(s)

6
1

σΓ(δ)

(
t(1− s)

)δ−1
[l(s)− (2− δ)l(0)

]
+ κ1t

δ−1P1(s) + κ2t
δ−1P2(s)

= tδ−1Q(s).

For 0 6 t 6 s 6 1,

G(t, s) =
1

σΓ(δ)

(
t(1− s)

)δ−1
l(s) + κ1t

δ−1P1(s) + κ2t
δ−1P2(s) = tδ−1G(1, s),

G(t, s) =
1

σΓ(δ)

(
t(1− s)

)δ−1
l(s) + κ1t

δ−1P1(s) + κ2t
δ−1P2(s) = tδ−1Q(s).

The proof is complete.

Lemma 7. (See [6].) Let E be a real Banach space, P be a cone of E. Let Ω ⊂ E
be a bounded open set, T : Ω ∩ P → P be a completely continuous. If there exists
u0 ∈ P \{θ} such that u−Tu 6= µu0 for all µ > 0, u ∈ ∂Ω∩P , then i(T,Ω∩P, P ) = 0.

Lemma 8. (See [6].) Let E be a real Banach space, P be a cone of E. Let Ω ⊂ E be
a bounded open set with θ ∈ Ω, and T : Ω ∩ P → P be a completely continuous. If
µu 6= Tu for all µ > 1, u ∈ ∂Ω ∩ P , then i(T,Ω ∩ P, P ) = 1.

Lemma 9. (See [16].) Let E be a real Banach space, P be a cone of E. Suppose that
L : E → E is a completely continuous linear operator, and L(P ) ⊂ P . If there exist
ψ ∈ P − P , ψ /∈ −P and a constant c > 0 such that cLψ > ψ, then the spectral radius
r(L) 6= 0, and L has a positive eigenfunction ϕ∗ corresponding to its first eigenvalue
λ1 = (r(L))−1 such that λ1Lϕ∗ = ϕ∗.

Definition 3. (See [6, 16].) Let E be a real Banach space, P be a cone of E. Let T :
E → E be a linear operator, and T : P → P . If there exists u0 ∈ P \ {θ} such that for
any x ∈ P \ {θ}, there exist a natural number n and real numbers α, β > 0, satisfying
αu0 6 Tnx 6 βu0, then T is called a u0-bounded linear operator on E.

Lemma 10. (See [6, 16].) Let E be a real Banach space, P be a cone of E. Let T be
a completely continuous u0-bounded operator, λ1 be the first eigenvalue of T . Then T
must have a positive eigenfunction ϕ∗, which belongs to P \ {θ} such that λ1Lϕ∗ = ϕ∗;
and λ1 is the unique positive eigenvalue of T corresponding to the positive eigenfunction.
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Let E = C[0, 1], ‖u‖ = sup06t61 |u(t)|. Then (E, ‖·‖) is a Banach space. Let P =
{u ∈ E: u(t) > 0, t ∈ [0, 1]}. It is easy to see that P is a cone in E.

In what follows, two operators T, L1 : E → E are defined respectively by

(Tu)(t) =

1∫
0

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+

u(s), u(s)
)

ds, t ∈ [0, 1],

(L1u)(t) =

1∫
0

G(t, s)
(
Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
)

ds, t ∈ [0, 1]. (14)

Lemma 11. As is defined by (14), (L1u)(t) =
∫ 1

0
G1(t, s)u(s) ds, t ∈ [0, 1], where

G1(t, s) =
1

Γ(β)

1∫
s

G(t, τ)(τ − s)β−1 dτ +
1

Γ(β − α)

1∫
s

G(t, τ)(τ − s)β−α−1 dτ

+G(t, s), (t, s) ∈ [0, 1]× [0, 1].

Proof. For any u ∈ E, t ∈ [0, 1], by (14) we obtain

(L1u)(t) =

1∫
0

G(t, s)
(
Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
)

ds

=
1

Γ(β)

1∫
0

( 1∫
s

G(t, τ)(τ − s)β−1 dτ

)
u(s) ds

+
1

Γ(β − α)

1∫
0

( 1∫
s

G(t, τ)(τ − s)β−α−1 dτ

)
u(s) ds+

1∫
0

G(t, s)u(s) ds

=

1∫
0

G1(t, s)u(s) ds.

It is easy to verify that T : P → P and L1 : P → P are completely continuous
operators.

Lemma 12. The spectral radius r(L1) 6= 0, and L1 has a positive eigenfunction ϕ∗

corresponding to the first eigenvalue λ1 = (r(L1))−1 such that λ1L1ϕ
∗ = ϕ∗.

Proof. It is easy to check that L1 : P → P is a completely continuous operator. In fact,
by Lemma 6, there exists [a, b] ∈ (0, 1) such that G(t, s) > 0 for t, s ∈ [a, b]. On the
other hand, P is generating, i.e. C[0, 1] = P − P . Take ψ ∈ C[0, 1] such that ψ(t) > 0

Nonlinear Anal. Model. Control, 24(1):73–94



84 F. Wang et al.

for t ∈ (a, b), and ψ(t) = 0 for t /∈ (a, b). Then for all t ∈ [a, b],

(L1ψ)(t) =

1∫
0

G(t, s)
(
Iβ0+ψ(s) + Iβ−α0+

ψ(s) + ψ(s)
)

ds

>

b∫
a

G(t, s)ψ(s) ds > 0.

According to the density of R, there exists a constant c > 0 such that c(L1ψ)(t) >
ψ(t), t ∈ [0, 1]. In view of Lemma 9, the spectral radius r(L1) 6= 0, and L1 has
a positive eigenfunction ϕ∗ corresponding to its first eigenvalue λ1 = (r(L1))−1 such
that λ1L1ϕ

∗ = ϕ∗. The proof is complete.

3 Existence of a positive solution

In this section, let λ1 be the first eigenvalue of operator L1. We need the following
conditions:

(H1) lim inf
u+v+w→0+

u,v,w>0

min
t∈[0,1]

f(t, u, v, w)

u+ v + w
> λ1, (H11)

lim sup
u+v+w→+∞
u,v,w>0

max
t∈[0,1]

f(t, u, v, w)

u+ v + w
< λ1, (H12)

(H2) lim sup
u+v+w→0+

u,v,w>0

max
t∈[0,1]

f(t, u, v, w)

u+ v + w
< λ1, (H21)

lim inf
u+v+w→+∞
u,v,w>0

min
t∈[0,1]

f(t, u, v, w)

u+ v + w
> λ1. (H22)

Theorem 1. Assume that (H1) or (H2) holds, then the BVP (1) has at least one positive
solution.

Proof. It follows from (H11) that there exists r1 > 0 such that, for all t ∈ [0, 1],

f(t, u, v, w) > λ1(u+ v + w), 0 6 u+ v + w 6 r1, u, v, w > 0. (15)

For any u ∈ P , t ∈ [0, 1], we have

0 6 Iβ0+u(t) =
1

Γ(β)

t∫
0

(t− s)β−1u(s) ds 6
‖u‖

Γ(β + 1)
6 ‖u‖, (16)

0 6 Iβ−α0+ u(t) =
1

Γ(β − α)

t∫
0

(t− s)β−α−1u(s) ds 6
‖u‖

Γ(β − α+ 1)
6 ‖u‖. (17)
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Let Br = {u ∈ E: ‖u‖ < r 6 r1/3}. Then, by (16) and (17), we have

0 6 Iβ0+u(t) + Iβ−α0+
u(t) + u(t) 6 3‖u‖ 6 r1, u ∈ Ωr ∩ P, t ∈ [0, 1],

which, together with (15), for all u ∈ Ωr ∩ P , t ∈ [0, 1], yields that

f
(
t, Iβ0+u(t), Iβ−α0+

u(t), u(t)
)
> λ1

(
Iβ0+u(t) + Iβ−α0+

u(t) + u(t)
)
. (18)

From (18) and the definition of T we know that, for every u ∈ Ωr ∩ P , t ∈ [0, 1],

(Tu)(t) =

1∫
0

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+

u(s), u(s)
)

ds

> λ1

1∫
0

G(t, s)
∣∣Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
∣∣ds

= λ1

1∫
0

G(t, s)
(
Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
)

ds

= λ1(L1u)(t). (19)

In the following, we prove that

u− Tu 6= µϕ∗ ∀u ∈ ∂Br ∩ P, µ > 0. (20)

If not, then there exist u1 ∈ ∂Br ∩ P and µ1 > 0 such that u1 − Tu1 = µ1ϕ
∗. Then

µ1 > 0, and u1 = Tu1 + µ1ϕ
∗ > µ1ϕ

∗. Let µ = sup{µ|u1 > µϕ∗}. Obviously,
µ > µ1 > 0 and u1 > µϕ∗, then λ1L1u1 > µλ1L1ϕ

∗ = µϕ∗. So, by (19) we have

u1 = Tu1 + µ1ϕ
∗ > λ1L1u1 + µ1ϕ

∗ > µϕ∗ + µ1ϕ
∗ = (µ+ µ1)ϕ∗,

which contradicts the definition of µ. So, (20) holds. It follows from Lemma 7 that

i(T,Br ∩ P, P ) = 0. (21)

By (H12), there exist R1 > r and 0 < κ < 1 such that

f(t, u, v, w) 6 κλ1(u+ v + w), u+ v + w > R1, u, v, w > 0, t ∈ [0, 1]. (22)

Now we define a linear operator L̃1 : E → E as L̃1u = κλ1L1u, t ∈ [0, 1]. It is obvious
that L̃1 : P → P is a bounded linear operator, and the spectral radius of L̃1 is r(L̃1) =
κ < 1.

Let
Z = {u ∈ P : µu = Tu, µ > 1}.
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For any u ∈ E, we set
D(u) =

{
t ∈ [0, 1]: u(t) > R1

}
. (23)

From (23) we know that for any u ∈ E∩P , Iβ0+u(t)+Iβ−α0+
u(t)+u(t) > R1, t ∈ D(u),

which, together with (22), implies that

f
(
t, Iβ0+u(t), Iβ−α0+

u(t), u(t)
)
6 κλ1

(
Iβ0+u(t) + Iβ−α0+

u(t) + u(t)
)
, t ∈ D(u). (24)

From (24) and the definition of T , for any u ∈ Z, µ > 1, t ∈ [0, 1], we have

u(t) 6 µu(t) = (Tu)(t)

=

1∫
0

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+

u(s), u(s)
)

ds

=

∫
D(u)

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+

u(s), u(s)
)

ds

+

∫
[0,1]\D(u)

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+

u(s), u(s)
)

ds

6 κλ1

∫
D(u)

G(t, s)
(
Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
)

ds+GfR1

6 κλ1

1∫
0

G(t, s)
(
Iβ0+u(s) + Iβ−α0+

u(s) + u(s)
)

ds+GfR1

= (L̃1u)(t) +GfR1
, (25)

where G= maxt,s∈[0,1] |G(t, s)|, fR1 = max{f(t, u, v, w): t∈ [0, 1], 06u, v, w6R1}.
By the Gelfand’s formula, we know that (I − L̃1)−1 exists and (I − L̃1)−1 =

∑∞
i=1 L

i
1,

which also implies (I − L̃1)−1(P ) ⊂ P . This, together with (25), yields that

u(t) 6 (I − L̃1)−1GfR1
,

which means Z is bounded. Now we choose R > max{R1, sup{‖u‖: u ∈ Z}}. We can
get that

µu 6= Tu ∀u ∈ ∂BR ∩ P, µ ∈ [0, 1].

By Lemma 8, we know
i(T,BR ∩ P, P ) = 1. (26)

It follows from (21) and (26) that i(T, (BR \Br)∩P, P ) = i(T,BR ∩P, P )− i(T,Br ∩
P, P ) = 1. So, the operator T has at least one fixed point on (BR \Br)∩P . This implies
that BVP (1) has at least one positive solution.
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If (H2) holds, similar to the proof of above, there exist R > r > 0 such that i(T,Br ∩
P, P ) = 1, i(T,BR ∩ P, P ) = 0. Therefore i(T,BR \Br ∩ P, P ) = i(T,BR ∩ P, P )−
i(T,Br ∩ P, P ) = −1. It implies that T has at least one fixed point on (BR \ Br) ∩ P .
This implies that the BVP (1) has at least one positive solution. The proof of Theorem 1
is completed.

Example 1. We consider the following fractional equations:

D
9/2
0+ x(t) +

(
x+ x′ +D

5/2
0+ x

)−1/3
+
∣∣ sin(Dβ

0+x
)∣∣ = 0, 0 < t < 1,

x(j)(0) = 0, j = 0, 1, 2, 3,

x′′′(1) =

√
2

5

1∫
0

4

4s2 + 1
x′′′(s) dA1(s) + 4

1/40∫
0

4

4s2 + 3
x′′′(s) dA2(s)

+ 3

∞∑
i=1

2

i2
x′′′
((

1− 1

i+ 1

)5)
,

(27)

where f(t, u, v, w) = (u+v+w)−1/3 + | sinw|, γ = 9/2, β = 5/2, α = 1, a1 =
√

2/5,
a2 = 4, a3 = 3, η = 1/40, µi = 2/i2, ζi = (1 − 1/(i + 1))5, p1(t) = 4/(4t2 + 1),
p2(t) = 4/(4t2 + 3), and

A1(t) =

{
2, t ∈ [0, 12 ),

3, t ∈ [ 12 , 1],
A2(t) =

{
3, t ∈ [0, 12 ),

4, t ∈ [ 12 , 1].

It is obvious that

lim inf
u+v+w→0+

min
t∈[0,1]

f(t, u, v, w)

u+ v + w

= lim inf
u+v+w→0+

min
t∈[0,1]

(u+ v + w)−1/3 + | sinw|
u+ v + w

= +∞ > λ1,

lim sup
u+v+w→∞

max
t∈[0,1]

f(t, u, v, w)

u+ v + w

= lim sup
u+v+w→∞

max
t∈[0,1]

(u+ v + w)−1/3 + | sinw|
u+ v + w

= 0 < λ1.

Thus, the assumptions of Theorem 1 are satisfied, therefore the BVP (27) has at least one
positive solution.

4 Existence of the unique positive solution

In this section, we need the following condition:
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(H3) There exist nonnegative functions li ∈ L1[0, 1] (i = 1, 2, 3) such that, for any
ui, vi, wi ∈ R+ (i = 1, 2), t ∈ [0, 1],∣∣f(t, u1, v1, w1)− f(t, u2, v2, w2)

∣∣
6 l1(t)|u1 − u2|+ l2(t)|v1 − v2|+ l3(t)|w1 − w2|.

Now, for t ∈ [0, 1], we define an operator L2 : P → P as follows:

(L2u)(t) =

1∫
0

G(t, s)
(
l1(s)Iβ0+u(s) + l2(s)Iβ−α0+

u(s) + l3(s)u(s)
)

ds. (28)

For convenience, we set

w1 = max
t∈[0,1]

1∫
0

( 1∫
s

G(t, τ)l1(τ)(τ − s)β−1 dτ

)
ds,

w2 = max
t∈[0,1]

1∫
0

( 1∫
s

G(t, τ)l2(τ)(τ − s)β−α−1 dτ

)
ds,

w3 = max
t∈[0,1]

1∫
0

G(t, s)l3(s) ds.

Lemma 13. The operatorL2 defined by (28) is a linear operator with ‖L2‖ = w1/Γ(β)+
w2/Γ(β − α) + w3.

Proof. Let

G2(t, s) =
1

Γ(β)

1∫
s

G(t, τ)l1(τ)(τ − s)β−1 dτ

+
1

Γ(β − α)

1∫
s

G(t, τ)l2(τ)(τ − s)β−α−1 dτ

+G(t, s)l3(s), (t, s) ∈ [0, 1]× [0, 1]. (29)

Then for any u ∈ E, t ∈ [0, 1], we have

(L2u)(t) =

1∫
0

G(t, s)
(
l1(s)Iβ0+u(s) + l2(s)Iβ−α0+

u(s) + l3(s)u(s)
)

ds

=
1

Γ(β)

1∫
0

( 1∫
s

G(t, τ)l1(τ)(τ − s)β−1 dτ

)
u(s) ds
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+
1

Γ(β − α)

1∫
0

( 1∫
s

G(t, τ)l2(τ)(τ − s)β−α−1 dτ

)
u(s) ds

+

1∫
0

G(t, s)l3(s)u(s) ds

=

1∫
0

G2(t, s)u(s) ds, t ∈ [0, 1].

Hence,

‖L2‖ = max
t∈[0,1]

1∫
0

∣∣G2(t, s)
∣∣ ds

= max
t∈[0,1]

{
1

Γ(β)

1∫
0

( 1∫
s

G(t, τ)l1(τ)(τ − s)β−1 dτ

)
ds.

+
1

Γ(β − α)

1∫
0

( 1∫
s

G(t, τ)l2(τ)(τ − s)β−α−1 dτ

)
ds+

1∫
0

G(t, s)l3(s) ds

}

=
1

Γ(β)
w1 +

1

Γ(β − α)
w2 + w3.

Theorem 2. Assume that (H3) holds and ‖L2‖ = w1/Γ(β) + w2/Γ(β − α) + w3 < 1.
Then the BVP (1) has a unique positive solution in C([0, 1],R+).

Proof. For any u, v ∈ P , by (H3)we have

‖Tu− Tv‖ = max
t∈[0,1]

∣∣∣∣∣
1∫

0

G(t, s)f
(
s, Iβ0+u(s), Iβ−α0+ u(s), u(s)

)
− f

(
s, Iβ0+v(s), Iβ−α0+ v(s), v(s)

)
ds

∣∣∣∣∣
6 max
t∈[0,1]

1∫
0

∣∣G(t, s)
∣∣∣∣f(s, Iβ0+u(s), Iβ−α0+ u(s), u(s)

)
− f

(
s, Iβ0+v(s), Iβ−α0+ v(s), v(s)

)∣∣ds
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6 max
t∈[0,1]

{
1

Γ(β)

1∫
0

( 1∫
s

G(t, τ)l1(τ)(τ − s)β−1 dτ

)∣∣u(s)− v(s)
∣∣ds

+
1

Γ(β − α)

1∫
0

( 1∫
s

G(t, τ)l2(τ)(τ − s)β−α−1 dτ

)∣∣u(s)− v(s)
∣∣ ds

+

1∫
0

G(t, s)l3(s)
∣∣u(s)− v(s)

∣∣ds}

6

(
1

Γ(β)
w1 +

1

Γ(β − α)
w2 + w3

)
‖u− v‖ = ‖L2‖‖u− v‖,

which means that the operator T is a contraction mapping on P . So, by the Banach
contraction mapping principle, T has a fixed point in P , and also the BVP (1) has a unique
positive solution. The proof of Theorem 2 is completed.

Theorem 3. Assume that (H3) holds and

lim
n→∞

‖Ln2‖1/n

= lim
n→∞

(
max
t∈[0,1]

1∫
0

· · ·
1∫

0

( 1∫
0

G2(t, s1)G2(s1, s2) · · ·G2(sn−1, sn) ds1

)
ds2 · · · dsn

)1/n
< 1.

Then the BVP (1) has a unique positive solution in C([0, 1],R+).

Proof. By the Gelfand’s formula, we know r(L2) = limn→∞ ‖Ln2‖1/n < 1. Let ε0 =
(1 − r(L2))/3. There exists a sufficiently large natural number N such that for n > N ,
‖Ln2‖ 6 (r(L2) + ε0)n. For any u ∈ E, we define

‖u‖∗ =

N∑
i=1

(
r(L2) + ε0

)N−i∥∥Li−12 u
∥∥, (30)

where L0
2 = I is the identity operator. Clearly, ‖·‖∗ is also a norm of E.

Then for any u, v ∈ P , by (30) we get

‖Tu− Tv‖∗ =

N∑
i=1

(
r(L2) + ε0

)N−i∥∥Li−12 (Tu− Tv)
∥∥

=

N∑
i=1

(
r(L2) + ε0

)N−i
max
t∈[0,1]

∣∣Li−12 (Tu− Tv)(t)
∣∣

6
N∑
i=1

(
r(L2) + ε0

)N−i
max
t∈[0,1]

∣∣(Li2|u− v|)(t)∣∣
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=

N∑
i=1

(
r(L2) + ε0

)N−i∥∥(Li2|u− v|)∥∥
= (r(L2) + ε0)

N−1∑
i=1

(
r(L2) + ε0

)N−i−1∥∥(Li2|u− v|)∥∥
+
∥∥(LN2 |u− v|)∥∥

6
(
r(L2) + ε0

)N−1∑
i=1

(
r(L2) + ε0

)N−i−1∥∥(Li2|u− v|)∥∥
+
(
r(L2) + ε0

)N‖u− v‖
=
(
r(L2) + ε0

)N−1∑
i=0

(
r(L2) + ε0

)N−i−1∥∥(Li2|u− v|)∥∥
=
(
r(L2) + ε0

) N∑
i=1

(r(L2) + ε0)N−i
∥∥(Li−12 |u− v|

)∥∥
=
(
r(L2) + ε0

)
‖u− v‖∗ =

1 + 2r(L2)

3
‖u− v‖∗.

This means that the operator T is a contraction mapping on P . By the Banach contraction
mapping principle, T has a fixed point in P . That is, the BVP (1) has a unique positive
solution on E. The proof of Theorem 3 is completed.

Remark 1. We end the paper with the following examples. In Example 3, the BVP (1)
has a unique positive solution under the condition that r(L2) < 1, but ‖L2‖ > 1. As
it is well known, ‖L2‖ < 1 implies that r(L2) < 1. That is, Theorem 3 is an extension
of Theorem 2. But, it is very difficult to calculate the value of r(L2) in most cases, and
the value of ‖L2‖ is relatively easy to calculate. Example 2 shows that if we verify
the condition of Theorem 2, We will avoid calculating the value of r(L2), which is an
extremely complex work.

Example 2. We consider BVP (1) with γ = 5, β = 3, α = 3/2, a1 = a2 = a3 = 0,

f(t, u, v, w) =

{
sin2 tu+ sin4 tv + 1

2 arctanw, t ∈ R \ (0, 1],
1
2 arctanw, t ∈ (0, 1].

Then the problem can be transformed to the following two-point boundary value problem:

u′′(t) + f
(
t, I30+u(t), I

3/2
0+ u(t), u(t)

)
= 0, 0 < t < 1,

u(0) = u(1) = 0.

The corresponding Green’s function is

G(t, s) =

{
s(1− t), 0 6 s 6 t 6 1,

t(1− s), 0 6 t 6 s 6 1.
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For any ui, vi, wi ∈ R+(i = 1, 2), t ∈ [0, 1], we have∣∣f(t, u1, v1, w1)− f(t, u2, v2, w2)
∣∣ 6 1

2
|w1 − w2|.

This means

‖L2‖ =
1

Γ(β)
w1 +

1

Γ(β − α)
w2 + w3 6 0 + 0 +

1

2
< 1,

and, consequently, the assumptions of Theorem 2 are satisfied. Thus, the BVP (1) has
a unique positive solution.

Example 3. We consider BVP (1) with γ = 5, β = 3, α = 3/2, a1 = a2 = a3 = 0,

f(t, u, v, w) =

{
sin2 tu+ sin4 tv + 9w, t ∈ R \ (0, 1],

9w, t ∈ (0, 1].

Then the problem can be transformed to the following two-point boundary value problem

u′′(t) + f
(
t, I30+u(t), I

3/2
0+ u(t), u(t)

)
= 0, 0 < t < 1,

u(0) = u(1) = 0.

The corresponding Green’s function is

G(t, s) =

{
s(1− t), 0 6 s 6 t 6 1,

t(1− s), 0 6 t 6 s 6 1,

Obviously, for any ui, vi, wi ∈ R+ (i = 1, 2), t ∈ [0, 1], we have∣∣f(t, u1, v1, w1)− f(t, u2, v2, w2)
∣∣ 6 9|w1 − w2|,

which implies l1(t) = l2(t) = 0, l3(t) = 9. Then, by definition (29), we have G2(t, s) =
9G(t, s). It is easy to check that ‖L2‖ = 9/8 > 1. However, by computation, we have

1∫
0

G2(t, s) sin(πs) ds =
9

π2
sin(πt), t ∈ [0, 1],

which means that 9/π2 is a positive eigenvalue of L2. On the other hand, in view of
Definition 3, we get that L2 is a u0-bounded operator with u0(t) = t(1 − t). It follows
from Lemma 10 that L2 has no positive eigenvalue except for the first eigenvalue λ1 =
(r(L))−1. Thus, we conclude that r(L2) = 9/π2 < 1. Then, by Theorem 3, we know
that the BVP (1) has a unique positive solution.
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