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Abstract. In this paper, the results of the analysis of nonlinear systems with fractional-like deriva-
tives of the state vector are presented. Using the method of integral inequalities, some estimates of
the solutions are obtained, and criteria for Heyers–Ulam–Rassias stability of a fractional-like scalar
equation are established.
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1 Introduction

The increased interest in the last two decades to equations with fractional derivatives
[6,8,11,12,18,19], fractional-order hybrid systems [9,22], and fractional-order equations
on time scale [2, 5] has prompted many researchers to create qualitative methods for the
dynamic analysis of the equations of perturbed motion with a fractional derivative of the
state vector of the system. The main reason for such an interest is the possibility of a more
accurate description of processes in some models of real-world phenomena.

The basic known methods in the qualitative analysis of systems of ordinary differential
equations are the method of integral inequalities [13], the method of Lyapunov functions
[14], the comparison method [3, 15, 16], and their combinations. These methods with
their proper adaptation are suitable for building of the qualitative theory of fractional
differential equations [21].

On the other side, fractional-like derivatives are also defined (see [1, 10, 17, 20]) as
natural extensions of integer-order derivatives, and the theory of equations with fractional-
like derivatives has been started quite recently. In the paper [17], some main theorems of
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the direct Lyapunov method and the comparison principle for scalar and vector Lyapunov
functions on the basis of fractional-like derivatives of Lyapunov-type functions are given.

The role of integral inequalities in the study of various problems in the qualitative
theory of ordinary differential equations is well known, for example, the Grönwall–
Bellman theorem [4] and its generalizations (see [16] and the references therein). For
differential equations with a fractional-like derivative, similar results have not yet been
obtained. This is the main aim of the presented paper.

This paper is a continuation of our investigations on the theory of fractional-like
equations of perturbed motion started in [17] in which some main theorems of the direct
Lyapunov method have been proved and the comparison principle has been established
using scalar and vector Lyapunov functions. In the current paper, using the method of
integral inequalities, we establish estimates of the solutions and derive criteria for the
Heyers–Ulam–Rassias-stability of a fractional-like scalar equation.

The paper is organized as follows. In Section 2, some results on the mathematical
analysis of equations with fractional-like derivatives in the state vector are presented.
In Section 3 the physical interpretation of a fractional-like derivative is given, which
answered to the professor’s T. Burton question formulated during the discussions on the
paper [17]. In Section 4, for a fractional-like nonhomogeneous system, estimates of the
norms of solutions and some consequences for specific systems are derived. Section 5
is devoted to the estimates of solutions of nonlinear fractional-like systems under some
perturbations. In Section 6 the established estimates are applied to prove criteria for
the Heyers–Ulam–Rassias-stability of a fractional-like scalar equation. In the concluding
section, some general comments and conclusions on the results obtained are presented.

2 Preliminaries

Let R+ = [0,∞) and t0 ∈ R+. Following [1] and [10], for 0 < q 6 1, we consider
a continuous function x(t) : [t0,∞)→ R.

We recall that [10] the notion of a fractional derivative of a continuous function
appears in the mathematical analysis after l’Hôpital’s question to Liouville in 1695: how
to understand the expression dnx/dtn for n = 1/2?

Definition 1. For any t > t0, the fractional-like derivative of order q, 0 < q 6 1, with
the lower limit t0 for a continuous function x(t) is defined as

Dqt0
(
x(t)

)
= lim
θ→0

x(t+ θ(t− t0)1−q)− x(t)

θ
.

In the case t0 = 0, we have

Dq0
(
x(t)

)
= Dq

(
x(t)

)
= lim
θ→0

x(t+ θt1−q)− x(t)

θ
.

If Dq(x(t)) exists on (0, b), then Dq(x(0)) = limt→0+ Dq(x(t)).
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If the fractional-like derivative of order q for a function x(t) exists on (t0,∞),
t0 ∈ R+, then we will say that the function x(t) is q-differentiable on (t0,∞), i.e.
x ∈ Cq((t0,∞),R).

Remark 1. In contrast to numerous definitions of a fractional derivative of a continuous
(or an absolutely differentiable) function, in Definition 1 a limit is used instead of an
integral, which has significantly changed its properties.

The following properties can be proved directly by Definition 1.

Lemma 1. Let q ∈ (0, 1] and x(t), y(t) be q-differentiable at a point t > 0. Then:

(i) Dqt0(ax(t) + by(t)) = aDqt0(x(t)) + bDqt0(y(t)) for all a, b ∈ R;
(ii) Dqt0(tp) = ptp−1(t− t0)1−q for any p ∈ R;

(iii) Dqt0(x(t)y(t)) = x(t)Dqt0(y(t)) + y(t)Dqt0(x(t));
(iv) Dqt0(x(t)/y(t)) = (y(t)Dqt0(x(t))− x(t)Dqt0(y(t))/y2(t);
(v) Dqt0(x(t)) = 0 for any x(t) = λ, where λ is an arbitrary constant.

Remark 2. Lemma 1 is a generalization of Theorem 2.2 in [10]. Theorem 2.2 in [10] can
be considered as a corollary of Lemma 1 for t0 = 0.

Remark 3. For known fractional derivatives (cf. [7, 11, 19]), including the Riemann–
Liouville fractional derivative of order q

Dr
t0x(t) =

1

Γ(n− q)
dn

dtn

t∫
t0

x(s)

(t− s)q−n+1
ds,

where n − 1 < q < n and Γ(z) =
∫∞
0

e−ttz−1 dt is the Gamma function, and Caputo
fractional derivative of order q

Dc
t0x(t) =

1

Γ(n− q)

t∫
t0

xn(s)

(t− s)q−n+1
ds,

properties (i)–(v) do not hold, except for the statement (v) for a fractional derivative of
Caputo. The reason for this is the application of the integral in the known definitions of
fractional derivatives.

The fractional-like integral of order 0 < q 6 1 with a lower limit t0 is defined by
(see [10, 17])

Iqt0x(t) =

t∫
t0

(s− t0)q−1x(s) ds,

where the integration is considered in the Riemann’s sense.
The following lemma holds [1, 10, 17].
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Lemma 2. Let the function x(t) : (t0,∞) → R be q-differentiable for 0 < q 6 1. Then
for all t > t0,

Iqt0
(
Dqt0x(t)

)
= x(t)− x(t0).

For more properties of fractional-like derivatives, we refer the reader to [1,10,17,20].

3 Physical interpretation of a fractional-like derivative

The application of a limit in Definition 1 instead of an integral used in the Riemann–
Liouville, Caputo, and some other classical definitions of fractional derivatives allows us
to give the following physical interpretation of a fractional-like derivative.

Consider the movement of a point P on a line in R+ for the moments of time t1 = t
and t2 = t + θ(t − t0)1−q , where θ > 0 and 0 < q 6 1. Denote by S(t1) and S(t2) the
distances at times t1 and t2, respectively. The expression

S(t2)− S(t1)

t2 − t1
=
S(t+ θ(t− t0)1−q)− S(t)

θ(t− t0)1−q
= vavr(t)

is the q-average velocity of the point P between the instants t1 and t2, i.e. for the time
θ(t− t0)1−q .

Now, consider

Dqt0
(
S(t)

)
= lim
θ→0

S(t+ θ(t− t0)1−q)− S(t)

θ

= lim
θ→0

S(t+ θ(t− t0)1−q)− S(t)

θ(t− t0)1−q
(t− t0)1−q

=
dS

dt
(t− t0)1−q = vinst(t),

where dS/dt is the ordinary instantaneous velocity of the point P .
For q = 1, the above limit is the ordinary (integer-order) instantaneous velocity of

the point P at an arbitrary t ∈ R+. For 0 < q 6 1, the limit gives the q-instantaneous
velocity of the point P for a t ∈ R+.

Therefore, the physical interpretation of a fractional-like derivative of order q,
0 < q 6 1, is the q-instantaneous velocity of the state vector of a mechanical or other
nature system, i.e. the q-rate of change of S(t) with respect to t.

4 Fractional-like nonhomogeneous systems

In this section, we consider a system of nonhomogeneous differential equations of the
perturbed motion with fractional-like derivatives of the type

Dqt0x(t) = g
(
t, x(t)

)
+ f(t), (1)
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where x(t) ∈ Rn, g ∈ Cq(R+ × Rn, Rn), f ∈ Cq(R+,Rn), and t > t0. Denote by
x(t) = x(t; t0, 0) the solution of system (1), satisfying the initial condition

x(t0) = 0. (2)

We will further assume that the functions g and f are such that the solution x(t, t0, 0)
of the initial value problem (IVP) (1), (2) exists on J , and x(t, t0, 0) ∈ Cq(J × R+ ×
Rn, Rn) for t ∈ J , where J ⊂ R+ is an open interval.

Remark 4. For some efficient sufficient conditions about the existence of the solutions
of an IVP of type (1), (2) with Caputo fractional derivatives, we refer the reader to [6].

The following lemma holds.

Lemma 3. For the solution x(t) = x(t; t0, 0) of the fractional-like IVP (1), (2), the
following integral representation

x(t) =

t∫
t0

f(s)

(s− t0)1−q
ds+

t∫
t0

g(s, x(s))

(s− t0)1−q
ds

holds for all t ∈ J , and J = (t0,∞).

Proof. Since x(t), g(t, x(t)), and f(t) are continuous functions, then the integrals
Iqt0(g(t, x(t))) and Iqt0(f(t)) exist, and Iqt0(Dqt0x(t)) is defined for all t ∈ J . From
Lemma 2 we have

Iqt0
(
Dqt0x(t)

)
= x(t)− x(t0). (3)

Applying the operator Iqt0 to the fractional-like system (1) and taking into account the
initial condition (2), we obtain

x(t) = Iqt0
(
g
(
s, x(s)

)
+ f(s)

)
, t > t0.

This completes the proof of Lemma 3.

For the IVP (1), (2), we introduce the following assumptions:

(H1) F (t) =
∫∞
t0
f(s)/(s− t0)1−q ds < +∞ uniformly on t0 ∈ R+;

(H2) There exists a positive constant k > 0 such that ‖g(t, x)‖ 6 k‖x‖ for (t, x) ∈
J ×Br, where Br = {x ∈ Rn: ‖x‖ 6 r}, and ‖.‖ is any norm in Rn.

Using assumptions (H1) and (H2), we will prove our main result in this section.

Theorem 1. Let, for the fractional-like system (1), conditions (H1)–(H2) are met. Then
there exists a positive constant B such that, for the solution of the IVP (1), (2), the
following estimate ∥∥x(t)

∥∥ < B exp

(
k

(t− t0)q

q

)
(4)

holds for all t > t0.
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Proof. From condition (H1) it follows that there exists a positive constant B > 0 such
that ∥∥F (t)

∥∥ 6 B, t > t0. (5)

Taking into account condition (H2), estimate (5), and also relation (3), we derive the
integral inequality

∥∥x(t)
∥∥ 6 B +

t∫
t0

k(s− t0)q−1
∥∥x(s)

∥∥ds.

Denote v(s) = k(s− t0)q−1. Then we have

∥∥x(t)
∥∥ 6 B +

t∫
t0

v(s)
∥∥x(s)

∥∥ds.

Applying to the above inequality the Grönwall–Bellman lemma (see [4]), we obtain

∥∥x(t)
∥∥ 6 B exp

( t∫
t0

v(s) ds

)
= B exp

(
k

(t− t0)q

q

)
, t > t0.

This completes the proof of Theorem 1.

Corollary 1. If, for the fractional-like system (1), condition (H1) is satisfied and the
vector-function g(t, x) = A(t)x, where A(t) is an (n×n) matrix with continuous entries
on any finite interval, then estimate (4) holds for the solution x(t) with a constant k =
supt>t0 ‖A(t)‖.

Corollary 2. If, for the fractional-like system (1), condition (H1) is satisfied and the
vector-function g(t, x) = Cx, where C is an (n× n) constant matrix, then the function

x(t) = W q
C(t, t0)x(t0) +

t∫
t0

W q
C(t, s)f(s)(s− t0)q−1 ds

=

t∫
t0

W q
C(t, s)f(s)(s− t0)q−1 ds,

where

W q
C(t, s) = exp

C(t− t0)q

q
exp
−C(s− t0)q

q

is the solution of the IVP (1), (2).

Remark 5. In this case, we will call W q
C(t, s), t, s > t0, s < t, the q-solving operator of

the fractional-like system (1).
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5 Fractional-like systems with permanent perturbations

In this section, we will present effective estimates of the solutions of systems of equations
with fractional-like derivatives with permanent perturbations.

Consider the system of equations with fractional-like derivatives of the type

Dqt0x(t) = g
(
t, x(t)

)
+ r
(
t, x(t)

)
, (6)

where x ∈ Rn, g ∈ Cq(R+ × Rn, Rn), r ∈ Cq(R+ × Rn, Rn), and r(t, 0) 6= 0 for all
t ∈ R+.

Let x(t) denotes the solution of system (6), satisfying the initial condition (2), and
assume that the solution of the IVP (6), (2) exists on J and is q-differentiable for t ∈ J .

The following lemma holds.

Lemma 4. The fractional-like IVP (6), (2) inverts to the integral equation

x(t) =

t∫
t0

g(s, x(s))

(s− t0)1−q
ds+

t∫
t0

r(s, x(s))

(s− t0)1−q
ds (7)

for all t ∈ J , and J = (t0,∞).

The proof of Lemma 4 is similar to the proof of Lemma 3.
Next, we make the following assumptions about the components of the right-hand

side of the fractional-like system (6):

(H3) There exists a continuous function h(t) such that ‖r(t, x)‖ 6 h(t) for all
(t, x) ∈ J ×Br;

(H4) H(t) =
∫∞
t0
h(s)/(s− t0)1−q ds < +∞ uniformly on t0 ∈ R+;

(H5) There exists a continuous function m(t) such that ‖g(t, x)‖ 6 m(t)‖x‖ for
(t, x) ∈ J ×Br.

We will present an estimate of the solutions of the fractional-like system (6) under the
zero initial conditions, i.e. under conditions that the initial state of the motion is at the
equilibrium state.

Theorem 2. Assume that, for the fractional-like system (6), conditions (H3)–(H5) are
met. Then for the norm of the solution x(t) of the IVP (6), (2), the following estimate

∥∥x(t)
∥∥ 6 H(t) +

t∫
t0

m(r)H(r) exp

( t∫
r

m(s)(s− t0)q−1 ds

)
dr (8)

holds for t ∈ J .

Proof. From (7), taking into account conditions (H3)–(H5), we obtain the integral in-
equality ∥∥x(t)

∥∥ 6 H(t) +

t∫
t0

m(s)
∥∥x(s)

∥∥(s− t0)q−1 ds, t ∈ J. (9)
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After we set in (9) υ(s) = m(s)(s− t0)q−1, we derive the integral inequality

∥∥x(t)
∥∥ 6 H(t) +

t∫
t0

υ(s)
∥∥x(s)

∥∥ds, t > t0.

Applying to the above inequality Theorem 1.1.2 from [16], we obtain the estimate

∥∥x(t)
∥∥ 6 H(t) +

t∫
t0

[
υ(s)H(s)

]
exp

( t∫
s

υ(ξ) dξ

)
ds, t > t0. (10)

This completes the proof of Theorem 2.

Corollary 3. If, in the fractional-like system (6), the vector-function g(t, x) = A(t)x,
where A(t) is an (n × n) matrix with continuous entries on any finite interval, then
estimate (8) is in the form

∥∥x(t)
∥∥ 6 H(t) + k

t∫
t0

W q
k (t, s)H(s)(s− t0)q−1 ds

for all t ∈ J , where the constant k = supt>t0 ‖A(t)‖.

Corollary 4. If, in estimate (10), the function H(t) is nondecreasing, then estimate (8) is
of the type

∥∥x(t)
∥∥ 6 H(t) exp

( t∫
t0

υ(s) ds

)
= H(t) exp

( t∫
t0

m(s)(s− t0)q−1 ds

)

for all t > t0.

6 Heyers–Ulam–Rassias stability

In this section, we will apply the presented estimates to a scalar equation with a fractional-
like derivative of the function of the state, and we will establish sufficient conditions for
the Heyers–Ulam–Rassias stability of the solutions.

Consider the fractional-like equation of the type

Dqt0x(t) = g(t, x) + r(t, x), (11)

where g ∈ Cq([t0,∞)×R, R), r ∈ Cq([t0,∞)×R, R), r(t, 0) 6= 0 for all t ∈ [t0,∞).
Denote again by x(t) the solution of (11), satisfying the initial condition

x(t0) = 0,

and assume that it exists on J , and is q-differentiable.
We will use the following definition for the Heyers–Ulam–Rassias (HUR) stability of

equation (11), which is a generalization of the definition in [23].
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Definition 2. Equation (11) is said to be HUR-stable if, for any ε > 0 and any function
xε(t) : J → R+ that satisfy the inequality∣∣Dqt0xε(t)− g(t, xε(t))− r(t, xε(t))∣∣ 6 ε, (12)

there exists a solution x(t) of (11) and a constant Q = Q(ε) > 0 such that, for all t ∈ J ,∣∣x(t)− xε(t)
∣∣ 6 Qε.

Now, we will prove the main stability result in the section.

Theorem 3. Assume that, for the fractional-like differential equation (11):

(i) There exists a constant L > 0 such that∣∣g(t, x)− g(t, xε)
∣∣ 6 L|x− xε|

for all (t, x) ∈ D ⊂ R+ × R, (t, xε) ∈ D;
(ii) There exists a constant k > 0 such that∣∣r(t, x)− r(t, xε)

∣∣ 6 k

for all (t, x) ∈ D, (t, xε) ∈ D;

(iii) sup
t>t0

(
H(t) +

t∫
t0

[
υ(s)H(s)

]
exp

( t∫
s

υ(ξ) dξ

)
ds

)
< +∞,

where

H(t) =
κ− ε
q

(t− t0)q, 0 < ε < κ < +∞;

υ(s) =
L

(s− t0)1−q
, 0 < q 6 1.

Then the fractional-like differential equation (11) is HUR-stable.

Proof. From equation (11) and Lemma 2 it follows that (11) inverts to the integral equa-
tion

x(t) =

t∫
t0

g(s, x(s))

(s− t0)1−q
ds+

t∫
t0

r(s, x(s))

(s− t0)1−q
ds, t > t0.

Next, from (12) it follows that

Dqt0xε(t)− g
(
t, xε(t)

)
− r
(
t, xε(t)

)
6 ε (13)

or
Dqt0xε(t)− g

(
t, xε(t)

)
− r
(
t, xε(t)

)
> −ε. (14)
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From (13) we have

xε(t) 6

t∫
t0

g(s, xε(s))

(s− t0)1−q
ds+

t∫
t0

r(s, xε(s))

(s− t0)1−q
ds+

t∫
t0

ε

(s− t0)1−q
ds

=

t∫
t0

g(s, xε(s))

(s− t0)1−q
ds+

t∫
t0

r(s, xε(s))

(s− t0)1−q
ds+

ε(t− t0)q

q
. (15)

It follows from (13)–(15) that

x(t)− xε(t)

6

t∫
t0

(g(s, x(s))− g(s, xε(s)))

(s− t0)1−q
ds+

t∫
t0

(r(s, x(s))− r(s, xε(s)))
(s− t0)1−q

ds

− ε(t− t0)q

q
. (16)

Hence, taking into account conditions (i) and (ii) of Theorem 3, from inequality (16)
we obtain

∣∣x(t)− xε(t)
∣∣ 6 t∫

t0

L|x(s)− xε(s)|ds
(s− t0)1−q

+

t∫
t0

k ds

(s− t0)1−q
− ε(t− t0)q

q
.

From the above inequality we derive the estimate

∣∣x(t)− xε(t)
∣∣ 6 H(t) +

t∫
t0

υ(s)
∣∣x(s)− xε(s)

∣∣ ds. (17)

Applying Theorem 1.1.2 from [16] to inequality (17) will lead to

∣∣x(t)− xε(t)
∣∣ 6 H(t) +

t∫
t0

[
υ(s)H(s)

]
exp

( t∫
s

υ(ξ) dξ

)
ds, t ∈ J.

Condition (iii) of Theorem 3 implies the existence of a constant Q = Q(ε) > 0 such
that |x(t)− xε(t)| 6 Qε for all t ∈ J . This completes the proof of Theorem 3.

Remark 6. Since the function H(t) is positive and nondecreasing for t ∈ J , then we
have ∣∣x(t)− xε(t)

∣∣ 6 H(t) exp

( t∫
t0

υ(s) ds

)
, t ∈ J.
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From the above estimate it follows that condition (iii) of Theorem 3 can be replaced
by the condition

sup
t>t0

(
H(t) exp

(
L

q
(t− t0)q

))
< +∞.

Moreover, the assertion of Theorem 3 remains true.

7 Conclusions

The estimates of the solutions of equations with perturbations and fractional-like deriva-
tives of the state vector are important fragments of the qualitative theory of this class
of equations. The method of integral inequalities allow us to obtain simple and effective
estimates of the norm of solutions of nonlinear fractional-like systems and sufficient con-
ditions for Hyers–Ulam–Rassias stability of the equations. Since the theory of equations
with fractional-like derivatives started quite recently, our results will be useful for further
study of the qualitative behavior of their solutions.
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