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Abstract. We study an extension property for characteristic functions f : Rn → C of probability
measures. More precisely, let f be the characteristic function of a probability density ϕ on Rn, and
let Uσ = {x ∈ Rn: mink |xk| > σ}, σ > 0, be a neighborhood of infinity. We say that f has
the σ-deterministic property if for any other characteristic function g such that f = g on Uσ , it
follows that f ≡ g. A sufficient condition on f to has the σ-deterministic property is given. We
also discuss the question about how precise our sufficient condition is? These results show that the
σ-deterministic property of f depends on an arithmetic structure of the support of ϕ.

Keywords: characteristic function, density function, entire function, probability measure, Bernstein
space.

1 Introduction

Let M(Rn) be the family of finite complex-valued regular Borel measures on Rn. Given
a measure µ ∈M(Rn), we define its Fourier transform by

µ̂(x) =

∫
Rn

e−i(x,t) dµ(t),

x ∈ Rn. Here and subsequently, (x, t) denotes the scalar product
∑n
k=1 xktk of vectors

x, t ∈ Rn. If the norm in M(Rn) is given by the total variation of µ ∈ M(Rn), then
this allow us to identify the usual Lebesgue Banach space L1(Rn) with the closed ideal
in M(Rn) of all measures, which are absolutely continuous with respect to the Lebesgue
measure dt = dt1 · · · dtn on Rn.

Assume that µ ∈ M(Rn) is a positive measure. If, in addition, ‖µ‖ = 1, then in
the language of probability theory, this µ and the function f(x) := µ̂(−x), x ∈ Rn, are
called a probability measure and its characteristic function, respectively. In particular, if
µ = ϕdt with ϕ ∈ L1(Rn) such that ‖ϕ‖L1(Rn) = 1 and ϕ > 0 on Rn, then ϕ is called
the probability density function of µ, or the probability density for short. Let us note that
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if ϕ is a measurable function on Rn, then we write here and in the sequel ϕ > 0 on Rn if
ϕ > 0 dt-almost everywhere on Rn.

For a characteristic function f and a subset U of Rn, we study the problem: is it true
that there exists a characteristic function g on Rn such that g = f on U but g 6≡ f?
Our interest to this question is initiated by a similar problem posed by N.G. Ushakov
in [9, p. 276]: Is it true that for any neighborhoods of infinity U ⊂ R with 0 /∈ U , there
exists the characteristic function g such that g 6≡ e−x

2/2 but g(x) = e−x
2/2 for all x ∈ U?

A positive answer to this question was given by Gneiting [1, p. 360]:

Theorem 1. Let f : R → C be the characteristic function of a distribution with a con-
tinuous and strictly positive density. Then there exists, for each σ > 0, a characteristic
function g such that f(x) = g(x) if x = 0 or |x| > σ and f(x) 6= g(x) otherwise.

Moreover, in [1, p. 361], the author also conjectured that the same statement holds
for any characteristic function with an absolutely continuous component. This conjecture
was disproved in [3]. Indeed, for a > 0,

ϕ(t) =

{
2(a−2|t|)

a2 , |t| 6 a
2 ,

0 otherwise
(1)

is the density of the usual triangular probability distribution. Let σ > 0 and assume that
g is a characteristic function such that g(x) = ϕ̂(−x) for |x| > σ. If

aσ 6 π, (2)

then g(x) = ϕ̂(−x) for all x ∈ R (see [3, Ex. 1]).
In this paper, a problem of uniqueness for extensions of characteristic functions of

several variables is studied. More precisely, given a characteristic function f : Rn → C,
we consider characteristic extensions of f in a manner indicated by the above mentioned
Ushakov’s problem, from a neighborhoods U of infinity to the whole Rn. In particular,
we obtain that estimate (2) can be weakened. Our Theorems 2 and 3 show that the exact
estimate in (2) is aσ 6 2π. Any characteristic function f : Rn → C satisfies f(−x) =
f(x) for each x ∈ Rn. Hence, it is enough to study the extensions only from symmetric
neighborhoods U . For σ > 0, set Qnσ = {x ∈ Rn: |xk| 6 σ, k = 1, . . . , n}. Then

Uσ = Rn \Qnσ

denotes such a neighborhood. Also, we say that f has the σ-deterministic property if
there exists no other characteristic function g such that f(x) = g(x) for all x ∈ Uσ .

Let τ ∈ R, and let A and B be subsets of Rn. Then A + B and τA denote the sets
{a + b: a ∈ A, b ∈ B} and {τa: a ∈ A}, respectively. If, in addition, A is measurable,
then we denote the Lebesgue measure of A by |A|. Given a measurable function ϕ :
Rn → R, we denote by Sϕ the essential support of ϕ. By definition, a point x ∈ Rn
belongs to Sϕ if for any δ > 0, the set(

x+Qnδ
)
∩
{
t ∈ Rn:

∣∣ϕ(t)∣∣ > 0
}
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has positive Lebesgue measure. Note that if ϕ is continuous on Rn, then Sϕ coincides
with the usual support of ϕ. As usual, Zn is the n-dimensional integer lattice.

The following theorem is the main result of this paper.

Theorem 2. Let f : Rn → C be the characteristic function of a probability density ϕ.
Assume that there exist a ∈ Rn, % > 0 and τ > 0 such that∣∣Sϕ ∩ (a+Qn% + τZn

)∣∣ = 0. (3)
If

στ 6 2π, (4)

then f has the σ-deterministic property.

Note that if a pair of positive numbers % and τ satisfy (3), then it is necessary that

% <
τ

2
. (5)

Indeed, in the converse case, we have that Qnδ + τZn = Rn. On the other hand, it is clear
that, for any probability density ϕ, we have |Sϕ| > 0. Hence, |Sϕ∩ (a+Qn% + τZn)| > 0
contrary to condition (3).

The statement of Theorem 2 is sharp in the sense that the right-hand side of (4) cannot
be replaced by 2π + ε for any positive ε. This follows from the next theorem.

Theorem 3. For any positive σ and τ such that

στ > 2π, (6)

there exist % > 0 and a probability density ϕ such that (3) is satisfied but the characteristic
function of ϕ has no the σ-deterministic property.

We conclude this section by presenting our previous paper [4], where a similar ex-
tension problem was studied in the case of continuous density functions of one variable.
The main result of [4] states that if ϕ is a continuous probability density on R such that
there exist lattices Λj = τj + αjZ, τj ∈ R, αj > 0, αjσ 6 2π, j = 1, 2, Λ1 ∩ Λ2 = ∅,
and ϕ vanishes on Λ1 ∪ Λ2, then, for any characteristic function g : R → C such that it
coincides on Uσ with the characteristic function f of ϕ, we have that g ≡ f . It is easy to
see that for continuous density ϕ, this statement is more general than our Theorem 2. On
the other hand, the formulation of this statement (as also its proof) uses substantially the
property that ϕ is continuous.

2 Preliminaries and proofs

As usual, we write S(Rn) for the Schwartz space of test functions on Rn and S′(Rn) for
the dual space of tempered distributions. We define the inverse Fourier transform

qχ(t) =
1

(2π)n

∫
Rn

ei(t,x)χ(x) dx
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so that the inversion formula (̂qχ) = χ holds for suitable χ ∈ L1(Rn). Given a closed
subset Ω ⊂ Rn, a function ω : Rn → C is called bandlimited to Ω if ω̂ vanishes
outside Ω. Note that here we understand ω̂ in a distributional sense.

Let B(Rn) = {µ̂: µ ∈ M(Rn)} denote the Fourier–Stieltjes algebra with the usual
pointwise multiplication. The norm in B(Rn) is inherited from M(Rn), in such a way,

‖µ̂‖B(Rn) := ‖µ‖M(Rn).

Note that the Fourier algebra A(Rn) = {ϕ̂: ϕ ∈ L1(Rn)} is an ideal in B(Rn).
The closed subspace BpΩ in Lp(Rn), 1 6 p 6 ∞, of all F ∈ Lp(R) such that F is

bandlimited to Ω, is called the Bernstein space. The Banach space BpΩ is equipped with
the norm

‖F‖p =
(∫
Rn

∣∣F (x)∣∣p dx)1/p

, 1 6 p <∞,

and ‖F‖∞ = supx∈Rn |F (x)|. By the Paley–Wiener–Schwartz theorem (see [2, p. 181]),
if Ω is a compact subset of Rn, then any F ∈ BpΩ is infinitely differentiable on Rn and
has an extension onto the complex space Cn to an entire function. For a > 0 and each
F ∈ BpQnσ , 1 6 p <∞, there exists a positive numberM such that the Plancherel–Polya–
Nikol’skii-type inequality ∑

k∈Zn

∣∣F (x+ ak)
∣∣p 6M‖F‖pLp(Rn) (7)

is satisfied for all x ∈ Rn (see [8, p. 19]). If F ∈ B1
Qnσ

, then the Poisson summation
formula ∑

ω∈Zn
F (x+ νω) =

1

νn

∑
θ∈Zn

F̂

(
2π

ν
θ

)
e2πi(x,θ)/ν (8)

holds for all x ∈ Rn and each ν > 0 (see, e.g., [5, p. 166]).

Proof of Theorem 2. We start with the simple observation that we can consider, without
loss of generality, condition (3) with a = 0, i.e., the case if Sϕ, % and τ satisfy∣∣Sϕ ∩ (Qn% + τZn

)∣∣ = 0. (9)

Indeed, define ϕa(x) := ϕ(x + a), x ∈ Rn. Then ϕa is a probability density and
satisfies (9) if and only if ϕ satisfies (3). Moreover,

ϕ̂a(−x) = e−i(a,x)ϕ̂(−x)

for x ∈ Rn. Hence, ϕ̂a has the σ-deterministic property if ϕ̂ also has this property.
Assume that g is any characteristic function such that g = f on Uσ . It remains to

prove that f ≡ g. Our proof starts with the observation that this g is also the character-
istic function of a probability density. Indeed, let g(x) = µ̂(−x) for certain probability
measure µ. Take any u ∈ S(Rn) such that u(x) = 1 for all x ∈ Qnσ . Then

µ̂− ϕ̂ ≡ u(µ̂− ϕ̂). (10)
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Since S(Rn) ⊂ A(Rn) and A(Rn) is an ideal in B(Rn), we conclude from (10) that
µ̂ ∈ A(Rn). Hence, there is a probability density ψ such that g(x) = ψ̂(−x).

Define
ξ = ϕ− ψ. (11)

Using the fact that supp(f − g) ⊂ Qnσ , we see that ξ ∈ B1
Qnσ

. Moreover, from (11) it
follows that

ξ 6 ϕ (12)

almost everywhere on Rn and ∫
Rn

ξ(x) dx = 0. (13)

Now we claim that (9) implies ∫
Qn%

ξ(x) dx = 0. (14)

To that end, we write Ek for the set Qn% + τk, k ∈ Zn. According to (9) and (12), we have
that ∫

Ek

ξ(x) dx 6 0 (15)

for all k ∈ Zn. Since ξ ∈ B1
Qnσ

, the Poisson summation formula (8) holds for F = ξ,
ν = τ and all x ∈ Rn:∑

k∈Zn
ξ(x+ τk) =

1

τn

∑
θ∈Zn

ξ̂

(
2π

τ
θ

)
e2πi(x,θ)/τ . (16)

ξ̂ is continuous on Rn, and supp ξ̂ ⊂ Qnσ . Hence, condition (4) implies that

ξ̂

(
2π

τ
θ

)
= 0

for all θ ∈ Zn \ {0}. Moreover, from (13) it follows that also ξ̂(0) =
∫
Rn ξ(x) dx = 0.

Altogether, (16) reduces to ∑
k∈Zn

ξ(x+ τk) = 0, (17)

x ∈ Rn. From (7) it follows that this series converges absolutely on Rn. Also, if we
consider (16) only for x ∈ Qnτ , i.e., on Qnτ , then the left-hand side of (17) converges in
the norm of L1(Qnτ ) (see [7, p. 251]). According to (5), we see that the left-hand side
of (17) converges also in the norm of L1(Qn% ). Then

0 =

∫
Qn%

∑
k∈Zn

ξ(x+ τk) dx =
∑
k∈Zn

∫
Qn%

ξ(x+ τk) dx =
∑
k∈Zn

∫
Ek

ξ(x) dx.
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Combining this with (15) gives
∫
Ek
ξ(x) dx = 0 for all k ∈ Zn. Hence, this proves our

claim (14) since Qn% = E0.
Next, we claim that

ξ(x) = 0 (18)

for all x ∈ Qn% . Indeed, set

I(+) =
{
x ∈ Qn% : ξ(x) > 0

}
, I(−) =

{
x ∈ Qn% : ξ(x) < 0

}
and

I0 =
{
x ∈ Qn% : ξ(x) = 0

}
.

Take into account (9) and (12), we obtain∫
I(+)

ξ(x) dx 6
∫
I(+)

ϕ(x) dx 6
∫
Qn%

ϕ(x) dx = 0.

Since ξ is continuous on Rn, it follows that I(+) is an open subset of Rn. Hence, I(+) = ∅.
Using the obvious equality

∫
I0
ξ(x) dx = 0 and (14), we get

∫
I(−)

ξ(x) dx = 0. Hence,
I(−) = ∅. This completes the proof of claim (18).

On the other hand, (18) shows that the entire function ξ vanishes on the nonempty
and open subset set Qn% in Rn. In particular, this implies that the function ξ vanishes at
z = 0 together with all its partial derivatives. Thus, by the uniqueness theorem for analytic
functions (see, e.g., [6, p. 21]), we have that ξ is the zero function. Hence, ϕ ≡ ψ. Thus
f ≡ g. Theorem 2 is proved.

Proof of Theorem 3. According to (6), we may take a number θ such that

2π

σ
< θ < τ. (19)

Next, let % be any positive number, which satisfies

% <
τ − θ
2

. (20)

Take an arbitrary continuous on Rn probability density ϕ with

Sϕ = Bnθ
√
n/2, (21)

where Bnr denotes the ball {x ∈ Rn:
∑n
k=1 x

2
k 6 r2}. Combining (6) with (20) and (21),

it is a simple calculation to see that for these θ, %, ϕ and

a =

(
τ

2
,
τ

2
, . . . ,

τ

2

)
∈ Rn,

condition (3) is satisfied.
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The next step of our proof consists in the construction of a function ξ ∈ B1
Qnσ

, ξ 6≡ 0,
satisfying (12) and (13). Put

ω1(t) =

(
σ

2π
cos

πt

σ

)
· χ[−σ/2, σ/2](t) (22)

and

ω2(t) =

(
i

2
sin

πt

σ

)
· χ[−σ/2, σ/2](t), (23)

where χA is the indicator function of the subsetA ⊂ R. It is straightforward to verify that

ω̂1(x) =
cos σx2

(πσ )
2 − x2

(24)

and
ω̂2(x) = x ω̂1(x). (25)

According to our definitions of the Fourier transform and its inverse transform, the fol-
lowing Plancherel formula holds

2π‖γ‖2L2(R) = ‖γ̂‖
2
L2(R)

for each γ̂ ∈ L2(R). Hence, using (22) and (23), we get

‖ω̂1‖2L2(R) = 2π‖ω1‖2L2(R) =
σ2

2π

σ/2∫
−σ/2

cos2
πt

σ
dt =

σ3

4π
(26)

and

‖ω̂2‖2L2(R) =
π

2

σ/2∫
−σ/2

sin2
πt

σ
dt =

πσ

4
(27)

since ωk ∈ L2(R), k = 1, 2.
For x ∈ Rn, let us define

ξ0(x) =
π2n

σ2

n∏
k=1

ω̂1
2
(xk)−

n∑
k=1

[
ω̂2

2
(xk) ·

n∏
j=1, j 6=k

ω̂1
2
(xj)

]

=

n∏
k=1

(
cos σxk2

(πσ )
2 − x2k

)2
[
π2n

σ2
−

n∑
k=1

x2k

]
. (28)

Obviously, ξ0 ∈ L1(Rn). On the other hand, from (22), (23), (24) and (25) it follows that
ξ̂0 is supported on [−σ, σ]n = Qnσ . Hence, ξ0 ∈ B1

Qnσ
.
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We claim that there exists ε > 0 such that the function

ξ := ε · ξ0 (29)

satisfies (12) and (13). Indeed, using (26), (27) and (28), we get∫
Rn

ξ0(x) dx

=
π2n

σ2

n∏
k=1

∫
R

ω̂1
2
(xk) dxk −

n∑
k=1

[∫
R

ω̂2
2
(xk) dxk ·

n∏
j=1, j 6=k

∫
R

ω̂1
2
(xj) dxj

]

=
π2n

σ2

(
σ3

4π

)n
− nπσ

4

(
σ3

4π

)n−1
=

(
σ3

4π

)n−1[
π2n

σ2
· σ

3

4π
− nπσ

4

]
= 0.

Therefore,
∫
Rn ξ(x) dx = 0.

Next, from (19) it follows that

Bnπ
√
n/σ & Bnθ

√
n/2.

This implies that we can take a continuous probability density ϕ such that it satisfies (21)
and also the following additional condition:

min
{
ϕ(x): x ∈ Bnπ√n/σ

}
> 0.

Then, since ξ (see formula (29)) is also continuous on Rn, we have that there exists ε > 0
in (29) such that (12) is satisfied for this ξ and all x ∈ Bn

π
√
n/σ

. On the other hand, from
(28) and (29) it follows that ξ is nonpositive on Rn \Bn

π
√
n/σ

. Therefore, ξ satisfies (12)
for all x ∈ Rn.

Finally, if we set ψ := ϕ− ξ, then (12) and (13) show that ψ is a probability density.
Moreover, we have that ψ̂ = ϕ̂ on Uσ but ψ 6≡ ϕ. Theorem 3 is proved.
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