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Abstract. In this paper, we are dedicated to investigating a new class of one-dimensional lower-
order fractional q-differential equations involving integral boundary conditions supplemented with
Stieltjes integral. This condition is more general as it contains an arbitrary order derivative. It should
be pointed out that the problem discussed in the current setting provides further insight into the
research on nonlocal and integral boundary value problems. We first give the Green’s functions
of the boundary value problem and then develop some properties of the Green’s functions that
are conductive to our main results. Our main aim is to present two results: one considering the
uniqueness of nontrivial solutions is given by virtue of contraction mapping principle associated
with properties of u0-positive linear operator in which Lipschitz constant is associated with the first
eigenvalue corresponding to related linear operator, while the other one aims to obtain the existence
of multiple positive solutions under some appropriate conditions via standard fixed point theorems
due to Krasnoselskii and Leggett–Williams. Finally, we give an example to illustrate the main
results.

Keywords: fractional q-difference equations, existence and uniqueness, integral boundary
conditions.

1 Introduction

In this paper, we discuss the existence of unique solution and multiple positive solutions
for the following fractional q-differential equation:

Dα
q u(t) + f

(
t, u(t)

)
= 0, t ∈ [0, 1], (1)

with nonlocal boundary conditions

u(0) = Dα−2
q u(0) = 0, Dα−1

q u(1) = α[u] +

ξ∫
0

φ(t)Dβ
q u(t) dqt, (2)
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whereDα
q is the standard Riemann–Liouville fractional q-derivative of order α, 2<α63,

α − 1 − β > 0, 0 < q < 1, φ ∈ L1[0, 1] is nonnegative, α[u] is a linear functional
given by

α[u] =

1∫
0

u(t) dA(t)

involving the Stieltjes integral with respect to the function A : [0, 1] → R, A(t) is right-
continuous on [0, 1), left-continuous at t = 1. Particularly, A is nondecreasing function
with A(0) = 0, then dA is positive Stieltjes measure.

Fractional calculus occurs naturally in various fields of technical sciences and phys-
ical engineering, details of recent development can be found in [15], whereas for the
background and relevant theory of fractional calculus, we refer to [15, 21]. Since then,
in order to describe and simulate the pragmatic phenomena with mathematic tools more
accurately, the fractional q-integrals and q-derivatives arise at the historic moment.

Fractional q-calculus, initially proposed by Jackson [12, 13], is regarded as the frac-
tional analogue of q-calculus. Soon afterwards, it has further promotion by Al-Salam [4]
and Agarwal [1], where many outstanding theoretical results were given. Its emergence
and development extended the application of interdisciplinary to be further and aroused
widespread attention of the scholars; see [2, 19, 22, 23] and references therein.

More recently, in connection with broad research on the mathematical modeling of
systems, the description of hereditary properties of various materials and the optimal con-
trol theory, it has become necessary to investigate boundary value problems of fractional
differential equations as the nonlocal characteristics of the corresponding fractional-order
operators [5,6,8–10,18,20,24–27,29,31,32]. Moreover, these equations are always com-
pletely controllable, meanwhile the research on fractional q-differential equation bound-
ary value problems is in a stage of rapid development; one can see [2, 3, 7, 14, 18, 23, 29,
30, 33] and the references cited therein.

In consideration of the fact that the existence of unique solutions or multiple solutions
of integral boundary value problem have been widely considered in recent decades as it
focused on building diversiform fractional-order models, for more recent results, we can
see [3, 10, 19, 20, 23, 24, 26–28, 33]. For example, Zhao et al. [33] discussed equation (1)
under integral boundary condition

u(0) = Dqu(0) = 0, u(1) = µ

1∫
0

u(s) dqs,

here f : [0, 1] × R+ → R is semipositone and may be singular at u = 0. By using
fixed point index theorem, sufficient conditions for the existence of at least two and
three positive solutions are obtained. As is known to all, initial values play a key role
in the study of the classical boundary value problems (for example, Dirichlet boundary
value problem, Neumann boundary value problem, periodic boundary value problem). In
simulating special features of physical mathematics, biochemistry or some complicated
and changeable process happening in diverse positions, nonlocal conditions are of great
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important. However, this cannot be possible implemented by initial/boundary value con-
ditions. For remarkable results, we refer to [2, 7, 10, 33].

Owing to the limitations of end-point conditions, in the study of computational fluid
dynamics associated with the problem of blood flow, it is not always reasonable to assume
that the cross section of blood vessel is circular. To this end, integral conditions are found
to be more suitable for analysing this problem and attract more attention. Ahmad et al. [3]
considered a sub-strip-type boundary condition of the form

x(ξ) = b

1∫
η

x(s) dqs, 0 < ξ < η < 1,

and the flux sub-strip condition

Dqx(ξ) = b

1∫
η

x(s) dqs, 0 < ξ < η < 1.

Such conditions are more plausible to explain some physical phenomena, the uniqueness
of solution is established by a fixed point theorem due to O’Regan in [34]. Interestingly,
Liu et al. [19] considered the Riemann–Stieltjes integral boundary conditions involving
fractional derivatives

Dβ
0+u(1) =

1∫
0

l(t)Dβn−1
0+ u(t) dA(t), 0 < t < 1,

here α ∈ (n − 1, n], βi ∈ (i − 1, i], i = 1, 2, . . . , n − 1, l ∈ L1(0, 1), f may be
singular at x0 = x1 = · · · = xn−1 = 0. By using the spectral analysis of the relevant
linear operator and Gelfand’s formula, the existence of positive solutions for boundary
conditions involving fractional derivatives is obtained. Min et al. [20] concerned with
integral boundary conditions

Dβ1

0+u(1) =

η∫
0

h(s)Dβ2

0+u(s) dA(s) +

1∫
0

a(s)Dβ3

0+u(s) dA(s), 0 < t < 1,

here Dβi
0+u denote the standard Riemann–Liouville derivatives, and β1 > β2, β1 > β3,

α − βi > 1, a, h ∈ C(0, 1). By using fixed point theorem of mixed monotone operators,
the uniqueness of positive solutions is derived.

Inspired by the previous works, different from [19, 20], we consider problem (1)–(2)
in which the boundary conditions involve the Stieltjes integral, β is an arbitrary order
derivative, hence (2) is more general boundary condition. Up to now, this case of nonlocal
boundary conditions for fractional q-differential equations is relatively rare to be done.
In addition, the main difficulty in studying fractional q-differential equations is the cal-
culation of Green’s functions, which produce more complexities than in integer order
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case. Therefore, in Section 2, we obtain the Green’s function and relevant properties
that are propitious to our main results. In Section 3, relying on the Green’s functions
and properties of u0-positive linear operator, Lipschitz constant is associated with the
first eigenvalues corresponding to related linear operator that guarantee the uniqueness of
solutions of problem (1)–(2). Moreover, the existence of multiple positive solutions is also
enunciated by employing fixed point theorems due to Krasnoselskii and Leggett–Williams
in Section 4. The main results are well applied with the aid of an example.

Throughout this paper, we always assume that

(H1) f : [0, 1]× R→ R+ is continuous, and f(t, 0) 6≡ 0, t ∈ [0, 1];
(H2) ∆ := Γq(α−β)−

∫ ξ
0
φ(t)tα−1−β dqt−(Γq(α− β)/Γq(α))α[tα−1] > 0, where

α[tα−1] > 0, and α[1] > 0.

2 Auxiliary results

For the convenience of readers, we recall some useful definitions and lemmas, which can
be found in [1, 4, 12, 13, 22].

Definition 1. (See [22].) Let α > 0 and f be a function defined on [0, 1]. The fractional
q-integral of Riemann–Liouville type is I0

q f(t) = f(t), and

Iαq f(t) =
1

Γq(α)

t∫
0

(t− qs)(α−1)f(s) dqs, α > 0.

Note that Iαq f(t) = Iqf(t) when α = 1.

Definition 2. (See [22].) The fractional q-derivative of Riemann–Liouville type of order
α > 0 is defined by

Dα
q f(t) = Ddαeq Idαe−αq f(t), t ∈ [0, 1],

where dαe is the smallest integer greater than or equal to α.

Further analysis showed that

Iαq D
p
qf(t) = Dp

qI
α
q f(t)−

p−1∑
n=0

tα−p+n

Γq(α− p+ n+ 1)
Dn
q f(0), p ∈ N. (3)

Lemma 1. (See [30].) Suppose that f(t) is a continuous function on [0, 1], and there
exists t0 ∈ (0, 1) such that f(t0) 6= 0. If f(t) > 0, then

∫ 1

0
f(t) dqt > 0, t ∈ [0, 1], where

1∫
0

f(t) dqt = (1− q)
∞∑
n=0

qnf
(
qn
)
, 0 < q < 1.
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Lemma 2. Assume f ∈ C[0, 1] and ∆ > 0, then the fractional q-differential equation

Dα
q u(t) + g(t) = 0, α ∈ (2, 3], t ∈ [0, 1],

u(0) = Dα−2
q u(0) = 0, Dα−1

q u(1) =

1∫
0

u(t) dA(t) +

ξ∫
0

φ(t)Dβ
q u(t) dqt

has a solution

u(t) =

1∫
0

G(t, qs)g(s) dqs, t ∈ [0, 1],

where

G(t, qs) = G1(t, qs) +G2(t, qs) +G3(t, qs),

G1(t, qs) =


tα−1−(t−qs)(α−1)

Γq(α) , 0 6 qs 6 t 6 1,

tα−1

Γq(α) , 0 6 t 6 qs 6 1,

G2(t, qs) =
tα−1

∆

ξ∫
0

φ(t)H(t, qs) dqt,

G3(t, qs) =
Γq(α− β)tα−1

∆Γq(α)

1∫
0

G1(t, qs) dA(t),

H(t, qs) =


tα−1−β−(t−qs)(α−1−β)

Γq(α) , 0 6 qs 6 t 6 1,

tα−1−β

Γq(α) , 0 6 t 6 qs 6 1.

Proof. Let us consider p = 3, then from Definitions 1, 2 and (3), the above problem can
be changed into

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 − Iαq g(t)

for some c1, c2, c3 ∈ R. By the condition u(0) = 0, we find that c3 = 0. Now considering
the condition Dα−2

q u(0) = 0, we get

Dα−2
q u(t) = c1D

α−2
q tα−1 + c2D

α−2
q tα−2 −Dα−2

q Iαq g(t)

= c1
Γq(α)

Γq(2)
t+ c2

Γq(α− 1)

Γq(1)
− I2

q g(t),

in view of I2
q g(t)→ 0 as t→ 0, we must set c2 = 0. Then we have

u(t) = c1t
α−1 − 1

Γq(α)

t∫
0

(t− qs)(α−1)g(s) dqs. (4)
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Further, we obtain

Dα−1
q u(t) = c1D

α−1
q tα−1 −Dα−1

q Iαq g(t) = c1Γq(α)−
t∫

0

g(s) dqs (5)

and

Dβ
q u(t) = c1

Γq(α)

Γq(α− β)
tα−1−β − 1

Γq(α− β)

t∫
0

(t− qs)(α−1−β)g(s) dqs. (6)

Then we obtain

ξ∫
0

φ(t)Dβ
q u(t) dqt+ α[u]

= c1
Γq(α)

Γq(α− β)

ξ∫
0

φ(t)tα−1−β dqt+ c1

1∫
0

tα−1 dA(t)

− 1

Γq(α− β)

ξ∫
0

φ(t)

t∫
0

(t− qs)(α−1−β)g(s) dqsdqt

− 1

Γq(α)

1∫
0

t∫
0

(t− qs)(α−1)g(s) dqsdA(t).

From (5) and (6) we have

c1 =

∫ 1

0
g(s) dqs

Γq(α)− Γq(α)
Γq(α−β)

∫ ξ
0
φ(t)tα−1−β dqt−

∫ 1

0
tα−1 dA(t)

−
∫ ξ

0
φ(t)

∫ t
0
(t− qs)(α−1−β)g(s) dqsdqt

Γq(α)Γq(α− β)− Γq(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α− β)

∫ 1

0
tα−1 dA(t)

−
∫ 1

0

∫ t
0
(t− qs)(α−1)g(s) dqsdA(t)

Γ2
q(α)− Γ2

q(α)

Γq(α−β)

∫ ξ
0
φ(t)tα−1−β dqt− Γq(α)

∫ 1

0
tα−1 dA(t)

. (7)

Thus, substituting (7) into (4), we deduce that

u(t) = −
tα−1

∫ ξ
0
φ(t)

∫ t
0
(t− qs)(α−1−β)g(s) dqsdqt

Γq(α)Γq(α− β)− Γq(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α− β)

∫ 1

0
tα−1 dA(t)

−
tα−1

∫ 1

0

∫ t
0
(t− qs)(α−1)g(s) dqsdA(t)

Γ2
q(α)− Γ2

q(α)

Γq(α−β)

∫ ξ
0
φ(t)tα−1−β dqt− Γq(α)

∫ 1

0
tα−1 dA(t)
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+
tα−1

∫ 1

0
g(s) dqs

Γq(α)Γq(α− β)− Γq(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α− β)

∫ 1

0
tα−1 dA(t)

×

(
Γq(α− β)−

ξ∫
0

φ(t)tα−1−β dqt−
Γq(α− β)

Γq(α)

1∫
0

tα−1 dA(t)

+

ξ∫
0

φ(t)tα−1−β dqt+
Γq(α− β)

Γq(α)

1∫
0

tα−1 dA(t)

)
−
∫ t

0
(t− qs)(α−1)g(s) dqs

Γq(α)

=
tα−1

Γq(α− β)−
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α−β)

Γq(α)

∫ 1

0
tα−1 dA(t)

× 1

Γq(α)

[ ξ∫
0

1∫
0

φ(t)tα−1−βg(s) dqsdqt−
ξ∫

0

t∫
0

φ(t)(t− qs)(α−1−β)g(s) dqsdqt

]

+
Γq(α− β)tα−1

Γq(α)Γq(α− β)− Γq(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α− β)

∫ 1

0
tα−1 dA(t)

× 1

Γq(α)

1∫
0

tα−1

1∫
0

g(s) dqsdA(t)

− Γq(α− β)tα−1

Γ2
q(α)Γq(α−β)− Γ2

q(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α)Γq(α−β)

∫ 1

0
tα−1 dA(t)

×
1∫

0

t∫
0

(t− qs)(α−1)g(s) dqsdA(t) +

1∫
0

G1(t, qs)g(s) dqs

=
tα−1

Γq(α− β)−
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α−β)

Γq(α)

∫ 1

0
tα−1 dA(t)

× 1

Γq(α)

[ ξ∫
0

t∫
0

φ(t)
[
tα−1−β − (t− qs)(α−1−β)

]
g(s) dqsdqt

+

ξ∫
0

1∫
t

φ(t)tα−1−βg(s) dqsdqt

]

+
Γq(α− β)tα−1

Γq(α)Γq(α− β)− Γq(α)
∫ ξ

0
φ(t)tα−1−β dqt− Γq(α− β)

∫ 1

0
tα−1 dA(t)

× 1

Γq(α)

[ 1∫
0

t∫
0

(
tα−1 − (t− qs)(α−1)

)
g(s) dqsdA(t)
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+

1∫
0

1∫
t

tα−1g(s) dqsdA(t)

]
+

1∫
0

G1(t, qs)g(s) dqs

=
tα−1

∆

ξ∫
0

φ(t)

1∫
0

H(t, qs)g(s) dqsdqt+

1∫
0

G1(t, qs)g(s) dqs

+
Γq(α− β)tα−1

∆Γq(α)

1∫
0

1∫
0

G1(t, qs)g(s) dqsdA(t)

=

1∫
0

(
G1(t, qs) +G2(t, qs) +G3(t, qs)

)
g(s) dqs =

1∫
0

G(t, qs)g(s) dqs.

The proof of this lemma is finished.

Lemma 3. The Green’s functions G1(t, qs), H(t, qs) and G(t, qs) have the following
properties:

(i) G1(t, qs) > 0 ∀t, s ∈ (0, 1),

G1(t, qs) 6
tα−1

Γq(α)
6

1

Γq(α)
∀t, s ∈ [0, 1];

(ii) tα−1G1(1, qs) 6 G1(t, qs) 6 G1(1, qs) ∀t, s ∈ [0, 1],

tα−1−βH(1, qs) 6 H(t, qs) 6 H(1, qs) ∀t, s ∈ [0, 1];

(iii)
tα−1

Γq(α)
K(s) 6 G(t, qs) 6

tα−1

Γq(α)
(K1 +K2) ∀t, s ∈ [0, 1],

here K(s) =
[
1− (1− qs)(α−1)

]
K1 +

[
1− (1− qs)(α−1−β)

]
K2,

K1 = 1 +
Γq(α− β)α[tα−1]

∆Γq(α)
, K2 =

∫ ξ
0
φ(t)tα−1−β dqt

∆
;

(iv) Γq(α)G(t, qs) 6 K̂(s) +K2 ∀t, s ∈ [0, 1],

here K̂(s) =
[
(α− 1)s+ 1− (1− qs)(α−1)

](
1 +

Γq(α− β)α[1]

∆Γq(α)

)
.

Proof. Obviously, condition (i) holds.
(ii) We start by defining two functions

g1(t, qs) = tα−1 − (t− qs)(α−1), 0 6 qs 6 t 6 1,

g2(t, qs) = tα−1, 0 6 t 6 qs 6 1.

For fixed s ∈ [0, 1],

tDqg1(t, qs) = [α− 1]qt
α−2 − [α− 1]qt

α−2

(
1− qs

t

)(α−2)

> 0,
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that is, g1(t, qs) is an increasing function in t. Similarly, g2(t, qs) is also increasing in t.
Then we have, G1(t, qs) 6 G1(1, qs). For qs 6 t, one has

G1(t, qs) =
1

Γq(α)

[
tα−1 − tα−1

(
1− qs

t

)(α−1)]
>

1

Γq(α)

[
tα−1(1− (1− qs)(α−1))

]
= tα−1G1(1, qs).

For qs > t, one has

G1(t, qs) =
1

Γq(α)
tα−1 > tα−1G1(1, qs).

Similarly, for t, s ∈ [0, 1], the result tα−1−βH(1, qs) 6 H(t, qs) 6 H(1, qs) is also true.
(iii) By means of (i), (ii), we obtain

G(t, qs) = G1(t, qs) +G2(t, qs) +G3(t, qs)

6
tα−1

Γq(α)
+

tα−1

∆Γq(α)

ξ∫
0

φ(t)tα−1−β dqt+
Γq(α− β)tα−1

∆Γ2
q(α)

1∫
0

tα−1 dA(t)

=
tα−1

Γq(α)

(
1 +

Γq(α− β)α[tα−1]

∆Γq(α)
+

1

∆

ξ∫
0

φ(t)tα−1−β dqt

)

=
tα−1

Γq(α)
(K1 +K2).

Moreover, we have

G(t, qs) = G1(t, qs) +G2(t, qs) +G3(t, qs)

> tα−1G1(1, qs) +
tα−1

∆

ξ∫
0

φ(t)tα−1−βH(1, qs) dqt

+
Γq(α− β)tα−1

∆Γq(α)

1∫
0

tα−1G1(1, qs) dA(t)

=
tα−1

Γq(α)

[(
1− (1− qs)(α−1)

)
+

1− (1− qs)(α−1−β)

∆

ξ∫
0

φ(t)tα−1−β dqt

+
Γq(α− β)

∆Γq(α)

1∫
0

tα−1
(
1− (1− qs)(α−1)

)
dA(t)

]

=
tα−1

Γq(α)
K(s).
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(iv) From (iii) we have

Γq(α)G(t, qs) 6 (α− 1)s+ 1− (1− qs)(α−1) +
1

∆

ξ∫
0

φ(t)tα−1−β dqt

+
Γq(α− β)

∆Γq(α)

1∫
0

[
(α− 1)s+ 1− (1− qs)(α−1)

]
dA(t)

=
[
(α− 1)s+ 1− (1− qs)(α−1)

](
1 +

Γq(α− β)α[1]

∆Γq(α)

)
+K2

= K̂(s) +K2.

The proof of this lemma is finished.

Definition 3. (See [16].) Let E be a real Banach space and P ⊂ E be a cone. A bounded
linear operator S : E → E is called u0-positive on P if for every nonzero u ∈ P ,
a natural number n = n(x) and two positive number α0, β0 can be found such that
α0u0 6 Snu 6 β0u0.

Lemma 4. (See [16].) Suppose that S : C[0, 1] → C[0, 1] is a completely continuous
linear operator and SP ⊂ P . If there exist ψ ∈ C[0, 1] \ (−P ) and a constant c > 0
such that cSψ > ψ, then the spectral radius r(S) 6= 0 and S has a positive eigenfunction
ϕ corresponding to its first eigenvalue λ1, i.e. ϕ = λ1Sϕ.

In this paper, we work in E = C[0, 1], the Banach space endowed with the norm
‖u‖ = max{|u(t)|: t ∈ [0, 1]}. We consider the standard cone P = {u ∈ C[0, 1]:
u(t) > 0, t ∈ [0, 1]}. Define operators T, S : E → E by

Tu(t) =

1∫
0

G(t, qs)f
(
s, u(s)

)
dqs, t ∈ [0, 1],

Su(t) =

1∫
0

G(t, qs)u(s) dqs, t ∈ [0, 1].

Lemma 5. If (H1), (H2) hold, then T : P → P is a completely continuous operator.

Proof. By standard method, it can be easily admitted, so we omit it.

Remark 1. It is not hard to verify that S : P → P is a completely continuous linear
operator. The existence of solutions of problem (1)–(2) is equivalent to the existence of
fixed points of S on E. In reality, a real number λ is an eigenvalue of the operator S if
there exists u ∈ E \ {θ} such that Su = λu. Now, let r(S) be the spectral radius of the
operator S, λ1 = (r(S))−1 be the first eigenvalue of S.
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Lemma 6. Suppose that (H1), (H2) hold, the operator S is a u0-positive linear operator
with u0(t) = tα−1. For the operator S, we have r(S) 6= 0, and S has a positive
eigenfunction ϕ0 corresponding to its first eigenvalue λ1.

Proof. From (iii) of Lemma 1, for each u ∈ P \ {θ}, we can obtain

Su(t) =

1∫
0

G(t, qs)u(s) dqs 6
tα−1

Γq(α)

1∫
0

(K1 +K2)u(s) dqs

and

Su(t) =

1∫
0

G(t, qs)u(s) dqs >
tα−1

Γq(α)

1∫
0

K(s)u(s) dqs.

From Definition 3 we know that S is a u0-positive linear operator in which u0(t) = tα−1.
Next, we can choose

c = Γq(α)

( 1∫
0

K(s)sα−1 dqs

)−1

> 0

such that cSψ > ψ, here ψ = tα−1. By Lemma 4, we know that r(S) 6= 0 and S has
a positive eigenfunction ϕ0 corresponding to its first eigenvalue λ1.

Remark 2. Let S be a u0-positive linear operator, and ϕ0 be a positive eigenfunction
of S. Then S is also a ϕ0-positive operator [11]. Without loss of generality, in this paper,
we assume ‖ϕ0‖ = 1. Moreover, if ϕ0 be a positive eigenfunction corresponding to λ1,
then Sϕ0 = r(S)ϕ0. From Lemma 6 and Definition 3 we have

αϕ0
tα−1 = αϕ0

u0 6 Sϕ0(t) = r(S)ϕ0(t), i.e. tα−1 6
r(S)

αϕ0

ϕ0(t).

3 Unique solution

In this section, we are in a position to present the existence of unique solution for prob-
lem (1)–(2).

Theorem 1. Suppose that conditions (H1), (H2) hold and f(t, u) satisfies∣∣f(t, u)− f(t, v)
∣∣ 6 a(t)|u− v| ∀t ∈ [0, 1], u, v ∈ R, (8)

with
1∫

0

(K1 +K2)a(s)sα−1 dqs < Γq(α). (9)

Then problem (1)–(2) has a unique nontrivial solution.
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Proof. First, for n large enough, we shall show that Sn is a contraction operator. By
means of Lemma 3 and (8), for any u, v ∈ R, we have

∣∣Su(t)− Sv(t)
∣∣ 6 1∫

0

G(t, qs)
∣∣f(s, u(s)

)
− f

(
s, v(s)

)∣∣dqs
6

tα−1

Γq(α)

1∫
0

(K1 +K2)a(s)
∣∣u(s)− v(s)

∣∣dqs
6

tα−1

Γq(α)

1∫
0

(K1 +K2)a(s) dqs · ‖u− v‖.

Then we have∣∣Su(t)− Sv(t)
∣∣ 6 tα−1

Γq(α)
(K1 +K2)Λ‖u− v‖, t ∈ [0, 1], (10)

here Λ =
∫ 1

0
a(s) dqs. Next, considering (8) and (10), one has

∣∣S2u(t)− S2v(t)
∣∣ 6 1∫

0

G(t, qs)
∣∣f(s, Su(s)

)
− f

(
s, Sv(s)

)∣∣dqs
6

(K1 +K2)tα−1

Γq(α)

1∫
0

a(s)
∣∣Su(s)− Sv(s)

∣∣dqs
6

(K1 +K2)2tα−1

Γ2
q(α)

1∫
0

sα−1a(s)Λ dqs · ‖u− v‖

=

(
K1 +K2

Γq(α)

)2

Λ∗Λtα−1‖u− v‖,

here Λ∗ =
∫ 1

0
sα−1a(s) dqs. Furthermore, by induction, we obtain

∣∣Snu(t)− Snv(t)
∣∣ 6 (K1 +K2)

Γq(α)
·
[

(K1 +K2)Λ∗

Γq(α)

]n−1

Λtα−1‖u− v‖, t ∈ [0, 1],

which implies∥∥Snu(t)− Snv(t)
∥∥ 6

[
(K1 +K2)Λ∗

Γq(α)

]n−1

· (K1 +K2)Λtα−1

Γq(α)
‖u− v‖.

According to (9), we have

lim
n→+∞

[
(K1 +K2)Λ∗

Γq(α)

]n−1

= 0,
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it shows that there exists a sufficiently large N > 0 such that∥∥SNu− SNv∥∥ 6
1

8
‖u− v‖,

thus SN has one fixed point in E, and further, we can easily get that S has one fixed point
in E. From condition (H1) we know that problem (1)–(2) has a unique nontrivial solution
by using Banach’s contraction principle.

If a(t) ≡ A, then condition (8) reduces to the Lipschitz condition. Then we obtain
unique results as follows:

Theorem 2. Suppose that conditions (H1), (H2) hold, and there exists A > 0 such that∣∣f(t, u)− f(t, v)
∣∣ 6 A|u− v| ∀t ∈ [0, 1], u, v ∈ R, (11)

with A < λ1, then problem (1)–(2) has a unique nontrivial solution u∗. Moreover, the
iterative sequence un = Tun−1 (n = 1, 2, . . . ) converges to u∗ with initial u0 ∈ E. In
addition, there exists a constant M satisfies the error estimate

‖un − u∗‖ 6Mλ1

( Aλ1
)n

1− A
λ1

. (12)

Proof. Firstly, by Lemma 5, T : P → P is completely continuous. We know that prob-
lem (1)–(2) has a unique solution if and only if T has a unique fixed point in E. First,
for any given u0 ∈ E, we construct a sequence un = Tun−1, n = 1, 2, . . . . We see that
the iterative sequence {un} ⊂ E. If u1 = u0, i.e. Tu0 = u0, then u0 is a solution of
problem (1)–(2). If u1 6= u0, then |u1 − u0| ∈ P \ {θ}. From Lemma 6 and Remark 2
there exists M = M(|u1 − u0|) such that

S
(
|u1 − u0|

)
(t) 6 (Mϕ0)(t), t ∈ [0, 1]. (13)

By induction, for any n ∈ N , t ∈ [0, 1], it follows from (11) and (13) that∣∣un+1(t)− un(t)
∣∣ =

∣∣Tun(t)− Tun−1(t)
∣∣

6

1∫
0

G(t, qs)
∣∣f(s, un(s)

)
− f

(
s, un−1(s)

)∣∣dqs
6 AS

(
|un − un−1|

)
(t) 6 · · · 6 AnSn

(
|u1 − u0|

)
(t)

6 AnSn−1(Mϕ0)(t) = MAnSn−1ϕ0(t)

= MAnλ1−n
1 ϕ0(t).

Thus for n, p ∈ N , one has∣∣un+p(t)− un(t)
∣∣ 6 ∣∣un+p(t)−un+p−1(t)

∣∣+
∣∣un+p−1(t)−un+p−2(t)

∣∣
+ · · ·+

∣∣un+1(t)−un(t)
∣∣
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6M(An+p−1λ2−n−p
1 +An+p−2λ3−n−p

1 + · · ·+Anλ1−n
1 )ϕ0(t)

= Mϕ0(t)
Anλ1−n

1 [1− ( Aλ1
)p]

1− A
λ1

= Mλ1ϕ0(t)
( Aλ1

)n[1− ( Aλ1
)p]

1− A
λ1

.

Noting that ‖ϕ0‖ = 1, we obtain

‖un+p − un‖ 6Mλ1ϕ0(t)
( Aλ1

)n[1− ( Aλ1
)p]

1− A
λ1

→ 0, n, p→ +∞.

By the completeness of E and A/λ1 ∈ (0, 1), we know that there exists u∗ ∈ E such that
limn→+∞ un = u∗. Taking limit on un = Tun−1, it shows that u∗ is a fixed point of T .

Next, we prove uniqueness. Let u∗ be other fixed point of T , that is, Tu∗ = u∗.
From Lemma 3 there exists M(u∗, u∗) = M(|u∗ − u∗|) > 0 such that S(|u∗ − u∗|) 6
M(|u∗ − u∗|)ϕ0. Similarly, we have

∣∣u∗(t)− u∗(t)∣∣ 6Mλ1

(
A

λ1

)n
ϕ0(t)→ 0 as n→ +∞. (14)

Then problem (1)–(2) has a unique nontrivial solution. Taking limit on (14) as p → ∞,
the error estimate formula (12) holds.

Remark 3. Condition (11) can be changed into |f(t, u) − f(t, v)| 6 Aλ1|u − v|, A ∈
[0, 1), λ1 is the first eigenvalue of S, then the result of Theorem 2 is still hold, and we
also get the error estimate

‖un − u∗‖ 6Mλ1
An

1−A
.

Corollary 1. Suppose that conditions (H1), (H2) and (11) hold. If Ar(S) < 1, then
problem (1)–(2) has a unique solution in E1, where

E1 =

{
u ∈ E: sup

t∈[0,1]

|u(t)|
ϕ0(t)

< +∞
}

with the norm ‖u‖1 = sup
t∈[0,1]

|u(t)|
ϕ0(t)

. (15)

Proof. For u ∈ E, by Lemma 3 and Remark2, we get

∣∣Tu(t)
∣∣ 6 1∫

0

G(t, qs)
∣∣f(s, u(s)

)
− f(s, 0)

∣∣dqs+

1∫
0

G(t, qs)f(s, 0) dqs

6
(K1 +K2)tα−1

Γq(α)

1∫
0

A
∣∣u(s)

∣∣ dqs
6

(K1 +K2)r(S)

α0Γq(α)

1∫
0

A
∣∣u(s)

∣∣dqs · ϕ0(t). (16)
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In view of (15), (16), T mapsE intoE1. Now we consider fixed points of T inE1. Notice
that Sϕ0 = r(S)ϕ0, namely,

r(S)ϕ0(t) =

1∫
0

G(t, qs)ϕ0(s) dqs.

Let u1, u2 ∈ E, we have

∣∣Tu1(t)− Tu2(t)
∣∣ 6 1∫

0

G(t, qs)
∣∣f(s, u1(s)

)
− f

(
s, u2(s)

)∣∣dqs
6

1∫
0

G(t, qs)A
∣∣u1(s)− u2(s)

∣∣ dqs
6 A

1∫
0

G(t, qs)Aϕ0(s) dqs · ‖u1 − u2‖1

= A‖u1 − u2‖1r(S)ϕ0(t). (17)

Inequality (17) implies that

‖Tu1 − Tu2‖1 6 Ar(S)‖u1 − u2‖1,

since Ar(S) < 1, the operator T is a contraction. Then from (H1) problem (1)–(2) has
a unique nontrivial solution in E1.

Remark 4. Under the Lipschitz condition (11), the Lipschitz constant is closely asso-
ciated with the first eigenvalue of the relevant u0-positive linear operator. Moreover, we
know that the basic space considered in Corollary 1 is E1, not E. So we only need to
replace the restrict r(S) < 1 by ‖S‖ < 1, here ‖S‖ = supu∈E‖Su‖/‖u‖. By means of
Gelfand’s Formula, we have

r(S) = lim
n→∞

n
√
‖Sn‖ 6 ‖S‖,

then Corollary 1 follows directly in E rely on the Banach’s contraction principle.

4 Multiple positive solutions

In this section, we first give two lemmas that will be used to show the existence of multiple
positive solutions. For the forthcoming analysis, given δ ∈ (0, 1/2), denote

l = min
t∈[δ,1−δ]

tα−1, Θ1 =
Γq(α)∫ 1

0
(K̂(s) +K2) dqs

, Θ2 =
Γq(α)

l
∫ 1−δ
δ

K(s) dqs
.

Our results rely on fixed point theorems due to Krasnoselskii’s [16] and Leggett–
Williams [17]. Now we give the following assumption:

(H1′) f ∈ C([0, 1]× R+,R+), f(t, 0) 6≡ 0, t ∈ [0, 1].
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Lemma 7. Let E be a Banach space, P ⊂ E be a cone in E. Assume Ω1, Ω2 are open
disks contained in E with Ω1 ⊂ Ω2. Let T : P ∩ (Ω2 \ Ω1) → P be a completely
continuous operator such that either

(i) ‖Tx‖ 6 ‖x‖ for any x ∈ P ∩ ∂Ω1 and ‖Tx‖ > ‖x‖ for any x ∈ P ∩ ∂Ω2, or
(ii) ‖Tx‖ > ‖x‖ for any x ∈ P ∩ ∂Ω1 and ‖Tx‖ 6 ‖x‖ for any x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

Lemma 8. Let P be a cone of a Banach space E, Pc = {x ∈ P : ‖x‖ 6 c}, θ is
a nonnegative continuous concave function on P such that θ(x) 6 ‖x‖ for any x ∈ P̄c
and P (θ, b, d) = {x ∈ P : b 6 θ(x), ‖x‖ 6 d}. Assume that T : P̄c → P̄c is completely
continuous, and there exist constants a < b < d 6 c such that

(i) {x ∈ P (θ, b, d): θ(x) > b} 6= ∅ and θ(Tx) > b, x ∈ P (θ, b, d);
(ii) ‖Tx‖ < a for x ∈ P̄a;

(iii) θ(Tx) > b for any x ∈ P (θ, b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, x3 with ‖x1‖ < a, b < θ(x2), ‖x3‖ > a
and θ(x3) < b.

Theorem 3. Suppose that (H1′), (H2) hold, and there exist two constants r2 > r1 > 0
such that

(H3) f(t, u) > Θ2r1, (t, u) ∈ [0, 1]× [0, r1];
(H4) f(t, u) 6 Θ1r2, (t, u) ∈ [0, 1]× [0, r2].

Then problem (1)–(2) has at least one positive solution u with r1 6 ‖u‖ 6 r2.

Proof. From Lemma 5, T :P→P is completely continuous. LetΩ1 ={u∈P : ‖u‖<r1}.
For u ∈ P ∩ ∂Ω1, t ∈ [0, 1], we have 0 6 u(t) 6 r1. Then from Lemma 3 and (H3) we
obtain

Tu(t) =

1∫
0

G(t, qs)f
(
s, u(s)

)
dqs >

tα−1

Γq(α)

1∫
0

K(s)f
(
s, u(s)

)
dqs

>
mint∈[δ,1−δ] t

α−1

Γq(α)

1∫
0

Θ2r1K(s) dqs >
Θ2r1l

Γq(α)

1−δ∫
δ

K(s) dqs

= r1 = ‖u‖,

which means that ‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂Ω1.
Let Ω2 = {u ∈ P : ‖u‖ < r2}. For u ∈ P ∩ ∂Ω2, t ∈ [0, 1], one has 0 6 u(t) 6 r2.

Then from Lemma 3 and (H4) we obtain

Tu(t) 6
1

Γq(α)

1∫
0

(
K̂(s) +K2

)
f
(
s, u(s)

)
dqs 6

Θ1r2

Γq(α)

1∫
0

(
K̂(s) +K2

)
dqs

= r2 = ‖u‖,
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which means that ‖Tu‖ 6 ‖u‖ for u ∈ P ∩ ∂Ω2. By means of Lemma 7 and (H1′), we
know that problem (1)–(2) has at least one positive solution.

Theorem 4. Suppose that (H1′), (H2) hold, and there exist four positive constants a, b,
c, d with 0 < a < b < (lK/(K1 +K2))d < d < c such that

(H5) f(t, u) < Θ1a, (t, u) ∈ [0, 1]× [0, a];
(H6) f(t, u) > Θ2b, (t, u) ∈ [δ, 1− δ]× [b, d];
(H7) f(t, u) 6 Θ1c, (t, u) ∈ [0, 1]× [0, c].

Then problem (1)–(2) has at least three positive solutions u1, u2, u3 with

max
t∈[0,1]

u1(t) < a, b < min
t∈[δ,1−δ]

u2(t) < max
t∈[0,1]

u2(t) 6 c,

a < max
t∈[0,1]

u3(t) 6 c, min
t∈[δ,1−δ]

u3(t) < b.

Proof. First, we show that operator T : P̄c → P̄c. For any u ∈ P̄c, we have ‖u‖ 6 c. By
using Lemma 3(iv) and (H7), one has

‖Tu‖ 6 1

Γq(α)

1∫
0

(
K̂(s) +K2

)
f
(
s, u(s)

)
dqs

6
Θ1c

Γq(α)

1∫
0

(
K̂(s) +K2

)
dqs = c,

thus T (P̄c) ⊂ P̄c. From Lemma 5 it is easily to show that T : P̄c → P̄c is completely
continuous. Similarly, let u ∈ P̄a, it follows from (H5) that ‖Tu‖ < a, then condition (ii)
of Lemma 8 is fulfilled.

In order to justify condition (i), define a nonnegative continuous concave function
θ(u) = mint∈[δ,1−δ] u(t) and let u(t) = (b + d)/2, K = mint∈[0,1]K(s). We can
easily get u ∈ P (θ, b, d) and {u ∈ P (θ, b, d)|θ(u) > b} 6= ∅. If u ∈ P (θ, b, d), then
u(t) ∈ [b, d] for any t ∈ [δ, 1− δ]. By condition (H6), we have

θ(Tu) = min
t∈[δ,1−δ]

Tu(t) = min
t∈[δ,1−δ]

1∫
0

G(t, qs)f
(
s, u(s)

)
dqs

>
mint∈[δ,1−δ] t

α−1

Γq(α)

1∫
0

K(s)f
(
s, u(s)

)
dqs

>
lbΘ2

Γq(α)

1−δ∫
δ

K(s) dqs = b,

then condition (i) is satisfied.
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Next, for u ∈ P (θ, b, c) with ‖Tu‖ > d, we get

‖Tu‖ 6 K1 +K2

Γq(α)

1∫
0

f
(
s, u(s)

)
dqs,

thus

Tu(t) >
tα−1

Γq(α)

1∫
0

K(s)f
(
s, u(s)

)
dqs >

Ktα−1

Γq(α)

1∫
0

f
(
s, u(s)

)
dqs

>
Ktα−1

K1 +K2
‖Tu‖.

Moreover, we obtain

θ(Tu) = min
t∈[δ,1−δ]

Tu(t) > min
t∈[δ,1−δ]

tα−1 K

K1 +K2
‖Tu‖

>
lK

K1 +K2
d > b,

then condition (iii) is satisfied. From Lemma 8 we know that T has at least three fixed
points, which means that problem (1)–(2) has at least three positive solutions u1, u2, u3

such that

max
t∈[0,1]

u1(t) < a, b < min
t∈[δ,1−δ]

u2(t) < max
t∈[0,1]

u2(t) 6 c,

a < max
t∈[0,1]

u3(t) 6 c, min
t∈[δ,1−δ]

u3(t) < b.

5 An example

Consider the boundary value problem

D5/2
q u(t) +

ln(1 + u)

1 + t3/2
+ h(t) = 0, t ∈ [0, 1],

Dqu(0) = D1/2
q u(0) = 0, D3/2

q u(1) = α[u] +

1∫
0

t5/2D1/2
q u(t) dqt,

(18)

where q = 1/2, α = 5/2, β = 1/2, ξ = 1, φ(t) = t5/2 > 0, h ∈ C[0, 1], h(t) > 0,
h(t) 6≡ 0 for t ∈ [0, 1]. Moreover, a(t) = 1/(1 + t3/2), α[u] = u(1/4)/23, and

f(t, u) =
ln(1 + u)

1 + t3/2
+ h(t), t ∈ [0, 1].

By simple computations, we find that

α[1] =
1

23
> 0, α

[
tα−1

]
= α

[
t3/2

]
=

1

184
> 0, t ∈ [0, 1],
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∆ = Γq(α− β)−
ξ∫

0

φ(t)tα−1−β dqt−
Γq(α− β)

Γq(α)
α[tα−1]

= 1−
1∫

0

t5/2 · tdqt−
α[t3/2]

Γq(
5
2 )

=
8
√

2− 1

16
√

2− 1
− 1

184Γq(
5
2 )

≈ 0.4728 > 0.

Then assumptions (H1), (H2) hold. Moreover, we get∣∣f(t, u)− f(t, v)
∣∣ =

∣∣∣∣ ln(1 + u)

1 + t3/2
− ln(1 + v)

1 + t3/2

∣∣∣∣
6

1

1 + t3/2
|u− v|, t ∈ [0, 1],

f(t, 0) = h(t) 6≡ 0, t ∈ [0, 1],

K1 = 1 +
Γq(α− β)α[tα−1]

∆Γq(α)
= 1 +

α[t3/2]

∆Γq(5/2)

= 1 +
1

184Γq(
5
2 ) 8

√
2−1

16
√

2−1
− 1
≈ 1.0086,

and

K2 =
1

∆

1∫
0

t
7
2 dqt =

8
√

2

∆(16
√

2− 1)
≈ 0.0978.

Further, we can obtain
1∫

0

(K1 +K2)a(s)sα−1 dqs

= (K1 +K2)

1∫
0

s3/2

1 + 3
2

dqs 6 (K1 +K2)

1∫
0

1 dqs ≈ 1.106 < Γq

(
5

2

)
,

and thus all the conditions of Theorem 1 are satisfied, so problem (18) has a unique
nontrivial solution.
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