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Abstract. This paper aims to investigate the fixed-time synchronization (i.e., synchronization in
fixed-time sense) of Cohen–Grossberg drive-response neural networks with discontinuous neuron
activations and mixed time delays (both time-varying discrete delay and distributed delay). To
accomplish the target of fixed-time synchronization, a novel discontinuous feedback control
procedure is firstly designed for the response neural networks. Then, under the framework of
Filippov solutions, by means of functional differential inclusions theory, inequality technique
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drive-response systems. Finally, two numerical examples are presented to illustrate the proposed
methodologies.

Keywords: fixed-time synchronization, discontinuous neuron activations, functional differential
inclusions theory, mixed time delays.

∗This research was supported by National Natural Science Foundation of China (Nos. 11671013, 61773217,
61374080), the Construct Program of the Key Discipline in Hunan Province, the Agencia Estatal de
Investigación (AEI) of Spain, co-financed by the European Fund for Regional Development (FEDER)
corresponding to the 2014-2020 multiyear financial framework, project MTM2016-75140-P; and by Xunta de
Galicia under grants GRC2015/004 and R2016/022.

c© 2019 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

mailto:fanchaokong88@sohu.com
https://www.vu.lt/leidyba/
https://creativecommons.org/licenses/by/4.0/


604 F. Kong

1 Introduction

In this paper, we consider a class of discontinuous Cohen–Grossberg neural networks
with mixed time-varying delays as follows:

dxi(t)

dt
= −di

(
xi(t)

)[
ai
(
xi(t)

)
−

n∑
j=1

bij(t)gj
(
xj(t)

)
−

n∑
j=1

cij(t)gj
(
xj
(
t− τ(t)

))

−
n∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
xj(s)

)
ds− Ii(t)

]
(1)

with initial conditions
xi0(θ) = φi(θ), θ ∈ [−τ, 0],

where i = 1, 2, . . . , n, n > 2 is the number of neurons in the network, xi(t) represents
the state variable of the ith neuron, di(xi(t)) denotes the amplification function, ai(xi(t))
is an appropriately behaved function, matrices B = (bij) ∈ Rn×n, C = (cij) ∈ Rn×n
and H = (hij) ∈ Rn×n are the connection weight matrix and delayed connection weight
matrix, respectively, gj denotes the activation functions, Ii is the external input to the ith
neuron. τ(t) corresponds to the discrete time-varying delay at time t and is a continuous
function satisfying 0 6 τ(t) 6 τ , where τ = maxt∈R τ(t), τ a is nonnegative constant;
δij(t) denotes the distributed time varying delay at time t and is a continuous function
satisfying 0 6 δij(t) 6 δ, where δ = max16i,j6n{maxt∈R δij(t)}, δ is a nonnegative
constant.

Based on the concept of drive-response synchronization, let us take (1) as the drive
system and design the following response system:

dyi(t)

dt
= −di

(
yi(t)

)[
ai
(
yi(t)

)
−

n∑
j=1

bij(t)gj
(
yj(t)

)
−

n∑
j=1

cij(t)gj
(
yj
(
t− τ(t)

))

−
n∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
yj(s)

)
ds− Ii(t)

]
+ ui(t) (2)

with initial conditions
yi0(θ) = ϕi(θ), θ ∈ [−τ, 0],

where ui(t) is the control input to be designed later.
The synchronization of the drive-response systems was firstly investigated by Pecora

and Carroll [34]. Pecora and Carroll showed that the behavior of the drive system can
influence that of response system, but the drive system dose not depend on the response
system. The synchronization indicates that the states of the response system converge to
those of the drive system. Hence, by applying the synchronization property of the drive-
response for neural networks, we can recognize the dynamics of unknown neuron system
from those of another well-known neuron system. During the past several years, various
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kinds of synchronization have been proposed, such as asymptotic synchronization [3, 17,
22, 31, 35], exponential synchronization [5, 18, 36, 37, 39, 54], finite-time synchronization
[2, 6, 29, 41–46, 50], fixed-time synchronization [8–10, 13, 25, 47], etc. Compared with
infinite-time synchronization, the finite-time synchronization intrinsically requires a faster
convergence speed. Note that a critical issue about the finite-time synchronization is that
the settling time is dependent on the initial conditions of the drive-response systems. Dif-
ferent initial conditions may lead to different convergence time. Nevertheless, the initial
conditions of many practical systems can hardly be adjusted or even impossible to be
estimated, which results in the inaccessibility of the final settling time and deteriorating of
the systems’ performance. To overcome this difficulty, in 2012, Polyakov [38] proposed
a nonlinear feedback design for the fixed-time stabilization of linear control systems,
where the definition of fixed-time stable is firstly introduced. Moreover, the fixed-time
synchronization and the finite-time synchronization both require that the errors between
the drive system and the response system converge to zero in some finite time and always
remain zero afterwards. However, the fixed-time synchronization further requires that the
settling time is independent of the initial synchronization errors, and thus the upper bound
of the settling time can be given in advance. Thus, the fixed time synchronization is more
favorable and applicable than finite time synchronization and has more valuable practical
backgrounds.

In recent years, due to the fact that Cohen–Grossberg neural networks (CGNNs)
have some practical and important applications in signal processing, classification, par-
allel computation, pattern recognition, associative memory and optimization, they have
been the object of intensive analysis by numerous authors since Cohen–Grossberg neural
networks (CGNNs) have been first introduced by Cohen and Grossberg in 1983 [12].
In the applications of the CGNNs, the dynamic behaviors of the CGNNs, such as the
existence, uniqueness, Hopf bifurcation and global asymptotic stability or global expo-
nential stability of the equilibrium point, periodic and almost periodic solutions play a key
role. For more details, we refer the readers to [4, 20, 24, 26, 27, 30, 32, 40, 51, 53, 55–57]
and the references cited therein. However, all of the above results were based on the
assumption that the activation functions are continuous, Lipschitz continuous or even
smooth. Note that, in recent years, considerable efforts have been devoted to investigate
the neural network systems with discontinuous activation functions in the literature since
the pioneering contribution of Forti and Nistri [15]. See, to name a few, [1, 7, 16, 19, 23,
28,32,33,48,49]. For example, Cai et al. in [7] studied the periodic dynamics of a class of
time-varying delayed neural networks via differential inclusions, Wang and Huang in [48]
further discussed the almost periodic dynamical behaviors for Cohen–Grossberg neural
networks with discontinuous activations. Based on the work of [7] and [48], given the
influence of neutral difference operator, Kong et al. in [23] investigated dynamic behavior
of a class of neutral-type neural networks with discontinuous activations and time-varying
delays.

However, to the authors’ knowledge, few papers have considered the robust fixed-time
synchronization of discontinuous Cohen–Grossberg drive-response neural networks with
mixed time delays. In order to fill this gap partially and motivated by the above works,
in this paper, we aim to investigate the robust fixed-time synchronization control problem
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for the discontinuous Cohen–Grossberg drive-response neural networks with mixed time-
varying delays described by the differential equations (1) and (2). Under the concept of
Filippov solution, by applying the differential inclusions, inequality technique and nons-
mooth analysis theory with Lyapunov-like approach, some sufficient conditions on robust
fixed-time synchronization of drive-response systems (1) and (2) is proposed originally.
The highlights and major contributions of this paper are reflected in the subsequent key
aspects:

(i) It is nontrivial to establish a unified framework to handle the influence of discon-
tinuous activations and mixed delays of the Cohen–Grossberg neural networks. In
this paper, we firstly make novel variable transformations for the neural network
systems (1) and (2) to get two new differential equations. Then the Cauchy prob-
lems of the two new differential equations will be discussed under the Filippov
sense [14].

(ii) In order to achieve the robust fixed-time synchronization of discontinuous Cohen–
Grossberg drive-response neural networks with mixed time delays, the uncertain
differences between the Filippov solutions of the drive system and the corre-
sponding response system are not easily to be dealt with if we use the continuous
linear control law. In this paper, the discontinuous control law is designed for the
response neural networks.

(iii) Several simulation examples have been investigated to verify the correctness of
the main theorems and the corollaries.

The function gi in (1) is assumed to satisfy the following properties:

(H1) For each i = 1, 2, . . . , n, gi : R → R is piecewise continuous, i.e., gi is
continuous except on a countable set of isolate points {ρik}, where there exist
finite right and left limits g+i (ρ

i
k) and g−i (ρ

i
k), respectively. Moreover, gi has at

most a finite number of discontinuities on any compact interval of R.
(H2) For each i = 1, 2, . . . , n, there exists nonnegative constantsAi and Bi such that

sup
γi∈co[gi(u)]
ηi∈co[gi(v)]

|γi − ηi| 6 Ai|u− v|+ Bi, u, v ∈ R,

where

co
[
gi(x)

]
=
[
min

{
g−i (x), g

+
i (x)

}
,max{g−i (x), g

+
i (x)

}]
.

To derive the main results, the following assumptions are introduced.

(H3) di(x) is continuous and bounded. Moreover, there exists positive constants di
and di such that, for i = 1, 2, . . . , n,

0 < di 6 di(x) 6 di, x ∈ R.

(H4) The derivative of the amplification function ai(x) has a positive lower bound,
i.e., there exists a positive constant ai such that, for i = 1, 2, . . . , n,

ȧi(x) > ai > 0, x ∈ R.
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The remainder part of this paper is organized as follows. Some preliminaries con-
cerning the discontinuous theory and the definition of the fixed-time synchronization are
presented in Section 2. The control design schemes are proposed and employed to ensure
the robust fixed-time synchronization in Section 3. In Section 4, two numerical simula-
tions are given to illustrate the effectiveness of the obtained results. Finally, conclusions
are drawn in Section 5.

2 Essential definitions and lemmas

Notations. Let R be the space of real number and Rn denote the n-dimensional Eu-
clidean space. Consider the column vectors x = (x1, x2, . . . , xn)

> ∈ Rn and y =
(y1, y2, . . . , yn)

> ∈ Rn, where the superscript > represents the transpose operator. Fi-
nally, let sign(·) denote the sign function.

In the following, the concepts of Filippov solutions and the set-valued Lie derivative
are introduced to facilitate the subsequent analysis on the synchronization of the discon-
tinuous Cohen–Grossberg drive-response neural networks (1) and (2).

Consider the dynamic system defined by the following differential equation:

ẋ(t) = f
(
t, x(t)

)
, t ∈ R+, x(0) = x0, (3)

where x(t) represents the state variable. If f(t, x(t)) is continuous with respect to x(t),
then according to Peano’s theorem, the existence of a continuously differentiable solution
can be guaranteed. If f(t, x(t)) is locally measurable function but is discontinuous with
respect to x(t), then the solution of the Cauchy problem (3) will be discussed under the
Filippov sense [14].

Definition 1. Suppose f(t, x(t)) : R+ × Rn → Rn is Lebesgue measurable and locally
bouded uniformly in time. A vector function x(t) is called to be a Filippov solution of (3)
if x(t) is absolutely continuous and satisfying the following differential inclusion:

ẋ(t) ∈ K
[
f
(
t, x(t)

)]
, a.e. t ∈ [0, t1],

where t1 ∈ R+ or +∞ and the set-valued function K[f(t, x(t))] is defined as follows:

K
[
f
(
t, x(t)

)]
=
⋂
δ>0

⋂
µ(N)=0

co
(
f
(
t, B(x, δ) \N

))
,

where co(S) denotes the convex closure of set S, B(x, δ) is the open ball with the center
at x ∈ R and the radius δ ∈ R, µ(N) represents the Lebesgue measure of the set N .

Let V : Rn → R be a locally Lipschitz continuous function and Ωv ∈ R be the set
of points where V is not differentiable. The generalized gradient ∂V : Rn → B(Rn) is
defined as

∂V
(
x(t)

)
= co

{
lim

i→+∞
∇V (xi)

∣∣∣ xi → x(t), xi(t) ∈ Ωv ∪M
}
,
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where B(Rn) is the set consisting of all the subsets of Rn and M is an arbitrary set of
measure zero.

The set-valued Lie derivative of V with respect to system (3) is defined as

˙̃
V =

⋂
ξ∈∂V (x(t))

ξ>K
[
f
(
t, x(t)

)]
.

Definition 2 [Clarke regular]. (See [11].) V (x) : Rn → R is said to be regular if for
each x, v ∈ Rn:

(i) The usual right-directional derivativeD+V (x, v)=limh→0+(V (x+hv)−V (x))/h
exists;

(ii) The generalized directional derivative of V at x in the direction v ∈ Rn is defined
as D̃V (x, v) = limh→0+ supy→x(V (y + hv) − V (y))/h, then D+V (x, v) =

D̃V (x, v).

Choose the transformation function hi(x) such that

d

dx
hi(x) =

1

di(x)
, hi(0) = 0.

It follows from (H2) that 1/di(x) exists and 1/di(x) is positive and continuous for all
x ∈ R. Then we can see that hi(x) is a strictly increasing function with respect to x.
Moreover, since the inverse function h−1i of hi is also differential, we can have
d(h−1i (u))/du = di(u).

Define
zi(t) = hi

(
xi(t)

)
, wi(t) = hi

(
yi(t)

)
,

it can be obtained directly that

żi(t) = ḣi
(
xi(t)

)
ẋi(t) =

1

di(xi(t))
ẋi(t),

ẇi(t) = ḣi
(
yi(t)

)
ẏi(t) =

1

di(yi(t))
ẏi(t),

and xi(t) = h−1i (zi(t)), yi(t) = h−1i (wi(t)). Substituting the above variable transforma-
tions into the original systems (1) and (2), we have

dzi(t)

dt
= −ai

(
h−1i

(
zi(t)

))
+

n∑
j=1

bij(t)gj
(
h−1j

(
zj(t)

))
+

n∑
j=1

cij(t)gj
(
h−1j

(
zj
(
t− τ(t)

)))
+

n∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
h−1j

(
zj(s)

))
ds+ Ii(t),

zi0(θ) = hi
(
φi(θ)

)
, θ ∈ [−τ, 0], i = 1, 2, . . . , n,

(4)
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and

dwi(t)

dt
= −ai

(
h−1i

(
wi(t)

))
+

n∑
j=1

bij(t)gj
(
h−1j

(
wj(t)

))
+

n∑
j=1

cij(t)gj
(
h−1j

(
wj
(
t− τ(t)

)))
+

n∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
h−1j

(
wj(s)

))
ds+ Ii(t) +

ui(t)

di(h
−1
i (wi(t)))

,

wi0(θ) = hi(ϕi(θ)), θ ∈ [−τ, 0], i = 1, 2, . . . , n.

(5)

Definition 3. A function z = (z1, z2, . . . , zn)
> : [−ς, b) → Rn, ς = max{τ, δ}, b ∈

(0,+∞], is a state solution of (4) on [−ς, b) if

(i) z = (z1, z2, . . . , zn)
> is continuous on [−ς, b) and absolutely continuous on any

compact interval of [0, b);
(ii) There exists a measurable function γ = (γ1, γ2, . . . , γn)

> : [−ς, b) → Rn such
that γj(t) ∈ co[gj(h

−1
j (zj(t)))] for a.e. t ∈ [−ς, b) and

dzi(t)

dt
= −ai

(
h−1i

(
zi(t)

))
+

n∑
j=1

bij(t)γj(t) +

n∑
j=1

cij(t)γj
(
t− τ(t)

)

+

n∑
j=1

hij(t)

t∫
t−δij(t)

γj(s) ds+ Ii(t) (6)

for a.e. t ∈ [0, b), i = 1, 2, . . . , n.

Any function γ = (γ1, γ2, . . . , γn)
> satisfying (6) is called an output solution associated

with the state z = (z1, z2, . . . , zn)
>. With this definition it turns out that the state z =

(z1, z2, . . . , zn)
> is a solution of (4) in the sense of Filippov since it satisfies

dzi(t)

dt
∈ −ai

(
h−1i

(
zi(t)

))
+

n∑
j=1

bij(t)co
[
gj
(
h−1i

(
zi(t)

))]
+

n∑
j=1

cij(t)co
[
gj
(
h−1i

(
zi(t− τ(t))

))]

+

n∑
j=1

hij(t)

t∫
t−δij(t)

co
[
gj
(
h−1j

(
zj(s)

))]
ds+ Ii(t)

for a.e. t ∈ [0, b), i = 1, 2, . . . , n.
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Definition 4. A function w = (w1, w2, . . . , wn)
> : [−ς, b) → Rn, ς = max{τ, σ},

b ∈ (0,+∞], is a state solution of (5) on [−ς, b) if:

(i) w = (w1, w2, . . . , wn)
> is continuous on [−ς, b) and absolutely continuous on

any compact interval of [0, b);
(ii) There exists a measurable function η = (η1, η2, . . . , ηn)

> : [−ς, b) → Rn such
that ηj(t) ∈ co[gj(h

−1
j (wj(t)))] for a.e. t ∈ [−ς, b) and

dwi(t)

dt
= −ai

(
h−1i

(
wi(t)

))
+

n∑
j=1

bij(t)ηj(t) +

n∑
j=1

cij(t)ηj
(
t− τ(t)

)
+

n∑
j=1

hij(t)

t∫
t−δij(t)

ηj(s) ds+ Ii(t) +
ui(t)

di(h
−1
i (wi(t)))

(7)

for a.e. t ∈ [0, b), i = 1, 2, . . . , n.

Any function η = (η1, η2, . . . , ηn)
> satisfying (7) is called an output solution associated

with the state w = (w1, w2, . . . , wn)
>. With this definition, it turns out that the state

w = (w1, w2, . . . , wn)
> is a solution of (5) in the sense of Filippov since and satisfies

dwi(t)

dt
= −ai

(
h−1i

(
wi(t)

))
+

n∑
j=1

bij(t)co
[
gj
(
h−1i

(
wi(t)

))]
+

n∑
j=1

cij(t)co
[
gj
(
h−1i

(
wi
(
t− τ(t)

)))]
+

n∑
j=1

hij(t)

t∫
t−δij(t)

co
[
gj
(
h−1j

(
wj(s)

))]
ds+ Ii(t) +

ui(t)

di(h
−1
i (wi(t)))

for a.e. t ∈ [0, b), i = 1, 2, . . . , n.

Definition 5 [IVP]. (See [52].) For any continuous function h(φ) = (h1(φ1), h2(φ2),
. . . , hn(φn))

> : [−ς, 0] → Rn and any measurable selection Ψ = (Ψ1, Ψ2, . . . , Ψn)
> :

[−ς, 0]→ Rn such that Ψj(s) ∈ co[gj(hj(φj(s)))] (j = 1, 2, . . . , n) for a.e. s ∈ [−ς, 0],
an absolute continuous function z(t) = z(t, h(φ), Ψ) associated with a measurable func-
tion γ is called the Cauchy problem solution for (4) on [−ς, b) for some b > 0 with initial
value (h(φ(s)), Ψ(s)), s ∈ [−ς, 0], if

dzi(t)

dt
= −ai

(
h−1i

(
zi(t)

))
+

n∑
j=1

bij(t)γj(t) +

n∑
j=1

cij(t)γj
(
t− τ(t)

)
+

n∑
j=1

hij(t)

t∫
t−δij(t)

γj(s) ds+ Ii(t), a.e. t ∈ [0, b),

γj(t)∈ co
[
gj
(
h−1j

(
zj(t)

))]
, a.e. t ∈ [0, b),

z(s) = h
(
φ(s)

)
, s ∈ [−ς, 0], γ(s) = Ψ(s), a.e. s ∈ [−ς, 0].
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Definition 6 (IVP). (See [52].) For any continuous function h(ϕ) = (h1(ϕ1), h2(ϕ2),
. . . , hn(ϕn))

> : [−ς, 0] → Rn and any measurable selection Φ = (Φ1, Φ2, . . . , Φn)
> :

[−ς, 0]→ Rn such that Φj(s) ∈ co[gj(hj(ϕj(s)))] (j = 1, 2, . . . , n) for a.e. s ∈ [−ς, 0],
an absolute continuous function w(t) = w(t, h(ϕ), Φ) associated with a measurable
function η is called the Cauchy problem solution for (5) on [−ς, b) for some b > 0 with
initial value (h(ϕ(s)), Φ(s)), s ∈ [−ς, 0], if

dwi(t)

dt
= −ai

(
h−1i

(
wi(t)

))
+

n∑
j=1

bij(t)ηj(t) +

n∑
j=1

cij(t)ηj
(
t− τ(t)

)
+

n∑
j=1

hij(t)

t∫
t−δij(t)

ηj(s) ds+ Ii(t) +
ui(t)

di(h
−1
i (wi(t)))

, a.e. t ∈ [0, b),

ηj(t)∈ co
[
gj
(
h−1j

(
wj(t)

))]
, a.e. t ∈ [0, b),

w(s) = h
(
ϕ(s)

)
, s ∈ [−ς, 0], η(s) = Φ(s) a.e. s ∈ [−ς, 0].

Denote
ei(t) = wi(t)− zi(t), Ξi(t) = ηi(t)− γi(t),

then from (6) and (7) we can obtained the error dynamics:

ėi(t) = −
[
ai
(
h−1i

(
wi(t)

))
− ai

(
h−1i

(
zi(t)

))]
+

n∑
j=1

bij(t)Ξj(t)

+

n∑
j=1

cij(t)Ξj
(
t− τ(t)

)
+

n∑
j=1

hij(t)

t∫
t−δij(t)

Ξj(s) ds+
ui(t)

di(h
−1
i (wi(t)))

(8)

with initial conditions

ei0(θ) = hi
(
ϕi(θ)

)
− hi

(
φi(θ)

)
, θ ∈ [−ς, 0].

For convenience, let e0(θ) = (e10(θ), e20(θ), . . . , en0(θ))
>.

Definition 7. (See [47].) The drive-response systems (1) and (2) are said to achieve robust
fixed-time synchronization if there exist a fixed time Tmax and a settling time function
T (e0(θ)) such that

lim
t→T (e0(θ))

∥∥e(t)∥∥ = 0, e(t) = 0, t > T
(
e0(θ)

)
,

and T (e0(θ)) 6 Tmax for all e0(θ) ∈ Cn[−ς, 0].

Lemma 1. (See [38].) If there exists a continuous radically unbounded function V :
Rn → R+ ∪ {0} such that

(i) V (x) = 0 ⇒ x = 0;
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(ii) Any solution e(t) of (3) satisfies

˙̃
V
(
e(t)

)
6 −aV p

(
e(t)

)
− bV q

(
e(t)

)
for some a, b > 0, p > 1, 0 < q < 1, where ˙̃

V is the set-valued Lie derivative
of V . Then

V (t) = 0, t > T (x0),

with the settling time bounded by

T (x0) 6 Tmax =
1

a(p− 1)
+

1

b(1− q)
.

Lemma 2. (See [21].) Let x1, x2, . . . , xn > 0, 0 < p 6 1, q > 1, the following two
inequalities hold:

n∑
i=1

xpi >

(
n∑
i=1

xi

)p
,

n∑
i=1

xpi > n1−q

(
n∑
i=1

xi

)q
.

3 Main results

In this section, some sufficient criteria are derived to design the control parameters for
achieving fixed-time synchronization of the drive-response systems (1) and (2).

In order to achieve the fixed-time synchronization, the following discontinuous con-
trol law is designed for the response neural networks:

ui(t) = − sign
(
εi(t)

)(
λi + ζi

∣∣εi(t)∣∣+ %i
∣∣εi(t− τ(t))∣∣

+ κi
∣∣εi(t)∣∣α + σi

∣∣εi(t)∣∣β), (9)

where εi(t) = yi(t)− xi(t), α > 1, 0 < β < 1, λi, ζi, %i, κi, σi are the parameters to be
designed later, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

Theorem 1. Suppose that assumptions (H1)–(H4) hold and the design parameters are
appropriately selected as follows:

λi > di

n∑
j=1

(
bMij + cMij + hMij δ

)
Bj , %i > di

n∑
j=1

cMjiAi,

ζi > di

[
−ai +

n∑
j=1

(
bMji + hMji δ

)
Ai

]
, κi > 0, σi > 0.

Then the robust fixed-time synchronization of the discontinuous Cohen–Grossberg drive-
response neural networks (1) and (2) under the control law (9) is achieved. Moreover,
limt→Tmax

‖e(t)‖ = 0, and e(t) = 0 for all t > Tmax, where the settling time Tmax is
given as

Tmax =
1

(α− 1)(mini{dαi κi/di}n1−α)
+

1

(1− β)mini{dαi σi/di}
.
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Proof. Define a candidate Lyapunov function as follows:

V
(
e(t)

)
=

n∑
i=1

∣∣ei(t)∣∣.
It can be easily verified that the composed function V (e(t)) is C-regular. Since |ei(t)|
is a locally Lipschitz continuous function in ei on R, recalling the definition of Clarke’s
generalized gradient of function |ei(t)| at ei(t), we have

∂
(∣∣ei(t)∣∣) = co

[
sign

(
ei(t)

)]
=


{−1} if ei(t) < 0,

[−1, 1] if ei(t) = 0,

{1} if ei(t) > 0,

which means that, for any νi(t) ∈ ∂(|ei(t)|), we can see that νi(t) = sign(ei(t)) if
ei(t) 6= 0, and νi(t) can be arbitrarily chosen in [−1, 1] if ei(t) = 0. In particular, for any
i = 1, 2, . . . , n, we choose νi(t) = sign(ei(t)). It can be seen that

νi(t)ei(t) =
∣∣ei(t)∣∣.

Thus, according to the definition of K[·], the set-valued Lie derivative of V (e(t)) along
the error dynamics (8) can be calculated as

˙̃
V
(
e(t)

)
∈

n∑
i=1

d|ei(t)|
dt

. (10)

Note that by (8) we have
n∑
i=1

d|ei(t)|
dt

=

n∑
i=1

νi
dei(t)

dt

=

n∑
i=1

sign
(
ei(t)

){
−
[
ai
(
h−1i

(
wi(t)

))
− ai

(
h−1i

(
zi(t)

))]
+

n∑
j=1

bij(t)Ξj(t) +

n∑
j=1

cij(t)Ξj
(
t− τ(t)

)

+

n∑
j=1

hij(t)

t∫
t−δij(t)

Ξj(s) ds+
ui(t)

di(h
−1
i (wi(t)))

}
. (11)

Substituting (11) into (10), we have

˙̃
V
(
e(t)

)
∈ −

n∑
i=1

sign
(
ei(t)

)[
ai
(
h−1i

(
wi(t)

))
− ai

(
h−1i

(
zi(t)

))]
+

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
bij(t)Ξj(t)
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+

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
cij(t)Ξj

(
t− τ(t)

)

+

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
hij(t)

t∫
t−δij(t)

Ξj(s) ds

+

n∑
i=1

sign
(
ei(t)

) ui(t)

di(h
−1
i (wi(t)))

. (12)

Since the behaved function ai(t) and the transformation function hi(xi(t)) are both
strictly monotonically increasing, differentiable and ai(0) = 0, hi(0) = 0, ai(h−1(wi(t)))
is also strictly monotonically increasing and differentiable with respect to t. Thus, in view
of (H3), we can see that

−
n∑
i=1

sign
(
ei(t)

)[
ai
(
h−1i

(
wi(t)

))
− ai

(
h−1i

(
zi(t)

))]
6 −

n∑
i=1

ai
∣∣εi(t)∣∣. (13)

By applying (H2) we can have

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
bij(t)Ξj(t)

6
n∑
i=1

n∑
j=1

∣∣ sign(ei(t))∣∣∣∣bij(t)∣∣∣∣Ξj(t)∣∣ 6 n∑
i=1

n∑
j=1

∣∣bij(t)∣∣(Aj∣∣εj(t)∣∣+ Bj)
6

n∑
i=1

n∑
j=1

bMjiAi
∣∣εi(t)∣∣+ n∑

i=1

n∑
j=1

bMij Bj . (14)

In a similar way, we get

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
cij(t)Ξj

(
t− τ(t)

)
6

n∑
i=1

n∑
j=1

∣∣ sign (ei(t))∣∣∣∣cij(t)∣∣∣∣Ξj(t− τ(t))∣∣
6

n∑
i=1

n∑
j=1

∣∣cij(t)∣∣(Aj∣∣εj(t− τ(t))∣∣+ Bj)
6

n∑
i=1

n∑
j=1

cMjiAi
∣∣εi(t− τ(t))∣∣+ n∑

i=1

n∑
j=1

cMij Bj (15)
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and

n∑
i=1

n∑
j=1

sign
(
ei(t)

)
hij(t)

t∫
t−δij(t)

Ξj(s) ds

6
n∑
i=1

n∑
j=1

∣∣ sign(ei(t))∣∣∣∣hij(t)∣∣ t∫
t−δij(t)

(Aj
∣∣εj(s)∣∣+ Bj) ds

6
n∑
i=1

n∑
j=1

hMji δAi
∣∣εi(t)∣∣+ n∑

i=1

n∑
j=1

hMij δBj . (16)

Furthermore, noting the fact that h−1i (zi(t)) is strictly monotone increasing and
h−1i (0) = 0, we can see that sign(εi(t)) = sign(ei(t)). Then by (9) we can have

n∑
i=1

sign
(
ei(t)

) ui(t)

di(h
−1
i (wi(t)))

= −
n∑
i=1

sign
(
ei(t)

) 1

di(h
−1
i (wi(t)))

sign
(
εi(t)

)
×
(
λi + ζi

∣∣εi(t)∣∣+ %i
∣∣εi(t− τ(t))∣∣+ κi

∣∣εi(t)∣∣α + σi
∣∣εi(t)∣∣β)

6 −
n∑
i=1

λi

di
−

n∑
i=1

ζi

di

∣∣εi(t)∣∣− n∑
i=1

%i

di

∣∣εi(t− τ(t))∣∣
−

n∑
i=1

dαi κi

di

∣∣ei(t)∣∣α − n∑
i=1

dβi σi

di

∣∣ei(t)∣∣β . (17)

Substituting (13)–(17) into (12), we obtain

˙̃
V
(
e(t)

)
6 −

n∑
i=1

ai
∣∣εi(t)∣∣+ n∑

i=1

n∑
j=1

bMjiAi
∣∣εi(t)∣∣+ n∑

i=1

n∑
j=1

bMij Bj

+

n∑
i=1

n∑
j=1

cMjiAi
∣∣εi(t− τ(t))∣∣+ n∑

i=1

n∑
j=1

cMij Bj

+

n∑
i=1

n∑
j=1

hMji δAi
∣∣εi(t)∣∣+ n∑

i=1

n∑
j=1

hMij δBj −
n∑
i=1

λi

di
−

n∑
i=1

ζi

di

∣∣εi(t)∣∣
−

n∑
i=1

%i

di

∣∣εi(t− τ(t))∣∣ − n∑
i=1

dαi κi

di

∣∣ei(t)∣∣α − n∑
i=1

dβi σi

di

∣∣ei(t)∣∣β
=

n∑
i=1

∣∣εi(t)∣∣[−ai + n∑
j=1

(
bMji + hMji δ

)
Ai −

ζi

di

]

Nonlinear Anal. Model. Control, 24(4):603–625

https://doi.org/10.15388/NA.2019.4.7


616 F. Kong

+

n∑
i=1

∣∣εi(t− τ(t))∣∣( n∑
j=1

cMjiAi −
%i

di

)

+

n∑
i=1

[
n∑
j=1

(
bMij + cMij + hMij δ

)
Bj −

λi

di

]

−
n∑
i=1

dαi κi

di

∣∣ei(t)∣∣α − n∑
i=1

dβi σi

di

∣∣ei(t)∣∣β
6 −

n∑
i=1

dαi κi

di

∣∣ei(t)∣∣α − n∑
i=1

dβi σi

di

∣∣ei(t)∣∣β ,
which, together with Lemma 2, yields

˙̃
V
(
e(t)

)
6 −

n∑
i=1

dαi κi

di

∣∣ei(t)∣∣α − n∑
i=1

dβi σi

di

∣∣ei(t)∣∣β
6 −

(
min
i

{
dαi κi

di

}
n1−α

)( n∑
i=1

∣∣ei(t)∣∣)α −min
i

{
dαi σi

di

}( n∑
i=1

∣∣ei(t)∣∣)β
= −

(
min
i

{
dαi κi

di

}
n1−α

)
V α
(
e(t)

)
−min

i

{
dαi σi

di

}
V β
(
e(t)

)
.

According to Lemma 1, we can conclude that the drive-response systems (1) and (2)
achieve the robust fixed-time synchronization. Moreover, the settling time can be obtained
by applying Lemma 1:

Tmax =
1

(α− 1)(mini{dαi κi/di}n1−α)
+

1

(1− β)mini{dαi σi/di}
.

Corollary 1. Suppose that assumptions (H1)–(H4) hold, di(t) ≡ 1, i = 1, 2, . . . , n, and
the design parameters are appropriately selected as follows:

λi >
n∑
j=1

(
bMij + cMij + hMij δ

)
Bj , %i >

n∑
j=1

cMjiAi,

ζi > −ai +
n∑
j=1

(
bMji + hMji δ

)
Ai, κi > 0, σi > 0.

Then the robust fixed-time synchronization of the discontinuous Cohen–Grossberg drive-
response neural networks (1) and (2) under the control law (9) is achieved. Moreover,
limt→Tmax

‖e(t)‖ = 0, and e(t) = 0 for all t > Tmax, where the settling time Tmax is
given as

Tmax =
1

(α− 1)(mini{κi}n1−α)
+

1

(1− β)mini{σi}
.

Proof. The proof is similar to that of Theorem 1, we omit it here.
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4 Numerical examples

In this section, there numerical examples are dedicated to showing the effectiveness of the
proposed criteria.

Example 1. Consider the following discontinuous Cohen–Grossberg neural networks with
the drive system:

dxi(t)

dt
= −di

(
xi(t)

)[
ai
(
xi(t)

)
−

2∑
j=1

bij(t)gj
(
xj(t)

)
−

2∑
j=1

cij(t)gj
(
xj
(
t− τ(t)

))

−
2∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
xj(s)

)
ds− Ii(t)

]
, i = 1, 2, (18)

and the response system described as

dyi(t)

dt
=− di

(
yi(t)

)[
ai
(
yi(t)

)
−

2∑
j=1

bij(t)gj
(
yj(t)

)
−

2∑
j=1

cij(t)gj
(
yj
(
t− τ(t)

))

−
2∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
yj(s)

)
ds− Ii(t)

]
, i = 1, 2, (19)

where

d1(x) = 3− 1

1 + x2
, d2(x) = 1 +

1

1 + x2
, a1(x) = a2(x) = 2x,

I1 = 1, I2 = 2, τ(t) = sin t, δij(t) = 0.5 cos t, hij = 0, i, j = 1, 2,

B = (bij)2×2 =

(
−0.7 0.1
0.2 −0.9

)
, C = (cij)2×2 =

(
0.3 0.4
0.1 0.2

)
.

Then, for i, j = 1, 2, we can have and choose

τ = 1, δ = 0.5, ς = max{τ, δ} = 1, a1 = a2 = 2,

d1 = 1, d1 = 3, d2 = 1, d2 = 2.

Moreover, let

g1(x) = g2(x) =

{
0.5 tanh(x)− 0.1, x > 0;

0.5 tanh(x) + 0.1, x < 0.

It is easy to see that the activation function gj(x) is discontinuous and nonmonotonic.
The activation function gj(x) has a discontinuous point x = 0 and co[gi(0)] = [g+i (0),
g−i (0)] = [−0.1, 0.1], i = 1, 2. This fact can be seen in Fig. 1. Moreover, we can select
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Figure 1. Discontinuous activation functions gj , j = 1, 2, for system (18).

A1 = A2 = 0.5 and B1 = B2 = 0.2. Furthermore, by simple computation we can have

λ1 = 0.06 > d1
[(
bM11 + cM11 + hM11δ

)
B1 +

(
bM12 + cM12 + hM12δ

)
B2
]
= 0.06,

λ2 = 0.1 > d2
[(
bM21 + cM21 + hM21δ

)
B1 +

(
bM22 + cM22 + hM22δ

)
B2
]
= −0.16,

ζ1 = −6.75 > d1
[
−a1 +

(
bM11 + hM11δ

)
A1 +

(
bM21 + hM21δ

)
A1

]
= −6.75,

ζ2 = −2.8 > d2
[
−a2 +

(
bM12 + hM12δ

)
A2 +

(
bM22 + hM22δ

)
A2

]
= −2.8,

%1 = 0.6 > d1
(
cM11 + cM21

)
A1 = 0.6,

%2 = 0.6 > d2
(
cM12 + cM22

)
A2 = 0.6.

Choosing α = 2, β = 0.1, κ1 = 5, σ1 = 8, κ2 = 3, σ2 = 7, the control inputs of the
response system are formulated as

u1(t) = − sign
(
ε1(t)

)(
0.06− 6.75

∣∣ε1(t)∣∣+ 0.6
∣∣ε1(t− τ(t))∣∣

+ 5
∣∣ε1(t)∣∣2 + 8

∣∣ε1(t)∣∣0.1),
u2(t) = − sign

(
ε2(t)

)(
0.1− 2.8

∣∣ε2(t)∣∣+ 0.6
∣∣ε2(t− τ(t))∣∣

+ 3
∣∣ε2(t)∣∣2 + 7

∣∣ε2(t)∣∣0.1),
(20)

where εi(t) = yi(t) − xi(t), i = 1, 2. Furthermore, according to Theorem 1, Tmax can
be calculated as

Tmax =
1

(α− 1)(mini{dαi κi/di}n1−α)
+

1

(1− β)mini{dαi σi/di}
≈ 2.31.

Figures 2 show the state and phase trajectories of (18) and (19) without input control.
When the control inputs (20) are applied to the response system, one can see from Fig. 3
that the states of the response system indeed converge to those of the drive response with
the settling time Tmax and the average convergence error remains zero thereafter. These
simulations imply that the main results established in the present paper are correct.
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(a) (b)

Figure 2. (a) State trajectories x1(t), x2(t), y1(t), y2(t) of drive-response systems (18) and (19) without
control input; (b) Phase trajectories of the state variables x1(t), x2(t) of drive system (18).

Figure 3. Time response of synchronization error between drive system (19) and corresponding response system
(18) under control (21).

Example 2. Consider the following discontinuous Cohen–Grossberg neural networks with
the drive system and the response system described as

dxi(t)

dt
= −di

(
xi(t)

)[
ai
(
xi(t)

)
−

2∑
j=1

bij(t)gj
(
xj(t)

)
−

2∑
j=1

cij(t)gj
(
xj
(
t− τ(t)

))
−

2∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
xj(s)

)
ds− Ii(t)

]
, i = 1, 2, (21)

dyi(t)

dt
= −di

(
yi(t)

)[
ai
(
yi(t)

)
−

2∑
j=1

bij(t)gj
(
yj(t)

)
−

2∑
j=1

cij(t)gj
(
yj
(
t− τ(t)

))
−

2∑
j=1

hij(t)

t∫
t−δij(t)

gj
(
yj(s)

)
ds− Ii(t)

]
, i = 1, 2, (22)
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Figure 4. Discontinuous activation functions gj , j = 1, 2, for system (21) and (22).

where

d1(x) = 2− 0.5

1 + x2
, d2(x) = 1 +

0.5

1 + x2
, a1(x) = a2(x) = 2x,

I1 = sin t, I2 = cos t, τ(t) = δij(t) = 1,

B = (bij)2×2 =

(
−9 + sin(t) 4 + cos(t)
3 + cos(t) −11 + 2 sin(t)

)
,

C = (cij)2×2 =

(
sin(t) cos(t)
−2 0

)
, H = (hij)2×2 = 0.

Then, for i, j = 1, 2, we can have and choose

τ = δ = 1, ς = max{τ, δ} = 1, a1 = a2 = 2,

d1 = 1.5, d1 = 2, d2 = 1, d2 = 1.5.

Moreover, let

g1(x) = g2(x) =

{
x− 2, x > 0;

x+ 2, x < 0.

It is easy to see that the activation function g(x) = (g1(x1), g2(x2))
> is discontinuous,

unbounded, nonmonotonic. Meanwhile, 0(0, 0) is a discontinuous point of the activation
function gi(s), g−i (0) > g+i (0), and co[gi(0)] = [g+i (0), g

−
i (0)] = [−2, 2], i = 1, 2. This

fact can be seen in Fig. 4. Moreover, we can select A1 = A2 = 1 and B1 = B2 = 2.
Furthermore, by simple computation we can have

λ1 = 1 > d1
[(
bM11 + cM11 + hM11δ

)
B1 +

(
bM12 + cM12 + hM12δ

)
B2
]
= −4,

λ2 = 2 > d2
[(
bM21 + cM21 + hM21δ

)
B1 +

(
bM22 + cM22 + hM22δ

)
B2
]
= −24,

ζ1 = −12 > d1
[
−a1 +

(
bM11 + hM11δ

)
A1 +

(
bM21 + hM21δ

)
A1

]
= −12,

ζ2 = −9 > d2
[
−a2 +

(
bM12 + hM12δ

)
A2 +

(
bM22 + hM22δ

)
A2

]
= −9,

%1 = −2 > d1
(
cM11 + cM21

)
A1 = −2, %2 = 1.5 > d2

(
cM12 + cM22

)
A2 = 1.5.
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(a) (b)

Figure 5. (a) State trajectories x1(t), x2(t), y1(t), y2(t) of drive-response systems (21) and (22) without
control input; (b) Phase trajectories of the state variables x1(t), x2(t) of drive system (21).

Figure 6. Time response of synchronization error between drive system (21) and corresponding response
system (22) under control (23).

Choosing κ1 = σ1 = 2, κ2 = σ2 = 3, the control inputs of the response system are
formulated as

u1(t) = − sign
(
ε1(t)

)(
1− 12

∣∣ε1(t)∣∣− 2
∣∣ε1(t−τ(t))∣∣

+ 2
∣∣ε1(t)∣∣2 + 3

∣∣ε1(t)∣∣0.5),
u2(t) = − sign

(
ε2(t)

)(
2− 9

∣∣ε2(t)∣∣+ 1.5
∣∣ε2(t−τ(t))∣∣

+ 2
∣∣ε2(t)∣∣2 + 3

∣∣ε2(t)∣∣0.5),
(23)

where εi(t) = yi(t) − xi(t), i = 1, 2. Furthermore, according to Theorem 1, Tmax can
be calculated as

Tmax =
1

(α− 1)(mini{dαi κi/di}n1−α)
+

1

(1− β)mini{dαi σi/di}
= 2s.

Figures 5 show the state and phase trajectories of (21) and (22) without input control.
When the control inputs (23) are applied to the response system, one can see from Fig. 6
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that the states of the response system indeed converge to those of the drive response with
the settling time Tmax and the average convergence error remains zero thereafter. These
simulations imply that the main results established in the present paper are correct.

Remark 1. From Examples 1 and 2, one can see that the activations are discontinu-
ous, unbounded and nonmonotonic, this means that the activations are not continuous,
Lipschitz continuous or smooth, which are different from the related references in the
literature, such as [4, 20, 24, 26, 27, 30, 32, 40, 53, 55, 56]. The results established in the
present paper extend the previous work about CGNNs to the discontinuous cases.

Remark 2. For all we know, there is no research on the robust fixed-time synchronization
of discontinuous Cohen–Grossberg neural networks with mixed time delays. We also
mention that all results in the references cited in the present paper cannot be directly
applied to imply the results of robust fixed-time synchronization of Examples 1 and 2.
This implies that the results of this paper are essentially new.

5 Conclusion

In this paper, we have dealt with the robust fixed-time synchronization of discontinuous
Cohen–Grossberg neural networks with mixed time-varying delays in order to achieve
fixed-time synchronization of the proposed drive-response systems. Firstly, we presented
a novel discontinuous feedback control procedure for the response neural networks. Then,
under the concept of Filippov solutions, by using functional differential inclusions theory,
inequality technique and the nonsmooth analysis theory with Lyapunov-like approach,
some new criteria are obtained to design the control parameters. Finally, two simulation
examples have been shown to verify the correctness of our proposed main results. To the
best of our knowledge, the results presented here have been not appeared in the related
literature. Consequently, our results can enrich and extend the corresponding ones known
in the literature.

Acknowledgment. The authors thank the anonymous reviewers for their insightful sug-
gestions, which improved this work significantly.
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