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Abstract. We consider the distance between the fractional Brownian motion defined on the interval
[0, 1] and the space of Gaussian martingales adapted to the same filtration. As the distance between
stochastic processes, we take the maximum over [0, 1] of mean-square deviances between the values
of the processes. The aim is to calculate the function a in the Gaussian martingale representation∫ t

0
a(s) dWs that minimizes this distance. So, we have the minimax problem that is solved by the

methods of convex analysis. Since the minimizing function a cannot be either presented analytically
or calculated explicitly, we perform discretization of the problem and evaluate the discretized
version of the function a numerically.

Keywords: fractional Brownian motion, Gaussian martingales, convex programming, minimax
approximation.

1 Introduction

Fractional Brownian motion on [0, 1] is a Gaussian process BH = {BH
t , t ∈ [0, 1]} with

zero mean and covariance function

EBH
s B

H
t =

1

2

(
t2H + s2H − |t− s|2H

)
,

where H ∈ (0, 1) is the Hurst index. This process admits the Molchan–Golosov repre-
sentation, see [14–16]:

BH
t =

t∫
0

z(t, s) dWs, (1)

where W = {Wt, t ∈ [0, 1]} is a standard Brownian motion,

z(t, s) = cHs
1/2−H

×

((
t(t− s)

)H−1/2 − (H − 1

2

) t∫
s

uH−3/2(u− s)H−1/2 du

)
10<s<t, (2)
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and

cH =

(
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

)1/2

.

If H > 1/2, then the kernel z from (2) can be simplified to

z(t, s) =

(
H − 1

2

)
cHs

1/2−H
t∫

s

uH−1/2(u− s)H−3/2 du 10<s<t.

Obviously, z(t, s) > 0 for all H ∈ (0, 1) and 0 < s < t. Note that BH and W generate
the same filtration, and denote it by FW = {Ft, t ∈ [0, 1]}.

It is well known that fBm is not a semimartingale and certainly is not a martingale
unless H = 1/2. Therefore, a natural question of the approximation of fBm by martin-
gales and semimartingales arises. On the one hand, as to semimartingales, the situation is
more simple: fBm can be approximated by the Gaussian semimartingales in supL2-norm
(see, e.g., [9]). On the other hand, it is obvious that we cannot approximate the fBm by
martingales with an arbitrary accuracy in any reasonable norm, see, e.g., [3]. Therefore,
it is natural to put the question differently: what is the distance between the fBm and
the martingale space in a reasonable metric, and on which element from the martingale
space does this distance reach? This is a question of projection of fBm on the space of
Gaussian martingales generated by the Wiener process. Solving this problem, we can,
in the future, move forward a few steps, namely, we can consider the projection of the
fBm on the space of repeated Wiener integrals, that is, to calculate the projections on
the finite-dimensional spaces of Wiener chaos, so, to clarify the structure of fractional
Brownian motion in comparison with the spaces of Wiener chaos. Being very simple in
appearance in his statement, the question of the distance between the fBm and the space of
adapted Gaussian martingales, nevertheless turned out to be very difficult. The existence
and uniqueness of the minimizing function in the representation of Gaussian martingale,
as well as a number of its properties were established in the paper [17] by the methods
of convex analysis. However, it is still impossible to get the analytical representation of
the minimizing function. Therefore, we decided to find this function approximately, for
which we used the concept of the Chebyshev center and its properties. Now, let us state
the problem and consider the methods of its solution in more detail.

For Gaussian stochastic process of the form Xt =
∫ t

0
a(s) dWs, we define the square

distance between X and BH as follows:

F (a) = max
t∈[0,1]

E
(
Xt −BH

t

)2
= max

t∈[0,1]

t∫
0

(
a(s)− z(t, s)

)2
ds. (3)

The maximum is attained because the random processes X and BH are mean-square
continuous and, as a consequence, E(Xt − BH

t )2 is a continuous function in t, which
attains its minimum and maximum on [0, 1].
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We are searching for the function a ∈ L2[0, 1] for which the square distance in
minimal. The choice of the representation of the process X is justified as follows. Any
square-integrable martingale with respect toFW with right-continuous trajectories admits
a representation Xt = x0 +

∫ t

0
a(s) dWs, where a is a stochastic process adapted to the

same filtration asW and satisfying E
∫ 1

0
a(s)2 ds <∞ [11, Thm. 5.5]. In [17, p. 541] it is

proved that the minimum of supt∈[0,1] E(Xt−BH
t )2 is attained for x0 = 0 and for a being

a nonrandom function. A problem of approximation of the fBm by a Gaussian martin-
gale from some smaller classes of Gaussian martingales, e.g., from a finite-dimensional
subsets, is much simpler than a general problem, and was solved in [1, 2, 8, 13]. The
reciprocal problem of approximation of the Wiener process by an integral with respect to
the fractional Brownian motion, also from some specific class of integrands, was solved
in [4]. It is proved in [17] that the minimum of F (a) from (3) for any H ∈ (0, 1) is
attained at unique point, and recall again that even though we know some properties of a,
we do not have for it an analytical expression.

In order to get function a at least numerically, in the present paper, we approximate
a discrete-time slice {BH

t , t = 1/N, 2/N, . . . , 1} of the fBm instead of performing
continuous-time approximation.

We find a “discrete analogue” for the function a numerically. In order to do this, we
use the so-called alternating minimization [5], and search for the Chebyshev center of the
finite set, see, e.g., [6]. The problem of locating the Chebyshev center is a linear mini-
mization problem with quadratic constraints, while the dual problem is the quadratic min-
imization with linear constraints, see [7,18]. Our goal is evaluation of mina∈L2[0,1] F (a).
For that reason, we prove the following result:

min
~a∈RN

F
(
~a,K(N)

)
6 min

a∈L2[0,1]
F (a) = lim

N→∞
min
~a∈RN

F
(
~a,K(N)

)
, (4)

where F (~a,K(N)), N > 1, is the sequence of the convex functions of the vector
~a ∈ RN . Vector ~a is related to function a, and matrices K(N) are related to the kernel z in
the representation (2). These functions are discrete analogue of the function F (a). Two-
sided relation (4) is the main mathematical contribution of the present paper. It allows to
calculate the minimizing function a numerically.

The paper is organized as follows. In Section 2 we construct the sequence of the
functions F (~a,K(N)) and prove relation (4). In Section 3, we propose and justify the
algorithm for numerical evaluation of F (~a,K(N)). In Section 4, the minimizing function
is plotted. Appendix contains some auxiliary results.

2 Two-sided bounds and convergence result

In what follows, we denote matrices (but not matrix entries) with boldface letters. For
vectors, we use notation like ~a. The elements of the vector are denoted with the same
letter as the vector itself; that is if ~a ∈ RN , then ~a = (a1, . . . , aN )>.
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Let N ∈ N, and consider the random variables BH
k/N , 0 6 k 6 N . The discrete-time

process {BH
k/N , k = 0, 1, . . . , N} is called a discrete-time fBm. It generates a discrete-

time filtration F (N) = {F (N)
k , k = 0, 1, . . . , N}, where F (N)

k = σ(BH
0 , . . . , B

H
k/N ),

0 6 k 6 N .
Now our goal is to establish the lower and upper bounds for mina∈L2[0,1] F (a), and

to prove the equality in formula (4), which means that both the lower and upper bounds
tend to mina∈L2[0,1] F (a) as N → ∞. To achieve this result, we discretize the function
z(t, s) in the following way. Denote by k(N)

mn the average value of N−1/2z(m/N, s) over
((n− 1)/N, n/N):

k(N)
mn =

√
N

n/N∫
(n−1)/N

z

(
m

N
, s

)
ds, 1 6 m, n 6 N. (5)

Since z(t, s) > 0, all entries k(N)
mn are nonnegative. Moreover, due to the relations

z(t, s) > 0 for 0 < s < t and z(t, s) = 0 for s > t, the entries k(N)
mn form a lower-

triangular matrix, which we denote by K(N). So, k(N)
mn = 0 if 1 6 m < n 6 N , and

k
(N)
mn > 0 if 1 6 n 6 m 6 N .

Denote by z(N)(t, s) the piecewise-constant approximation of z(t, s) with step 1/N :

z(N)(t, s) = N

n/N∫
(n−1)/N

z(t, u) du for all s ∈
[
n− 1

N
,
n

N

)
, (6)

and z(N)(t, 1) = 0. With this notation,

z(N)

(
m

N
, s

)
=
√
Nk(N)

mn if s ∈
[
n− 1

N
,
n

N

)
.

The discrete-time distance in L2[0, 1] between the function z presented by its discrete
counterpart z(m/N, · ) and approximation z(N) is denoted by dmN , so that

dmN =

1∫
0

(
z

(
m

N
, s

)
− z(N)

(
m

N
, s

))2

ds

=

N∑
n=1

n/N∫
(n−1)/N

(
z

(
m

N
, s

)
−
√
Nk(N)

mn

)2

ds. (7)

In this section, we compare minimal values of two functionals. The first functional is
defined in (3). The second one has the following form:

F
(
~a,K(N)

)
= max

16m6N

m∑
n=1

(
an − k(N)

mn

)2
, ~a ∈ RN , (8)
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where an are the elements of the vector ~a. The next result gives both nonasymptotic and
asymptotic bounds for (mina∈L2[0,1] F (a))1/2.

Theorem 1.
(i) The following two-sided inequality holds:(

min
~a∈RN

F
(
~a,K(N)

))1/2
6
(

min
a∈L2[0,1]

F (a)
)1/2

6
(

min
~a∈RN

F
(
~a,K(N)

))1/2
+ max

16m6N

√
xmN

+
1√
2

max
16m,n6N

k(N)
mn +

1

(2N)H
. (9)

(ii) Additionally, the following equality holds:

min
a∈L2[0,T ]

F (a) = lim
N→∞

min
~a∈RN

F
(
~a,K(N)

)
.

Proof. (i) Lower bound. Prove the first inequality in (9). In order to do this, define a linear
operator of the form

P (N)f(t) = N

n/N∫
(n−1)/N

f(s) ds, t ∈
[
n− 1

N
,
n

N

)
; P (N)f(1) = 0.

Let us mention several properties of the operator P (N). First, the operator P (N) is the
orthogonal projector in the Hilbert space L2[0, 1] onto the subspace of functions that are
constant on the intervals [(n−1)/N, n/N). Hence, ‖P (N)‖ = 1, where ‖·‖ is the operator
norm. Second, for the entity

(f1[0,s))(t) =

{
f(t) if 0 6 t < s,

0 if s 6 t 6 1,

we have an equality

P (N)
(
f1[0,m/N)

)
=
(
P (N)f

)
1[0,m/N)

for all integers m, 1 6 m 6 N , and all f ∈ L2[0, 1]. Third, the functional equality
z(N)(t, ·) = P (N)z(t, ·) holds true for all t ∈ [0, 1].

According to [17], the function F (a) attains its minimum at the unique point. Let this
point be ã ∈ L2[0, 1]. Denote

ãn =
√
N

n/N∫
(n−1)/N

ã(s) ds, ~̃an = (ã1, . . . , ãN )>.
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With this notation,

P (N)ã(s) =
√
Nãn if s ∈

[
n− 1

N
,
n

N

)
.

For every integer m, 1 6 m 6 N , we have that

m∑
n=1

(
ãn − k(N)

mn

)2
=

m/N∫
0

(
P (N)ã(s)− z(N)

(
m

N
, s

))2

ds

=

∥∥∥∥(P (N)

(
ã− z

(
m

N
, ·
)))

1[0,m/N ]

∥∥∥∥2
=

∥∥∥∥P (N)

((
ã− z

(
m

N
, ·
))

1[0,m/N ]

)∥∥∥∥2
6
∥∥P (N)

∥∥2∥∥∥∥(ã− z(mN , ·
))

1[0,m/N ]

∥∥∥∥2
=

∥∥∥∥(ã− z(mN , ·
))

1[0,m/N ]

∥∥∥∥2

=

m/N∫
0

(
ã(s)− z

(
m

N
, s

))2

ds.

Maximizing over m, we obtain

max
16m6N

m∑
n=1

(
ãn − k(N)

mn

)2
6 max

16m6N

m/N∫
0

(
ã(s)− z

(
m

N
, s

))2

.

Now we are ready to obtain the first inequality in (9):

min
~a∈RN

F
(
~a,K(N)

)
6 F

(
~̃a,K(N)

)
= max

16m6N

m∑
n=1

(
ãn − k(N)

mn

)2
6 max

16m6N

m/N∫
0

(
ã(s)− z

(
m

N
, s

))2

ds

6 max
t∈[0,1]

t∫
0

(
ã(s)− z(t, s)

)2
ds

= F (ã) = min
a∈L2[0,1]

F (a).

So, the first inequality in (9) is proved.
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(i) Upper bound. Prove the second inequality in (9). Let N be fixed. Let ~a∗ =
(a∗1, . . . , a∗N )> be the point where the functional F (N) attains its minimum. Without
loss of generality, we can assume that

0 6 min
n6m6N

k(N)
mn 6 a∗n 6 max

n6m6N
k(N)
mn for all 1 6 n 6 N. (10)

It is a consequence of the following fact: if some element an of the vector ~a lies outside
interval [minn6m6N k

(N)
mn , maxn6m6N k

(N)
mn ], then, moving an into the nearest endpoint

of the interval, we do not increase the value of F (~a,K(N)). If the function F (·,K(N)) at-
tains its minimum at the unique point, this point of minimum must satisfy inequality (10).
Define the function a(s) as follows:

a(s) =
√
Na∗n for all s ∈

[
n− 1

N
,
n

N

)
, a(1) = 0,

and consider a Gaussian process {Xt, t ∈ [0, 1]} of the form Xt =
∫ t

0
a(s) dWs. Ac-

cording to isometry property for stochastic integrals, we have that for every integer 1 6
m 6 N ,

d1mN := E

(
BH

m/N −
m/N∫
0

z(N)

(
m

N
, s

)
dWs

)2

=

m/N∫
0

(
z

(
m

N
, s

)
− z(N)

(
m

N
, s

))2

ds,

and

d2mN := E

( m/N∫
0

z(N)

(
m

N
, s

)
dWs −Xm/N

)2

=

m/N∫
0

(
z(N)

(
m

N
, s

)
− a(s)

)2

ds.

Furthermore, (
E
(
BH

m/N −Xm/N

)2)1/2
6
(
d1mN

)1/2
+
(
d2mN

)1/2
.

Taking maximum over 1 6 m 6 N , we obtain(
max

16m6N
E
(
Xm/N −BH

m/N

)2)1/2
6 max

16m6N

√
d1mN +

√
F (~a∗,K(N)).

Now apply Lemma A.5. Because of (10),

max
s∈[0,1]

∣∣a(s)
∣∣ = max

n=1,...,N
|
√
Na∗n| 6

√
N max

16m,n6N
k(N)
mn .
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Thus, we have(
F (a)

)1/2
6
(

max
16n6N

E
(
Xn/N −BH

n/N

)2)1/2
+

1

(2N)H
+

1√
2N

max
16n6N

|
√
Nan|

6 max
16m6N

√
xmN +

√
F (~a∗,K(N)) +

1

(2N)H
+

1√
2

max
16m,n6N

k(N)
mn .

Now we recall that the minimum of the functional (3) is attained, ~a∗ is the minimum point
of F (·,K(N)), hence F (~a∗,K

(N)) = min~a∈RN F (~a,K(N)). This completes the proof
of the first assertion.

(ii) Due to Lemma A.3, max16m6N dmN → 0 as N → ∞, and due to Lemma A.4
max16m,n6N k

(N)
mn → 0 as N → ∞. Hence, the second assertion of Theorem 1 follows

from the first one. More precisely, we rewrite inequality (9) as(
min

a∈L2[0,1]
F (a)

)1/2
− max

16m6N

√
xmN −

1√
2

max
16m,n6N

k(N)
mn −

1

(2N)H

6
(

min
~a∈RN

F
(
~a,K(N)

))1/2
6
(

min
a∈L2[0,1]

F (a)
)1/2

and apply squeeze theorem.

Thus, instead of minimizing (3), we are searching for the minimum of the functional
F (~a,K(N)), defined in (8), over ~a ∈ RN . In the next section, we propose the numerical
algorithm of finding min~a∈RN F (~a,K(N)).

3 Iterative minimization of the squared distance using alternating
minimization method

In this section, the dimension N ∈ N is fixed. Let K be a fixed lower-triangle N × N
matrix, whose elements are denoted as kmn and rows are denoted as ~km•. The function
F (~a,K), ~a ∈ RN , is defined by the following relation:

F (~a,K) = max
16m6N

m∑
n=1

(an − kmn)2, ~a ∈ RN .

Reduce the problem of finding the minimum of the convex function F (·,K) to the
problem of finding the minimum of biconvex functional of two vectors. Denote

F (~a,~b,K) = max
16m6N

(
m∑

n=1

(an − kmn)2 +

N∑
n=m+1

(an − bn)2

)
.

Here, by convention,
∑N

n=N+1(an − bn)2 = 0. For fixed ~a, F (~a,~b,K) is attained for
~b = ~a, i.e.,

F (~a,K) = F (~a,~a,K) = min
~b∈RN

F (~a,~b,K). (11)
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Definition 1. Let Z be a nonempty bounded set in RN . Chebyshev center of the set Z is
the point ~a ∈ RN where the minimum of sup~z∈Z ‖~a− ~z‖ is attained:

ChebyCenter(Z) = arg min
~a∈RN

sup
~z∈Z
‖~a− ~z‖. (12)

Note that the minimum in (12) is attained because the criterion function√
Q(~a) = sup

~z∈Z
‖~a− ~z‖

is continuous in RN and tends to +∞ as ‖a‖ → ∞. It is attained at a unique point since
the square criterion function

Q(~a) = sup
~z∈Z
‖~a− ~z‖2

is strongly convex,

Q
(
t~a+ (1− t)~b

)
6 tQ(~a) + (1− t)Q(~b)− t(1− t)‖~a−~b‖2

< tQ(~a) + (1− t)Q(~b) if 0 < t < 1 and ~a 6= ~b.

For fixed~b, minF (~a,~b,K) is attained for~a being the Chebyshev center of theN -point
set {~k1(~b),~k2(~b), . . . ,~kN (~b)}, where

~km(~b) = (km1, . . . , kmm, bm+1, . . . , bN )>, 1 6 m 6 N − 1,

~kN (~b) = (kN1, . . . , kNN )> = ~kN•.
(13)

Due to (11), the problem of minimization of F (~a,K) is equivalent to the problem of
minimization of F (~a,~b,K):

min
~a∈RN

F (~a,K) = min
~a∈RN

min
~b∈RN

F (~a,~b,K).

If the minimum of F (~a,K) is attained for ~a = ~a∗, then the minimum of F (~a,~b,K) is
attained for ~a = ~b = a∗. If the minimum of F (~a,~b,K) is attained for ~a = ~a∗, ~b = ~b∗,
then the minimum of F (~a,K) is attained for ~a = ~a∗. In what follows, minF will mean
a common minimum of functions F (~a,K) and F (~a,~b,K).

Let us summarize the properties of the functions F (~a,K) and F (~a,~b,K) in the
following proposition.

Proposition 1. Let K be a fixed N ×N lower-triangular matrix.

(i) For a fixed ~a ∈ RN , the minimum min~b∈RN F (~a,~b,K) = F (~a,K) is attained for
~b = ~a.

(ii) For a fixed~b ∈ RN , the minimum min~a∈RN F (~a,~b,K) is attained for ~a being the
Chebyshev center of the points ~k1(~b),~k2(~b), . . . ,~kN (~b).
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(iii) The minimal values of the functions F (~a,K) and F (~a,~b,K) coincide. We denote
them minF :

minF := min
~a∈RN

F (~a,K) = min
~a,~b∈RN

F (~a,~b,K).

We find the minimum of F (~a,~b,K) by alternating minimization. Let ~a(0) ∈ RN be
the initial approximation. The minimum of F (~a(0),~b,K) is attained for ~b = ~a(0). Then
minimize F (~a,~a(0),K) with respect to ~a:

~a(1) = arg min
~a∈RN

F
(
~a,~a(0),K

)
.

Again, the minimum of F (~a(1),~b,K) is attained for ~b = ~a(1). Define the sequence
{~a(i), i > 1} iteratively

~a(i) = arg min
~a∈RN

F
(
~a,~a(i−1),K

)
, i > 1. (14)

Then we have the descend of the criterion function:

F
(
~a(0),~a(0),K

)
> F

(
~a(1),~a(0),K

)
> F

(
~a(1),~a(1),K

)
> F

(
~a(2),~a(0),K

)
> · · · ,

and since F (~a(i),~a(i),K) = F (~a(i),K), we get that

F
(
~a(0),K

)
> F

(
~a(1),K

)
> F

(
~a(2),K

)
> · · · .

The following theorem shows that the sequence {F (~a(i),K), i > 0} converges to minF .

Theorem 2. Let

min
n6m6N

kmn 6 a(0)n 6 max
n6m6N

kmn for all n, 1 6 n 6 N. (15)

Then the sequence {~a(i), i > 1} defined by (14) has the following properties:

(i) limi→∞ F (~a(i),K) = minF ;
(ii) If the minimal value of F (·,K) is attained at unique point~a∗, then limi→∞ ~a

(i) =
~a∗.

Proof. (i) Denote a rectangle H ⊂ RN

H =
{
~a ∈ RN

∣∣∣ ∀ 1 6 n 6 N : min
n6m6N

kmn 6 an 6 max
n6m6N

kmn

}
=
[

min
16m6N

km1, max
16m6N

km1

]
×
[

min
26m6N

km2, max
26m6N

km2

]
× · · · ×

[
min(kN−1,N−1, kN,N−1), max(kN−1,N−1, kN,N−1)

]
× {kNN}.
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Denote the diagonal of the rectangle H by d, so that

d2 =

N∑
n=1

(
max

n6m6N
kmn − min

n6m6N
kmn

)2
.

Condition (15) means that ~a(0) ∈ H. By induction, ~a(i) ∈ H for all i. Indeed, if
a(i−1) ∈ H, then ~km(a(i−1)) ∈ H for all 1 6 m 6 N , where ~km(~b) is defined in (13).
The Chebyshev center of a set lies in the convex hull of the set. Thus, ~a(i) lies in the
convex hull of ~km(~a(i−1)), 1 6 m 6 N , whence ~a(i) ∈ H.

The minimal value min~a∈H F (~a,K) is attained because F (·,K) is a continuous func-
tion and H is nonempty closed bounded set. Denote

~a∗ = arg min
~a∈H

F (~a,K).

The minimum of F (·,K) on entire space RN is attained at ~a∗, see explanation in the
proof of Theorem 1 (and relation ~a∗ ∈ H is analogous to inequality (10)):

minF = F (~a∗,K) = min
~a∈RN

F (~a,K) = min
~a,~b∈RN

F (~a,~b,K).

Since ~a(i) ∈ H and ~a∗ ∈ H, we have ‖~a(i) −~a∗‖ 6 d for all i > 0. For all ~a ∈ H and
~b ∈ H, the inequality F (~a,K) 6 F (~a,~b,K) 6 d2 holds true.

The case d = 0 is trivial: in this case the set H consists of the only one point, ~a(i) =
~a(0) and F (a(i),K) = 0 for all i; therefore, the statement of this theorem holds true. So,
in the rest of the proof assume that d > 0.

Denote pseudo-norms on RN :

‖~x‖m =

(
m∑

n=1

x2n

)1/2

, ‖~x‖⊥m =

(
N∑

n=m+1

x2n

)1/2

(for m = N , denote ‖~x‖N = ‖~x‖ and ‖~x‖⊥N = 0). With this notation,

‖~x‖2m + ‖~x‖2⊥m = ‖~x‖2 for all 1 6 m 6 N and ~x ∈ RN ,

F (~a,K) = max
16m6N

‖~a− ~km•‖2m,

F (~a,~b,K) = max
16m6N

(
‖~a− ~km•‖2m + ‖~a−~b‖2⊥m

)
.

In what follows, we are going to use inequalities

‖~a− ~km•‖2m 6 F (~a,K) for all ~a ∈ RN ,

‖~a−~b‖2⊥m 6 F (~a,~b,K) 6 d2 for all ~a ∈ H and~b ∈ H.

In what follows, we will be constructing an upper bound for F (~a(i),K). It will be
inequality (19).
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Denote for fixed i

αi =
(
√
F (~a(i−1),K)−

√
minF )

√
F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

.

Then

1− αi =
d2 − (

√
F (~a(i−1),K)−

√
minF )

√
minF

(
√
F (~a(i−1),K)−

√
minF )2 + d2

.

Taking into account the relations 0 6 minF 6 F (~a(i−1), K) 6 d2, we obtain the
inequality 0 6 αi 6 1/2.

Next auxiliary result also will be applied to get (19). Namely, we construct the upper
bound for F ((1− αi)~a

(i−1) + αi~a∗, a(i−1), K). For every 1 6 m 6 N ,∥∥(1− αi)~a
(i−1) + αi~a∗ − ~km•

∥∥
m

6 (1− αi)
∥∥~a(i−1) − ~km•∥∥m + αi‖~a∗ − ~km•‖m

6 (1− αi)
√
F (~a(i−1),K) + αi

√
minF

=
d2
√
F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

,

and ∥∥(1− αi)~a
(i−1) + αi~a∗ − ~a(i−1)

∥∥
⊥m

= αi

∥∥~a∗ − ~a(i−1)∥∥⊥m 6 αid

=
d(
√
F (~a(i−1),K)−

√
minF )

√
F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

.

Hence∥∥(1− αi)~a
(i−1) + αi~a∗ − ~km•

∥∥2
m

+
∥∥(1− αi)~a

(i−1) + αi~a∗ − ~a(i−1)
∥∥2
⊥m

6
d4F (~a(i−1),K) + d2(

√
F (~a(i−1),K)−

√
minF )2F (~a(i−1),K)

((
√
F (~a(i−1),K)−

√
minF )2 + d2)2

=
d2F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

. (16)

Take the maximum (over m = 1, . . . , N ) in the left-hand side of (16) and obtain

F
(
(1− αi)~a

(i−1) + αi~a∗, ~a
(i−1), K

)
6

d2F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

.
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Now we continue with upper bound for F (~a(i),K). With Proposition 1, we get an
inequality

F
(
~a(i),K

)
6 F

(
~a(i),~a(i−1),K

)
6 F

(
(1− αi)~a

(i−1) + αi~a∗, a
(i−1), K

)
6

d2F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

6 F
(
~a(i−1),K

)
. (17)

The sequence {F (~a(i),K), i > 0} is decreasing and bounded, more exactly, 0 6
minF 6 F (~a(i),K) 6 F (~a(0),K). Hence, it is convergent,

0 6 minF 6 lim
i→∞

F
(
~a(i),K

)
<∞. (18)

From inequality (17) we obtain the desired upper bound

F
(
~a(i),K

)
6

d2F (~a(i−1),K)

(
√
F (~a(i−1),K)−

√
minF )2 + d2

. (19)

In (19), take the limit as i→∞:

lim
i→∞

F
(
~a(i),K

)
6

d2 limi→∞ F (~a(i),K)

(
√

limi→∞ F (~a(i),K)−
√

minF )2 + d2
.

Therefore, (√
lim
i→∞

F (~a(i),K)−
√

minF
)2

lim
i→∞

F
(
~a(i),K

)
6 0,

whence either
√

limi→∞ F (~a(i),K) −
√

minF = 0 or limi→∞ F (~a(i),K) 6 0. In
either case, limi→∞ F (~a(i),K) = minF (here we use inequality (18) in the latter case
limi→∞ F (~a(i),K) 6 0). The first statement of the theorem is proved.

(ii) We apply Lemma A.1. We take the restriction of F (·,K) onto the set H for the
function f . From the proof of the first part of Theorem 2, we take the following: ~a∗ ∈ H
(at least one point of minimum of F (·,K) belongs to H; since the point of minimum is
unique, it must belong to H), all elements of the sequence {~a(i), i > 1} belong to H, and
limi→∞ F (~a(i),K) = minF = min~a∈H F (~a,K). Hence, the convergence ~a(i) → a∗
follows.

Now we perform the implementation of computation of minF and the minimizing
vector. We take the bottom row of the matrix K as the initial approximation, that is
~a(0) = ~kN•. Then we iteratively perform minimization in (14) using Chebyshev center
algorithm:

~a(i) = arg min
~a∈RN

F
(
~a,~a(i−1),K

)
= ChebyCenter

(
~k1
(
~a(i−1)

)
,~k2
(
~a(i−1)

)
, . . . ,~kN (~a(i−1))

)
.

For evaluating Chebyshev center, we adapted an algorithm presented in [6, 10].
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If we are evaluating minF , we stop iterations when Ui−1 6 p1, where

Ui−1 =



2d
√

F (~a(i−1),K)(F (~a(i−1),K)−F (~a(i),K))
F (~a(i),K)

− d2(F (~a(i−1),K)−F (~a(i),K))
F (~a(i),K)

if F (~a(i−1),K) > d2(F (~a(i−1),K)−F (~a(i),K))
F (~a(i),K)

,

d2(F (~a(i−1),K)−F (~a(i),K))
F (~a(i),K)

if F (~a(i−1),K) 6 d2(F (~a(i−1),K)−F (~a(i),K))
F (~a(i),K)

is the upper bound for F (a(i−1))−minF . If we are evaluating the minimizing vector ~a∗,
we stop iterations when both inequalities Ui−1 6 p1 and ‖~a(i) − ~a(i−1)‖ 6 p2 hold true.
Here p1 > 0 and p2 > 0 are thresholds. Finally, we take ~a(i) as an approximation of the
point of minimum.

4 Computation of the minimizing function

Figure 1 displays the graph of the approximation of the optimal function a(t) and the
square-distance

fa(t) =

t∫
0

(
a(s)− z(t, s)

)2
ds = E

(
Xt −BH

t

)2
,

for H = 1/3 and for H = 2/3.
We also display the graph of approximate density of the random variable ξ in the

representation
a(s) = E

[
z(ξ, s), ξ > s

]
,

see [17, Thm. 4]. This density is obtained as follows.
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Figure 1. The minimizing function a(t), the square distance fa(t) and the probability density of random
variable ξ for H = 1/3 and for H = 2/3.
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The Chebyshev center algorithm calculates the weights wm in the representation
~a(i) =

∑N
m=1 wm

~bm(~a(i−1)). These weights determine the discrete distribution, which
is concentrated on the finite subset {m/N, 1 6 m 6 N} ⊂ [0, 1]. This distribution on
the last iteration of the iterative minimization algorithm is taken as the approximation of
the distribution of ξ.

According to our discretized minimization, if H = 1/3, then the random variable ξ is
concentrated in interval [0.1, 1]. IfH = 2/3, then ξ is concentrated in [0.074, 0.731]∪{1}
with P(ξ ∈ [0.074, 0.731]) = 0.6365 and P(ξ = 1) = 0.3635.

Appendix

A.1 Calculus: Convergence lemmas

The next two results can be proved by methods of standard calculus, therefore their proofs
are omitted.

Lemma A.1. Let H be a nonempty compact set (in RN ), and f be a continuous function
H → R. Assume that the function f attains its minimum at the unique point x∗, that is
the equality f(x) = miny∈H f(y) holds true if and only if x = x∗. If {xn, n > 1} is
a sequence of elements of H and limn→∞ f(xn) = minx∈H f(x), then {xn, n > 1}
converges to x∗.

Lemma A.2. Let b = {bm, m > 1} be a sequence of real numbers and {cNm, N >
m > 1} be a triangular array. If limm→∞ bm = 0, supN>m |cNm| < ∞ and, for all
m ∈ N, limN→∞ cNm = 0, then

lim
N→∞

max
16m6N

cNmbm = 0.

A.2 Piecewise-constant approximation of the Molchan–Golosov kernel

Recall the definitions from Section 2. Let N ∈ N. Molchan–Golosov kernel z(t, s),
nonnegative numbers k(N)

mn and a function z(N)(t, s) are defined in (2), (5) and (6), re-
spectively. Obviously, Molchan–Golosov kernel has the following homogeneity property:

z(kt, ks) = kH−1/2z(t, s), k > 0, 0 < s < t. (A.1)

Relation (A.1) can be directly verified using (2).

Lemma A.3. For dmN defined in (7), we have the convergence

lim
N→∞

max
16m6N

dmN = 0.

Proof. Since the function z(1, ·) ∈ L2[0, 1], we have that

lim
m→∞

dmm = lim
m→∞

1∫
0

(
z(m)(1, s)− z(1, s)

)2
ds = 0.

For the short proof, see [12, Lemma A.1].
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Due to homogeneity (A.1) of z(t, s), we have

z

(
m

N
, s

)
=

(
m

N

)H−1/2

z

(
1,
Ns

m

)
if 0 < s <

m

N
, (A.2)

k(N)
mn =

(
m

N

)H

k(m)
mn if 1 6 n 6 m 6 N, (A.3)

z(N)

(
m

N
, s

)
=

(
m

N

)H−1/2

z(m)

(
1,
sN

m

)
if 0 < s <

m

N
. (A.4)

We also have z(m/N, s) = z(N)(m/N, s) = 0 if s > m/N , and k(N)
mn = 0 if 1 6 m <

n 6 N . From (A.2) and (A.4) it follows that

dmN =

(
m

N

)2H

dmm.

Applying Lemma A.2 with bm = dmm and cNm = (m/N)2H , we get the proof.

Lemma A.4. For k(N)
mn defined in (5), we have the convergence

lim
N→∞

max
16m,n6N

k(N)
mn = 0.

Proof. By Cauchy–Schwarz inequality,

(
k
(N)
Nn

)2
= N

( n/N∫
(n−1)/N

z(1, s)ds

)2

6 N

n/N∫
(n−1)/N

du

n/N∫
(n−1)/N

z(1, s)2ds

=

n/N∫
(n−1)/N

z(1, s)2 ds.

As we know, z(1, ·) ∈ L2[0, 1]. Therefore, max16n6N (k
(N)
Nn )2 → 0 as N → ∞. Due

to (A.3), we have

max
16m,n6N

k(N)
mn = max

16m6N

((
m

N

)H

max
16n6m

k(m)
mn

)
.

Applying Lemma A.2 with bm = max16n6m k
(m)
mn and cNm = (m/N)H , we complete

the proof.

Lemma A.5. Let a : [0, 1]→ R be a piecewise-constant nonrandom function,

a(s) = const for all s ∈
(
n− 1

N
,
n

N

)
, 1 6 n 6 N
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(we do not make any assumption about behaviour of a(s) at points n/N except that
a(n/N) are real, finite nonrandom numbers). Consider the fBm BH

t =
∫ t

0
z(t, s) dWs

and a Gaussian martingale BH
t =

∫ t

0
a(s) dWs, which are adapted w.r.t. the same

filtration FW . Then(
max
t∈[0,1]

E
(
Xt −BH

t

)2)1/2
6
(

max
n=1,...,N

E(Xn/N −BH
n/N )2

)1/2
+

1

(2N)H

+
1√
2N

max
s∈[0,1]

∣∣a(s)
∣∣. (A.5)

Proof. Let t1 ∈ [0, 1]. Then there exists an integer n1, 0 6 n1 6 N , such that
|t1 − n1/N | 6 1/(2N).

We have the following bounds:

E
(
BH

t1 −B
H
n1/N

)2
=

∣∣∣∣t1 − n1
N

∣∣∣∣2H 6
1

(2N)2H
,

E(Xt1 −Xn1/N )2 = E

( n1/N∫
t1

a(s) dWs

)2

=

∣∣∣∣∣
n1/N∫
t1

a(s)2 ds

∣∣∣∣∣
=

∣∣∣∣t1 − n1
N

∣∣∣∣ max
s∈[0,1]

a(s)2 6
1

2N
max
s∈[0,1]

a(s)2.

Obviously,(
E
(
Xt1 −BH

t1

)2)1/2
6
(
E
(
Xt1 −Xn1/N

)2)1/2
+
(
E
(
Xn1/N −B

H
n1/N

)2)1/2
+
(
E
(
BH

n1/N
−BH

t1

)2)1/2
6

1√
2N

max
s∈[0,1]

∣∣a(s)
∣∣+
(
E
(
Xn1/N −B

H
n1/N

)2)1/2
+

1

(2N)H
. (A.6)

Since the stochastic processes Xt and BH
t are mean-square continuous, the maximum

supt1∈[0,1](E(Xt1 − BH
t1 )2)1/2 is attained. Maximizing (A.6) over t1 ∈ [0, 1], we obtain

the inequality

max
t1∈[0,1]

(
E
(
Xt1 −BH

t1

)2)1/2
6

1√
2N

max
s∈[0,1]

∣∣a(s)
∣∣+ max

n=0,...,N

(
E
(
Xn/N −BH

n/N

)2)1/2
+

1

(2N)H
,

which is equivalent to (A.5).
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