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Abstract. We investigate the existence of positive solutions for a nonlinear second-order difference
equation with a linear term and a sign-changing nonlinearity, supplemented with multi-point bound-
ary conditions. In the proof of our main results, we use the Guo—Krasnosel’skii fixed point theorem.
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1 Introduction

We consider the nonlinear difference equation
A*up g — Luy + f(n,u,) =0, n=1,N—1, (B)

with the multi-point boundary conditions

p q
Uy = Zaﬂ%“ unN = Zbium, (BC)
i=1 i=1

where N € N, N > 2, p,q € N, A is the forward difference operator with stepsize 1,
Aty = Upy1 — Uny A%Up_1 = Upy1 — 2Up + Up_1, and n = k,m means that n =
k,k+1,...,mfork,meN,§ € Nforalli = 1,p,n; € Nforalli =1,¢,1 < & <
e < E S N-1L,1 < <o <ng <N -1, Lis a positive constant, and f is
a sign-changing nonlinearity.

Under some assumptions on the function f, we will investigate the existence of at
least one or two positive solutions for problem (E)-(BC). Problem (E)-(BC) with L = 0
and a positive parameter in (E), and a; = 0 for all i = 1, p in (BC) was recently studied
in the paper [20]. Equation (E) with L = 0, where the nonlinearity f may be unbounded
below or nonpositive, subject to the boundary conditions vy = w; and uy = un-—1,
which is a resonant problem, has been investigated in the paper [7] by transforming it into
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Positive solutions for a discrete boundary value problem 659

a nonresonant problem. The existence, nonexistence and multiplicity of positive solutions
for difference equations and systems of difference equations with parameters or without
parameters, with nonnegative or sign-changing nonlinearities, supplemented with various
boundary conditions were investigated in the papers [1,3-6,8-10, 12, 14-17,21-23] and
the monograph [13]. For various applications of the nonlinear difference equations in
many domains, we recommend the readers the monographs [2], [18] and [19].

2 Preliminary results
We study in this section the second-order difference equation
A*up_y — Ltp +yn =0, n=1,N—1, (1)
with the multi-point boundary conditions (BC), where y,, € R foralln =1, N — 1.
We denote by A = (L 4 2 + /L2 4 4L)/2 the biggest solution of the characteric

equation 72 — (L + 2)r + 1 = 0 associated to equation (1). The other solution is 1/A. We
also denote by

p . 1 q 1 P 1 JU N
= ;aiA’—l F_;bzﬂ + 1_2011@ A —;biA‘ .

Lemma 1. If Ay # 0, then the unique solution of problem (1)~(BC) is given by

A n—1

= s (47— 4,
j=1
A+l 1 p €i—1 ¢ e
ratrs | (e S ) S S e -y

N-1 )
( Z‘“A£> (AN = A7)y,

j=1
4 1 q ni—1 ' _
— <1 — Z(LA&) sz (Am I AJ 771)yj‘|
i=1 i=1 =1
1 & NS (4N—T g
A (2 D) ZaiAl—l > (AN=I — AI=N)y,
=1 j=1
P q n;—1
— (Z%‘A&’ — 1) Zbl Z (A’]z—J Aj—m)yj
i=1 i=1  j=1
P §i—1
(AN Zb A’h) D ai Y (AN - Ajfi)yj], n=0,N. (2
=1 J=1
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We consider here that Z;:ll z; = 0 and 2?21 zj = 0.

Proof. The general solution for the homogeneous equation associated to (1), that is, the
equation A%u,_y — Lu, =0,n=1,N —1,is

n

ufy = CLA" + Cy

n=0,N,
with Cl, CQ € R.

We will determine a particular solution for the nonhomogeneous equation (1) by using
the variation of constants method. Namely, we will look for a solution of (1) of the form

~ 1
u7L:PnAn+Qnﬁa TLZO,N7

where P,,Q, € R forall n = 0, N. For the sequences (P,),, 5 and (@), _g x> We
obtain the system

.
An

N ER G (LA P

(Pnfpn—l)An“i’(Qn*Qn—l) Oa

(we consider that yo = 0 and yx = 0). By solving the above system in the unknowns
P,— P, q1and Q, — Q,,_1 we deduce

1 An+1

BB =g e @ Qe = mye

from which we conclude

n 1 n AJ-‘,—l
P":_Zmyja Qn:Zmyj, n=0,N.
Jj=1 j=1
Then we obtain for @, the expression
A = o
Uy = =g D (A" = ATy, n=0,N.
j=1

Therefore the general solution of equation (1) is

h ~
Uy = U, + Up

1 A Ry gin
o AT = ATy, n=0,N. 3)

j=1

= C1A™ + Cy

http://www.journals.vu.lt/nonlinear-analysis
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Now we impose to sequence (Un)n:oT\r (given by (3)) the boundary conditions (BC),
namely ug = > +_, a;jug, and uy = Y, b;u,,. We obtain for the constants C; and C
the system

. | 1 A&
Cl-l-Cz:i:Zlai ClA&Z—i_CQE_ﬁ;(A& I A 51)3/]' ,
1 4 = S
ClAN + C2A7N T Z (ANiJ — AJfN)yj
j=1

A A2 -1

Jj=1

q
-y
i=1

1 A
CLA™ + 027 - Z (Am—j _ Aj_"")yj]
or, equivalently,

p p
1
Cl (ZaiA& — 1> — 02 <1 — ZCLZA&>
=1 =1
A p &i—1

A2 1 Zai Z (A&_j - Aj_&)yj?
=1 j=1

q q
1 1
N i .
el (A = 21 bi A7 ) +C <AN = le blAm>

4 N-l ' 4
A2 1 (AN_J - A]_N)yj
j=1
A q ni—1 ‘ 4
- Zbi Z (AT=T — ATy
i=1 j=1

The determinant of the above system in the unknowns Cy and C5 is A;, which by
assumption of this lemma is different from zero. So, the above system has a unique
solution given by

p &i—1

q
1= = (- B S S
D 1 ’
*11:1 q ni—1
« [ (AN*j _ AJ*N)yj _ Zbi Z (Am‘*j — Ajﬂi)yj] }’ 4))

1 i=1  j=1

2

<.
Il
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A - ,
CQ = Al(/121){ (rzlalA& — 1)
N—-1 q n;—1
v [ Z (Aij _ Aij)yj _ Zbi Z(A"i*j — Aj"i)yj]

Jj=1 =1 j=1
q P &i—1
— (AN—ZbiAm> Zai Z(Agi_j_Aj_gi)yj}' (42)
i=1 i=1  j=1
By replacing the expressions for C; and Cs from (4) in relation (3) we obtain the
solution of problem (1)-(BC) given by (2). O]

To express the solution of problem (1)-(BC) by using the associated Green function,
we will firstly investigate the solution of problem (1)~(BC) with a; = 0 foralli = 1,p
and b; = 0 for all j = 1, ¢, and discover the corresponding Green function.

Lemma 2. The uni%Ae solution of equation (1) with the boundary conditions ug = 0 and
uny =0isu, = Zi:_ll g(n,i)y;, n = 0, N, where the Green function g is given by

. A
g(n,z) = (AQ _ 1)(AN _ A*N)
(Az‘ _ Afi)(Aan _ Aan)7 1
x (An _ Afn)(ANfi _ AifN)’ 0

i<n<N,

<
. )
n<i<N-1.

<
<

Proof. By using Lemma 1 and (2) we deduce that the solution of equation (1) with the
boundary conditions up = 0 and un = 0 is

A n—1 ) .
W= g S (A ATy,
i=1
AN+n+1 N-1 N N
+ (A2 — 1)(A2N — 1) (4 = ANy
i=1
AN—n+1 N-1 N N
T (A2 Z1)(AN 1) (AN =AYy, n=0,N. (6)
i=1
Therefore by (6) we obtain
0 A = n—i i—n
i=1

AN+TL+1 AN—7L+1 N-1 Ni PN
! ((AZ “O@N 1) (- (A - 1)) 2 (AT = Ay,

http://www.journals.vu.lt/nonlinear-analysis
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i |:AN+n+1 AN—n+1
(A2 -1)(4N )

N-1 AN+l (An _ A—n)
2 (DA 1)

n—1 AN+L (An _ Afn)(ANfi _ AifN) _ A(A2N _ 1)(A”7i _ Aifn)

A

N—i _ 4i—N
(A A ) VP

(An i Az—n) y

_|_

(AN—i _ Ai—N)yi

T (A2 —1)(A2N 1) Yi
AN+1 — —n —1 i—
@@ o) 2 Z (A7 = A7,
ANt S N—i _ fgi-N
T (AT 1)(A2V —0) Zl J(ATT AT
- (A A (A A
AN+ N-1 _ N_i N
+(A2—1)(A2N—1)Z(A = AT (AN = ATy,
AN+1 = 4 —1 -n n—
:(A2—1)(A2N—1)Z(A — ATH) (ANT — ANy,
i=1
AN+1 N-1

@@y A AT (AT - AT ), n=0N.

0

Then we deduce u, = vaz_ll g(n,1)y; for all n = 0, N, where g is given by (5). O

Lemma 3. % Ay #£ 0, then the solution of problem (1)~(BC) given by (2) can be expressed
asun = G(n 7)yj, n =0, N, where the Green function G is given by

G(n’j) = g(n,j)

1 1 1 1 1 1
A" E P — (AN — § ' AN E '
+ Aq (i_l b Ani AN> + An ( - bi ) aig(&i, j)
1 | 1 [ !
| A" _ T _ & _
+ A A (1 ZEZI a; A&) + T (;1 a; A ) E big(ni,j 7

foralln =0,N and j = 1, N — 1 with g given by (5).

Proof. By (2) and using the function g given by (5), we obtain

A R (AT - AT (AN — AN
A2 1 AN ZA-N

j=1

1
Upy = — yj+C’1A"+CQE
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A nfl .
- RIGREY
(42— (AN — AN) 2
A n—1
j —7J N—n n—N
= (AQ—I)(AN—A—N) Z(A]_A j)(A - A )yj
j=1
N-1 N—-1
£ (A7 AT (AN Yy Y (A AT (AN - )y,
j=n j=1
1
+ O A" + o
n—1 A N— 1
— Nay. — N—j J=NYy,.
Zg(w)y] A A 2 )(AN=T — ANy,
Jj=1 _]—1

1
+C]_An+02ﬁ7 TLZO,N

A - 1 K, 1
+ (Az_l)(AN_A_N)Al{[<;aiA£ —1> (M_;bimﬁ>
+ (1 — Zp:a A1€i> (AN - Xq: biA’h)

&i—1

a; 3 (AST — ATy,

j=1

Z
-
“n
LN

_l’_
=
—
el
(]
&
5[~
o~

o]
=
M@

N_A—N) (AN J AJ—N)yj

.
Il
_

Am—j _ Aj—m)yj

I

b

3
/:\
M@

§
a\H

\/ \/

M@

&
3
L

@
Il

-
.
I

=

(AN 7= ANy,

+
:'>‘»—
—
M=

8

ﬁz
\H/

D;

2

:L
2

.
I
A
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p q n;—1
—L(Z%A& —1) (AV = ATNYS by Y (AT — ATy
i=1 =1 j=1
L (N Ny oam | (4N LSS e e
- A —ZbiA (AN — Zal (AS—T — ATy,
i=1 i=1 j=1
n—1 A P .
=) 9(n,j)y; + - a; A% —1
=~ ( )J (A2—1)(AN—AN)A1{ (; )
1 1 N-1 )
x (AN—ZbiAm (A" = A7) Y (AN = ANy,
=1 j=1
p 1 q N-1
- (1—2%145) (AN—Z@A”> AN — A7)
=1 =1 j=1
P 1 N—-1
+A”<1—ZaZAE,>(AN ATNY ST (AN - AN
i=1 j=1
1 P N—-1
+An<2alA5 —1> (AN —A=N) N (AN - i)
i=1 j=1
+ |Am L—Zbi AN — ZbAm
AN LT A An
p &i—1 ‘ .
x> a; Yy (AN — ATN) (A8 - ATy,
i=1  j=1
P 1 1 p
+|-A <1—§a1A5 > —An<§azA —1)]

n—1 ' A
:jz:;g(nvj)yj+(A )(AN A-N { (ZG/ZA£7_ )
1 a i o
(oo E oy
p N-1
( Z ) <AN Zb AT (A" — ATy (AN - AT Ny,
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N-1
+ % (Z a; A% — 1) (AN — A~ (AN=T — AT=N)y
i=1 j=1
A" ! ! ! AN s A"

+ A7N — ; bz A’h — ﬂ — ;[QPt] bz

P gi—1 _ ‘
Xzai [(Afi 7A*Ei)(AN*J,AJ*N)

i=1  j=1

http://www.journals.vu.lt/nonlinear-analysis
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P &i—1
S| T e,

j=1

]

j=¢&:

P N-1
3 X A A )
i=1  j=1

A1 p L L[y A% —1
+ |- f;a,A& ~ I ;az —

CX )

J=ni
q —1
SYhY (A - A AV - Aﬂ'-N)yj}}
i=1  j=1
fhlte 1 1 1 1
_ - . A = - - N n
_;g(n,j)yj—‘,—A A (AN ;bzAm>+An<A ;blA )
N—-1 p
X Zaig(fi,j)yj
j=1 i=1
1 P 1 1 p N—-1 g¢q
A A”<1—Zal,4a> +An<Za-A&—1>1 > big(mi, §)y;
i=1 i=1 =1 i=1
A p
_ & _
+ (A2 — 1)(AN — AN)Al{ <§a1’4 1)
1 1 i
X (AN —Z;bZAm> (A" = A7) ] 1 (AN7T — ANy,
1= J=
p q N—-1
- <1 ZalA£><AN—Zb,-A">(A” AT (AN - ATy
i=1 i=1 j=1
p 1 N-1 ) .
+ 47 (1 N Z:I‘“ A&:) (AN = A7) ) 1 (AN = A7)y,
i= Jj=
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i=1 j=1
1 1) <& =y N
—&-A"(AN—Z;biAm>Z;al(A5l—A_fi) > (AN — AT=N)y
1= 1= Jj=
1 q P N-1
_ An<AN _ ;b Am) ;%(AEI —Aifl) 2 (AN*] AJ*N)y

=1 =1 Jj=1
! 1 1 1 v <
= _ n [ - _ i
2 g(n,4) + 7~ |4 ;bzAm o~ | T4 ;bA

X Z%g(&,j)
(1—2@2/15 ) 1 (ZaiAéi—1>‘|Zbig(ni7j)}yj

N-1
ZanyJ7 n=0N,
j=1

K

where the Green function G is given by (7). O

Lemma 4. The Green function g given by (5) satisfies the inequalities

k(n)h(j) < g(n,j) <h(j) n=0,N,j=1,N-1,

where
h(j) = 9(3,35)
A . . . ) .
= Al — A7) (AN=T - AI—N i =1,N —1
(AQ?l)(AN?AfN)( )( )7 J ) )
and
k(n) = W mln{An — Ain, AN*TL — Aan}7 n = O7 N

Proof. Because the function p(z) = A* — A™*, x > 0, is strictly increasing, with
©(0) = 0, we deduce that g(n, j) < g(4,7) = h(j) for all n=0,N,j=1,N—1.

http://www.journals.vu.lt/nonlinear-analysis


http://www.journals.vu.lt/nonlinear-analysis

Positive solutions for a discrete boundary value problem 669

For1 < j <n < N, we have
g(mj) _ AN-—n _ pn—N o AN-n _ gn—N
g(j,j)  AN-3 — AT-N 7 AN-1_ A1-N?
andfor0 <n < j <N —1, wehave
g(na‘]) . Aanin < AniAfn
g(j,j) AT — A3 T AN-1 _ AI1-N?

and then we obtain g(n,j) > k(n)h(j) forallm = 0, N, j = 1, N — 1, where k(n) =
(1/(AN=L — AN ) min{A" — A= AN-" — A"=N foralln =0, N. O

Remark 1. Because N > 2, we have k(n) < 1 for all n = 0,N, and then
min,, w7 k(n) € (0,1).

Lemma 5. We assume that a; > 0 for all i = 1,p, bj > 0 for all j = 1,q,
P aiAY > 1L, 3P a/AS <L 3 b /AT = /AN, YT b AT < AN and
Ay > 0. Then the Green function G given by (7) satisfies the inequalities

k(n)h(j) < G(n,j) < Ah(j), n=0,N, j=1,N -1

where
A=14 [N zq:b- L L) pav e ZbAm f: :
- Ay i=1 LAm AN i=1 i=1 "
+ — AN<1_ZQZA1&> —|—Za1A£I—1] Zb

Proof. Under the assumptions of this lemma, by using Lemma 4 we have G(n,j) >
g(n,j) = k(n)h(j) forallm =0, N, j = 1, N — 1. By using again Lemma 4 we obtain

q P

i=1

AN<1—ZP:%A5 > +Za1AE’ —1] th

= Ah(j), m=0,N,j=1,N—-1 O

Gn.) < hj) +

+K

Lemma 6. Under the assumptions of Lemma 5, the solution u,, n = 0, N, of prob-
lem (1)~(BC) satisfies the inequality u,, > (1/A)k(n)u,, for all n,m = 0, N.

Proof. By using Lemma 3 and Lemma 5 we obtain

N-1 N-1 N-1
un =3 G, g)y; = > k(m)h(i)y; = k(n) Y hj)y;
j=1 j=1 j=1
k(n i _ k(n)
~n) k(n) 0N 0
A p G T tms n,m =0,
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In the proof of our main results, we will use the Guo—Krasnosel’skii fixed point
theorem presented below (see [11]).

Theorem 1. Let X be a Banach space and let CfC X be aconein X. Assume 21 and (25
are bounded open subsets of X withQ € {2y C {21 C (25, andlet A: CN(N22\ 1) —» C
be a completely continuous operator such that either

() || Au| < |lu|l, w € CN I, and ||Au|| = ||ull, v € C N OS2, or
1) | Aull = |lull, v € CN Oy, and || Au|| < |lull, v € C N OS2,

Then A has a fixed point in C 1 (25 \ {21).

3 Existence of positive solutions

In this section, we will investigate the existence of at least one or two positive solutions for
problem (E)—-(BC). We present now the basic assumptions that we will use in the sequel.

(H1) a; > O forall i = 1,p, b; > 0 for all j = 1,q, ZleaiAEi > 1,
P aiAS < 1L, biJAY > /AN ST b AT < AN, Ay > 0 and
L>0.
(H2) The function f : {1,...,N — 1} x Ry — R is continuous, and there exist
¢n > 0,n = 1,N—1,with > ¢; > 0 such that f(n,u) > —c, for all
n=1N—-1ueRy Ry =][0,00)).

We remark that, under assumption (H2), the nonlinearity in equation (E), namely
—Lu + f(n,u), may be unbounded below.
We denote by (Tn)n:oTv the solution of problem (1)-(BC) with y,, = ¢, for all

n =1, N — 1, namely the solution of problem

AUy 1 — Lup +¢, =0, n=1,N—1,
P q

Uy = Za,;ufi, uyN = Zbium’
i=1 i=1

where ¢,,, n = 0, IV, are given in (H2). So, by using the Green function G and Lemma 3

we have 7, = Zjvz_ll G(n,j)c; foralln =0, N.

We consider now the difference equation

szn—l *Lvn‘i’f(na (Unfrn)*) +c, =0, n=1N-1, ®)

with the multi-point boundary conditions

P q
w =Y aivg,  on=_ bivy, )
i=1 i=1

where z* = zif z > 0and z* = 0if z < 0.

http://www.journals.vu.lt/nonlinear-analysis
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We obtain easily the following lemma.

Lemma 7. The sequence (uy,), g is a positive solution of problem (E)-(BC) (u,, > 0
foralln =0, N) if and only if (vn), g7 Un = Un + 70, n = 0, N, is a solution of the
boundary value problem (8)—(9) with v, > ry, foralln = 0, N.

By using Lemma 3 we also obtain the following result.

Lemma 8. The sequence (”n)n:oW is a solution of problem (8)—(9) if and only if
(Un),.—g is @ solution of the problem

N-1

Un = ZG<”’j)(f(j’(vj—Tj)*)-&-cj), n=0,N. (10)

j=1

We consider the Banach space X = R¥*! = {v = (v,),_gx, vn € R, n =0, N}
endowed with the maximum norm |[v|| = max, _g |vn|, and we define the operator
Q:X = X,Qv) = (Qn(v)),—gx, where

=2

-1

G(n,j)(f(j, (vj —rj)*) +Cj), n=0,N,

Qn(v)

<.
Il

v

—~

Vn) p—oN-

By (H2) the operator () is completely continuous. We also define the cone
k -
P= {v € X:v=(Vn),—g: Un 2> %HHH Vn = O,N}.

By using Lemma 6 we deduce that Q(P) C P. In addition, we have the following lemma.

Lemma9. The sequence (vy,) =0 is a solution of problem (10) if and only if (VUn)pe
is a fixed point of operator Q.

0,N

So, the existence of positive solutions of problem (E)—(BC) is reduced in three steps
(Lemmas 7-9) to the fixed point problem of operator () in the cone P.

Let kg = min{k(n), n = 1, N — 1}. By Remark 1 we have ko € (0,1). We define
the functions

|3
L
|
~
=
L
>
—
.
XS}
5
_ 1
——

P(r) = max{f(n,u) +ep,n=1,N—-1,u€ {k
1
o
U(r) = min{f(n,u) +cp,n=1,N—-1,ue [/fr - A h(j)cj, r} }
for r > (A2/ko) 201 h(j)e;.

Jj=1

Nonlinear Anal. Model. Control, 24(4):658-678
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Theorem 2. We assume that (H1), (H2) and

(H3) There exist v, R > 0 such that (A? ko) Z;\;l h(j)e; <r < Rand

r

max, g 350 Gln,j) 0
A (1)

N-1 N
max, g = > ;-1 G(n:Jj)

hold. Then problem (E)—(BC) has at least one positive solution.
In addition, if

d(r) <

U(R) >

(H4) f(n,u) <O0foralln =1,N — 1 and u > 0 sufficiently large,
holds, then problem (E)—(BC) has at least two positive solutions.

Proof. We assume that (H1)-(H3) hold. We define the sets £2; = {v € X, ||v]| < r} and
25 ={v e X, ||v|| < R}, where r and R are given in assumption (H3).
For v € PN 021, by Lemma 5 we obtain

k(5) k(5) =
rzu =y > =l =y = el =AY A
=1

A
. N-1
0 . L
2 — A 1 ) :17N_17
1 ;:1 h(i)e; >0, 3

and then
fyvj—rj)+¢; <P(r), j=1,N-1.

Therefore by Lemma 5 we deduce

N—-1
Qn(v) < > G(n,j)®(r), n=0,N,
j=1
and then
le()[| = max |@u(w)| <7 =oll, ©vePno. (12)

s

Forv € PN {2, by Lemma 5, for j = 1, N — 1, we obtain

R

WV

0 ANZAh Jei> PR A
Vj—Tj = A ||’U|| - (Z)Ci = XR - (Z)Ci,
=1 i

and then
fGvj—rj)+¢ 2¥(R), j=1N-1
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Then by (H3) we have forallv € PNof2andn=1,N —1,

-1

Qn(v Z G(n, j)¥
j=1
and so

le()[| = max |Qu(v)] > max_|Qu(v)|

=0,N n=1,N—1
>R=|v], vePNo. (13)

Therefore by (12), (13) and Theorem 1 we deduce that operator () has a fixed point

vt = (v)),—gw € P satisfying 7 < [[v'|| < R. By Lemma 5 we obtain

N-1
up = vy — | - AZh === A h(j)e; >0,
j=1
n=1N-1,
P q
u(l)zv(l)71"0:2612&%1>O7 U}vzﬂ}v*T’N:ZbiU}n>O~

i=1

Hence, by using Lemmas 7-9 we conclude that u" = (u,),,_g is a positive solution of
problem (E)-(BC).

Now we assume in addition that (H4) holds. We prove that problem (E)-(BC) has
a distinct second positive solution u2. By (H4) we deduce that there exists M > 0 such
that f(n,u) + ¢, < ¢, foralln = 1, N — 1 and u > M. We choose

1 N-1 N-1
—|M+4 h(j)ec; >cA h(j),
Ry > maX{R, " < + ; (])q) }, Ri>c Z ()

where ¢ = max{c,, n = I,N —1} > 0. Let 25 = {v € X, ||v|| < R;}. Forv €
P N of2;, we obtain

k o
vnfrn>Z°R1fA h(j)e; > M, n=T,N—1,

which implies that f(n, (v, —7,)*) + ¢n < ¢ < cforalln =1, N — 1.
Then for all v € P N 9423, we conclude

—1

N-1
AZh frj) Jrc] \CAZh < Ry,
j=1 j=1

and so
Q)| < llvll, vePnoss. (14)
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Therefore by (13), (14) and Theorem 1, the operator Q has a fixed point v? =
(v3)p—ow € P suchthat R < [[v*|| < Ry. By similar arguments used for v' we have
that v2 > r,, forall n = 0, N, and so by Lemmas 7-9 we obtain that u? = v? — 7, where

7 = (rn),_o - is a second positive solution of problem (E)~(BC). O

Theorem 3. We assume that (H1), (H2) and (H3) hold. If lim,_,ee f(n,u)/u = 0

uniformly for n = 1, N — 1, then problem (E)—(BC) has at least two positive solutions.

Proof. We consider the sets 21 and {2, defined at the beginning of the proof of The-
orem 2. By the proof of Theorem 2 we know that operator @ has a fixed point v! =
(vp)p—gw € P suchthatr < |lv'|| < R with v, > 7, forall n = 0, N. Then
ut = (ul), g7 uh = vy — 1, m =0, N, is a positive solution of problem (E)~(BC).
We will prove that @ has a second fixed point v € P.

From the condition lim,_, o f(n,u)/u = 0, uniformly for n = 1, N — 1, we deduce
that lim,—, oo (f(n,u) + ¢,)/u = 0 uniformly with respect to n = 1, N — 1. Then for
e>0,e< (4 Zj\;l h(j))~?, there exists M7 > 0 such that f(n,u) + ¢, < eu for all
u> My andn = 1, N — 1. We choose Ry > max{R, (A/ko)(M; + AZ;.V:? h(j)e;)}
and 23 = {v € X, ||v|| < R2}. For v € P N 0f23, we obtain

N-1
Ry— A h(j)e; > My, n=T1,N—1,

Jj=1

ko
Un — Tn 2 Z

and hence
fny v, —rn) +cn <elvy —rp) <evy, <eRgy, n=1, N—1.

Thus, for v € P N 9§23, we deduce

N-—-1
Qn(v) < €AR2 Z h(]) g R27 n= OaNa
j=1

and then
Q)| < llvll, vePNos.
Therefore by Theorem 1 we conclude that operator ) has a fixed point v
(Un),—g € P suchthat R < [[9]| < R» and hence u = (uy),_gz, Where 4, =
Up — Tn,n = 0, N, is a second positive solution of problem (E)-(BC). O

Theorem 4. We assume that (H1), (H2) and
(HS) There exist r, R > 0 such that (A?/ko) Z;\;l h(j)c; <r < Rand

R

N-1 N
max, _o.N Zj:l G(n,j)

d(R) <

)
v(r) > N—1 N
max,,_x=7 2.1 G(n.J)

hold. Then problem (E)—(BC) has at least one positive solution.
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In addition, if

(H6) There exists Co > A(k? Z;\;l h(5))~! such that f(n,u) > Cou for all n =

1, N — 1 and u > O sufficiently large,
holds, then problem (E)—(BC) has at least two positive solutions.

Proof. We suppose that assumptions (H1), (H2) and (HS) hold. We consider the sets {2;
and (25 defined at the beginning of the proof of Theorem 2. In a similar manner as that
used in the proof of Theorem 2, we obtain ||Q(v)|| > ||v| for all v € P N 942, and
|Q(v)|| < ||v|| for all v € P N 9f25. Thus by Theorem 1 operator @ has a fixed point
vt = (v)),—g% € P, withr < [[v}|| < R and satisfies v}, —r,, > 0 foralln = 0, N.
Therefore by Lemmas 7-9, (“;)n=0,7N’ where u)l, = v} — r,, n = 0, N, is a positive
solution of problem (E)-(BC).

Now, we assume assumption (H6) true. Then there exists Ms > 0 such that, for
u > M, we have

fnyu)+cp =2 Cou+cy 2 Cou, n=1,N—1, u > Mos.

We choose
1 N—-1
Rz > max{R, = (Mg +4 ; h(j)cj> },
N—-1 N—1 K2Cy N—1 -1
. . 0 .
R3 > koCoA Z h(4) Z h(])cj( 1 Z h(j) — 1) .
j=1 j=1 j=1
Let 23 = {v € X, ||v|]| < Rs}. Then for v € P N (25, we obtain
k n—1
o , .
Uy — Ty = ZR;), — Aj;h(j)cj >M,, n=1N-1,

which implies
f(n7 (vn_rn)*)+cn>co(vn_rn), n=1N —1.
Thus, forallv € PNdf23and n =1, N — 1, we deduce

N—-1
Qn(v) = Coko Z h(§)(vj — ;)

N-1 i N-1
0 .
2 Coko Z hj <AR3 - A Z h(z)cl>
Jj=1 i=1
2 R3a
and then [|Q(v)|| = ||v|l, v € P N 8£23. Therefore operator () has another fixed point

v? € P such that R < ||v?|| < R3, and so u? = v? — 7 is a second positive solution of
problem (E)-(BC). O
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The following theorem results from Theorem 4.

Theorem 5. We assume that (H1), (H2) and (H5) hold. If lim, o f(n,u)/u = oo

uniformly for n = 1, N — 1, then problem (E)—-(BC) has at least two positive solutions.

We also obtain existence of at least one positive solution of problem (E)-(BC) if we
combine the first condition of (11) with condition lim,,_,~, f(n, u)/u = oo uniformly for
n =1, N — 1. So, we have the following theorem.

Theorem 6. We assume that (H1), (H2),
(H3') There existr > (A%/ko) Z;\;l h(j)c; such that

B(r) < - :

N—1 .
max, g Ej:l G(n,j)

hold, and lim,,_,, f(n,u)/u = oo uniformly forn = 1, N — 1. Then problem (E)-(BC)
has at least one positive solution.

Proof. The proof of this theorem follows from the first part of the proof of Theorem 2
(with the set £2;, for which ||Q(v)|| < ||v|| for all v € PNS2y) and the second part of the
proof of Theorem 4 (with a set {23, for which ||Q(v)|| > |jv|| forallv € PN as2s). O

4 An example

Let N =20,L=2,p=2,¢g=1,& =5,&{ =15, a1 = 2, a2 = 1/3, ;1 = 10,
by = 1/2. We consider the difference equation

A’uy_q = 2up, + f(n,u,) =0, n=1,19, (Eo)
with the multi-point boundary conditions

1 1
ug = 2us + U5, U20 = 5U10- (BCo)
We obtain A = 2 + /3, Ay = 2.73999 - 10! > 0, Zle a; A% ~ 1.26502 - 10% > 1,
Zle ai/Afi ~ 0.00276244 < 1, Z,‘Zzl bi/A" = 9.53882-10~7 > 1/A20 ~ 3.63956 x
10712, 579 b A~ 262087 < A%0 ~ 2.74758 - 10!, Therefore assumption (H1) is
satisfied. In addition, we have

. A
9(n,j) = (A2 1)(A20 _ A-20)
(Aj ,A*j)(A%*n 7An720)7 1
X{mn,4@m%jm2%,o
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G(nj)—gny

O R ) [ v )

11 1
1—2 Z — (245 A15 Zg(10, 7
{ ( Ve 3A15> +An< +3 )]29( 0,7),

n=20,20,7=1,19,
h(i) = A AT — AT (A20-7 _ 4320 -
(J)_(AQ—l)(Am—A*QO)( — A7) - ), i=119,
k(n) = mmin{An _ AT A0 An720}7 n = 0,20.

We deduce A=~ 3.84003043 and ko~4.7053 - 10~ L. We consider ¢, =In((n +3)/n) >0
for all n = 1,19, and then we have a := (A?/ko) ZN "h(j)e; ~ 6.535016 - 10'L. We
denote by b = a + 1 and, for n = 1,19, define the function

(u+1)1/2

n(n+4) +1 n+37 u € [07 bL
b
fnyu)=<u—b+ (n(+n13-4) +1In i, € (b, 2b],
(u+3)®  (2b43)% | (b+1)'/3
nqzn+2) T n(nt2) + n(n+4) +b+In +3’ € (2b’ OO)

The function f is a continuous one, and it satisfies the inequality f(n,u) > —¢, for all
u € R4 and n = 1, 19. Then assumption (H2) is also satisfied. After some computations,
we obtain S := maxn:()’fm(2;9:1 G(n, 7)) =~ 0.499998. Therefore for r = b, we deduce
d(r) ~ 161679 < r/S ~ 1.30701 - 10'2, so assumption (H3’) is satisfied. Because
limy 00 f(n,u)/u = oo uniformly for n = 1,19, by Theorem 6 we conclude that
problem (Ey)—(BCp) has at least one positive solution u = (un)n:m.
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