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1 Introduction

In genetic regulatory networks, DNA, RNA, and collection of molecules are interact with
each other and result in the process of the expression of genes. Earlier, the research
was popularized by Macdonald in 1989. In recent years, the study of genetic regulatory
networks has fascinated noticeable attention in the biological and biomedical sciences.
Generally, genetic regulatory networks (GRNs) act as a main role in great number of
ordinary life processes as well as cell discrimination, the cell cycle, signal transduction
and metabolism; hence, indicative exertions have been formed to establish mathematical
approaches for their resolution. Moreover, GRNs include different types of models, i.e.,
discrete model or Boolean model, continuous model or differential equation model, Petri
net model and Bayesian network model have been considered and employed in [1-4,28].
Basically, Boolean model and differential equation model are mainly used in genetic
regulatory networks.

During the construction of genetic network models, the extrinsic noise and the intrin-
sic noise may bring parameter uncertainties. At the same time, data errors, parameter
fluctuations and uncertainties such as external perturbations are unavoidable. That is,
one has to analyze the uncertain systems in the way of robust stability [5, 15, 29, 30,
35-37]. In the gene regulation process, time-delays are inevitable because the process of
transcription and translation. Also, time-delays leads to poor performances and instability
of genetic regulatory networks, see [11, 14, 17,31,32,39,41]. In GRNSs, the activity of
proteins and the observed oscillatory expression are driven by using the transcriptional
delays. In the dynamical systems, delays have a great effect. Therefore, the stability
problem of GRNs with time-varying delays are analyzed.

The study of impulsive differential equations are found in many domains of applied
science, as reported in [16, 18,23,32,38]. It is known that impulses can make unstable
systems stable or exponentially stable, or otherwise, stable systems can become unstable
after impulse effects, see [19, 22, 26]. In GRNs, Wang et al. [32] analyzed the nonlin-
ear disturbance and time-varying delays using delay-dependent approach. In [24], the
authors discussed the impulsive perturbations in genetic regulatory networks using delay-
dependent method. In [33], Wang et al. investigated the uncertain genetic regulatory
networks with time-varying delays in the sense of robust stability analysis. In GRNs,
Liang et al. [21] discussed the uncertain mode transition rates and state estimation for
Markov type with delays. In [7], the authors presented the combinational measurements
in event-triggered systems with distributed delays. In [10], Hu et al. investigated the state
estimation for nonlinear systems with discrete and distributed delays. In [9], the authors
investigated the stability analysis of genetic regulatory networks with distributed delay. In
[37], some robust stability criteria are given to the uncertain genetic regulatory networks
with time-varying delays. In [8], Feng et al. derived the stability analysis problem by
using convex combination method in GRNs. In GRNs, Koo et al. [13] investigated the
delay-dependent approach and time-varying delays in the way of robust stability criterion.

Induced by the beyond deliberation, in this work, we design an advanced delay-
dependent GRNs with distributed delays and impulses. A new triple-integral Lyapunov—
Krasovskii functional are constructed, which helps us to reduce the conservatism effected
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by the distributed delays and time-varying delays. By taking the time-varying delays into
account, the stability criteria are granted by using the delay-dependent approach, convex
combination and free-weighting matrix method combined with Jensen’s inequality. Fi-
nally, numerical simulations are worn to show the less conservativeness of the attained
results. The significant of the manuscript is given as follows:

(1) An advanced delay-dependent genetic regulatory networks with parameter uncer-
tainties, which includes distributed delays and impulsive effects are investigated
using delay-dependent approach.

(i) Based on the contemporary Lyapunov—Krasovskii functional and integral inequal-
ity techniques, some sufficient conditions for asymptotical stability of delay-
dependent genetic regulatory networks are derived in the form of LMIs. In ad-
dition, compared to the existing results, the derived outcomes are different and
advanced.

(iii) In this chapter, the feasibility of the obtained LMIs for asymptotic stability can
be easily solved by the aid of MATLAB LMI control toolbox.

(iv) By handled the time-varying delay and distributed time-varying delay terms in
our concerned genetic regulatory networks, the allowable upper bounds of time-
delays are maximum in comparison with some existing literatures, see Table 1 in
Example 2. This can be expressed that the approach developed in this chapter is
more effective and less conserved.

The remaining things of this work is classified well as follows: In Section 2, GRNs
with distributed delays and impulses are described, and we introduced some assump-
tions and lemmas for proving our required criteria. In Section 3, we define an advanced
Lyapunov—Krasovskii functional, which is in triple integral form, and derived sufficient
conditions, which can be expressed in the form of LMIs. Additionally, two mathematical
examples are shown in Section 4 to demonstrate the advantages of our stability conditions.
Lastly, conclusions are shown in Section 5.

Notations. The superscript ““I” act as the transpose of matrix. R™ indicates the Euclidean
space with n dimensions, and R™*" denotes the set of all n xm real matrices. I means the
identity matrix of appropriate dimensions. diag{-} is the diagonal matrix. The symbol “x”
denotes the symmetric term. In this paper, the matrices are assumed to be with appropriate
dimensions.

2 Model description and preliminaries

Now, we consider the continuous-time genetic regulatory networks with time-varying
delays described by the following equations:

mi(T) = —g1im(T)
+ hli(pl (7-7 S(T))a pQ(T* E(T))7 cet pn(T - E(T)))v (1)
pi(T) = —g2pi(T) + haomi (T —n(T)), i=1,2,...,n.

Nonlinear Anal. Model. Control, 23(6):803-829
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Here m;(7T") and p;(T) are the concentrations of mRNAs and proteins, respectively.
g1; and go,; are the degradation rates of mRNAs and proteins, respectively. ho; defines
the translation rate, {(7) and n(7) are the transcriptional and translational delay, re-
spectively. The regulatory function is defined as hj;, which is nonlinear, and the sum
logic is h1i(p1(T), p2(T), -, pu(T)) = D", hij(pj(T)), which is in [12,40]. In [6],
a monotone function of the Hill form h;;(p; (7)) is defined as

; NHrd
By D)

03 (T /)T if j is an activator of gene 1,
pj Yi)

hij(p;(T) = 5. / .y  vene i
i Ty (7)o s 1 J is arepressor of gene ,

where j is the transcription factor, 3;; is a bounded constant, y; is a positive scalar, H;

is the Hill coefficient. Therefore, Eq. (1) can be changed accordingly as

mi(T) = —g1imi(T) +ZHijfj(pj(T—£(T))) + w;, @

pi(T) = —g2ipi(T) + hoomi (T —n(T)), i=1,2,...,n,
where f;(z) = (x/;)"7 /(1 + (x/7;)"49), wi = Y. ey, Bij» and U; is the basel rate,

which is definedas U; = 3 Bij. The matrix hy = (H;;) € R™*" of GRNs is defined
as

JEW;

Vij if j is an activator of gene ¢,
H;; =40 if no link from j to %,
—;; if j is a repressor of gene 1.

Equation (2) changed into the compact matrix form, we have

m(T) = —Gum(T) + Hif (p(T — (7)) +w, )

P(T) = =Gop(T) + Ham(T —0(T)),
where Gl = diag{gll,ng, <o 7g1n}» w = diag{w17 w2, ... 7wn}9 G2 = diag{9217g227
s 792n}, H2 - diag{h21a h227 ceey h2'n}’ m(T) - (ml(T)a ... 7m7l(T))T’ p(T) =
(P1(T),-- s 2a(T)E f(R(T)) = (Fi(P1(T), -, fu(pa(T))))". Here monotonically
increasing function f;(x) = (x/v;)"#i /(1 + (z/~;)"7i) is bounded with H;; > 1 and
have the continuous derivatives for z > 0. Completely the direct algebraic directions, we
have

Heo — 1) Hpi=D/Hyi (.. 4 1)Hyi+1)/Hg;
rj:maxfj(a:):( fi ) I(Hyy + 1) ’

> 0.
x>0 47ijj

Let (m*, p*) is an equilibrium point of the GRN (3). Then we have

—Gim* + H1 f(p*) + w =0,

. « 4
—Ggp + Hom™ = 0.
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Shift equilibrium point (m*, p*) to the origin and let x(7) = m(T) — m*, y(T) =
p(T) — p*. Therefore, Egs. (3) will be rewritten as

i(T) = —G1a(T) + Hig(y(T — &(T))).

§(T) = =Gay(T) + Haz(T = n(T)),
zo = x(0) = ¥(0), yo=y(0) =7(0) Vb€ [-w,0]

where (7)) = (21(T), 22(T), ... 2n(T)T, y(T) = (W1(T),y2(T), -, yn(T))",
9;(y;(T)) = fi(y;(T) + p}) — fi(p*), @ = max[ng, ], the initial functions 1(:)
and 7(-) are continuously differentiable on [w, 0].

Now, we discuss the following impulsive genetic regulatory networks with distributed
delays and time-varying delays:

.
H(T) = —Cha(T) + Hug(y(T — €(T))) + By / J(y(s)) ds,
T—r(T)
A
Y(T) = =Gay(T) + Hox(T —n(T)) + E2 / x(s) ds, o)
T—-UT)

o(Te) = D1a(Te)™,  y(Te) =Day(Te)™, k€T,
xo=x(0) =9v(0), yo=y(0)=mn(0) Vo€ [—w,0].

E, = diag{ei1,€e12,...,e1,} and E2 = diag{es;,ean,...,eq,} are weight matri-
ces. The bounded function (7)) and I(7) represents the distributed delay of systems
with 0 < 7(7) < Fand 0 < I(T) < I. Here 7 and [ are constants. J;(y(7)) =
(J11(y1(T)), - -, Jin(yn(T)))T denotes the activation function, 7 denotes the sequence
of time, which satisfies 0 < 7o < 71 < -+ < T < Tr—1 < --- and limp_, o0 T = 00.
The impulses are denoted by x(Uy) and y(Ux). D1, D2 € R™ are the sudden change
effects of the state of the above system.

Assumption 1. A monotonically increasing function f;(-), i € {1,2,...,n}, with satu-

ration satisfies
filh) = fill2) _
ll _ 12 ~ 19

for all i1, [y € R with [ # I3, where ¢; are known constants.

fi(0)=0

0<

Assumption 2. 7(7) and £(7) are the time-varying delays, which satisfy 0 < 71 <
N(T) <12, 0 <& <E(T) < &.0)(T) <A <00,8(T) <6 < oo, where 0 <y < 12,
O<f1 <§2,)\>Oand6>0.

Definition 1. If, for any € > 0, there is §(€) > 0, then system (5) is stable such that

E||(acT(’T),yT(T))TH2 <€ when sup EHga(s)H2 <0,

—7<6<0

Nonlinear Anal. Model. Control, 23(6):803-829
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where p € L?([—7,0]; R?"). System (5) is asymptotically stable if
lim || (" (7),5™)(T)"|* = 0.
t—0

Lemma 1 [Schur complement]. (See [25].) Let =1, =5, =3 by constant matrices, where
E1=Efand0 < =, —Hz,thenul+_§:2 lzg <0iff

z =f —2, Ej

{; 3;]<0 or [AT A}<0.

=3 —Z=2 =3 =1
Lemma 2 [Jensen’s inequality]. (See [27].) For any real matrix W € R™"*" W =
W™ > 0, there exist a scalar ¢ > 0 and a function 1) : [0, q] — R™ such that

/w W(s (/w >W<q/0w(s)ds>.

3 Asymptotic stability criterion

In this portion, we discuss the asymptotic stability criterion for impulsive GRNs with
distributed delays and time-varying delays by using matrix analysis techniques and Lya-
punov stability theory.

Theorem 1. With the help of Assumptions 1 and 2, for given positive scalars na > 11,
& > &, A and b, system (5) becomes globally asymptotically stable if there exists
positive-definite matrices R = [Rijloxe, P (0 = 1,2,...,5), Q; (i = 1,2...,6),
S; G =1,2,...,8) and U; (i = 1,...,4), matrices Q7, S; (i = 9,10,11,12), K3,
Ky, K3, Ly, Lo, L3, M; (i = 1,...,4) and positive definite diagonal matrices {2 =
diag{z14, 22i, - - . » 2ni } (@ = 1,2) such that the following LMIs hold:

FIBFy, — B; <0,

3

Q1 Qr S1 S Sa So S5 Su
[* Q2 >0, * 53 >0, xSy >0, * Sy

WV

0,

Wy Wy, Wy WY

8 33
* * * LZ/44

with

9 2
Vi1 = [2i5]o1x21, Wi2 = [AiN1 AaNy], W3 = {77211\/[1 Mo Mo %M3 faM4],

2 2
Uy = diag{—Ni, =Nz}, W33 = diag{—n;Uh —1sUz, —%U& —§UU4},

Yyy = diag{*mSl, £155, —11252, 51256}7 471(41) = [771K1 &1Ly nigKs 512L2L
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@1@ = [mK1 &1Ly maKs &iaL3), Wl(i) =[mKr &Ly maKs &12Ls],
Wl(i) = [mK1 &1Ly maKs &12L3),
211 =—RiGy — G?R11 + Ri3 + R1T3 + P+ K+ K1T1 + 1S3
+ maSy + m My + m M + oMo + 112 My — 11S¢ Gh
- 7}1G?Sg - 771251T0G1 - 7712Gr1r5107
219 =—GTRis+ Ryy — R12Go + Rys,
(3= RiaHy + K3, — Kia + Kiz +mi Mg, + miz2 M,
6= RitHy +mSy Hi + maSigHa,
hyr=—-Ki+Kipg— Ris+ Ria, (218 =—Kiz— Ria,

809

1
219=—Ris+ Ris, 110=—Rig, $2115=—GlRiz+ Raz — 7759 — M,
1

Q119 = BoRy, 2116 = —GY Ria + Raq — My,
2117 =—GIRis + Rss, (118 =—G{Rig+ Rag, (191 =E 1Ry,
29 = —R9sGy — G Rog + Ros + Rys + Q1 + Q3 + Liy + LT, + 6,5,
+ &1258 + &1 Mz + & My + ma Mg + 12 My — 651, Ga
— &G S11 — m2S1Ga — m2G3 Sha,
Qo3 = RogHy + & ST Ha + €125 15 Ho,
294 =Ly, — L1a + Lz + &1 Mys + £12 M3,
Qo5 =—G3Q+QZ1 +Qr, (6=RHy, 297=—Roz+ Ray,
(28 =—Ros, S(299=—L11+ Lia— Raos + Ros, (2210 = —L13 — Ros,
215 = —G3 Roz + R35, 2216 = —G5 Ros + R,
1

2917 = —G5 Ros — &

Si1 + Rss — Mia, 2915 = —G3 Rog + Rsg — M,

Q19 = BoRy, (2291 = F1Ry, Q33 =—(1—\)Pi — Koy — Koy + Koz + Ko,
Q35=HyQ, 37=—Koi+ Koo, 235=—Kos, 2315=Hy Roz— Moy,

316 = Hy Roy — Moy, 2317 = Hy Ros,  §2315 = Hj Rag,
Q44=—(1—08)Q1 — Log — Lay + Log + L3y, 246 =QZ> — (1 —0)Qr,
249=—Lo1 + Loz, (2410=—Lo3, 2417 =—Mas, 2418 =—Mau,
D55=0Q2—27Z1, 2510=0E;, 26=—(1—0)Q2— 225,

Q616 = H{ Ris, 2615 = Hi Ri3, 2617 = H Ri5, 2.5 = H{ R,

1
277=—(Py— Py —P3), {215=—Rs3+ Rss+ ?771597

1
{2716 = —R3s + Ryq — 77*2510, 2718 = —Rac + Rus, {288 = —DP3,
1

Nonlinear Anal. Model. Control, 23(6):803-829
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1
2815 = —Ras, (2816 = —Raa + 77*510, 2817 = —Rus,
12

Q518 = —Rag, (299 =—(Qs—Q1), 2915=—Rj5 + Rig,
1

Q916 = —Ri5 + Rig, 2917 =—Ras+ R+ 7 Si1,
1
1
2918 = —Rig + Rag + 575127 Q1010 =—Q4, 1015 = —Rig,
12

1
Q10,16 = —Rig, 21017 = —Rig, 210,18 = —Res + ?512,
12
D111 =—(Py— PBs), (1212 =—F5, (313=—(Qs5 —Qs),

1
4040 = —Qes, (215,15 = —7753, 510 = EaRs, (5201 = E1Rs,
1

1 1
(hei6 = ——S4, $irar = ——57, (e = EaRy, (he21 = E1Ry,
712 &1
1
(h710 = EaRs, (o1 = E1Rs, (g8 = _?387 fhg,19 = Ea R,
12
1 1

fhgo1 = E1Rs, (1910 = liwla (22000 = TWa, (22121 = _WW27
Ny =Py + 7]151 + 771252 + ElUl + TIJUQ,

2
No = Qs + 6155 + £S5 + U3 + &,Us,

o T _ . T
A =[-G10000H 0...0E]", Ay=[0 —Gy Hy 0...0 E, 0 0]",

14 15
[ME 0 MEo... 0T (i=1,2),
M,; = 18
0 ME 0 MEO...0" (i=3,4),
18
Ki=[KEorEo... " Li=[0r5orLo...0" (=123)
18 17
2 2 2 2
M2 ="nN2—"mM, No= e 2771, §12=86 &1, &= &2 251.
Proof. Consider the following Lyapunov functional:
6
V(T)=>_ViT), )
i=1
where
n i (T)
VI(T) =Y (TRUT) +2> pi | gi(s)ds,
i=1 0

https://www.mii.vu.lt/NA
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Here R = [Rij}ﬁx6 >0,P>00=12,...,5),Q;, >0 =1,2,...,6),S; >0
i=1,2,..., andU; >0(:=1,2,..4), Q7 and S; (i = 9,10, 11, 12) are the matrices
to be determined.

Calculating V (z(T),y(T), ) along the solutions of (5), we have

Vi(T) = 2¢"(T)RC(T) + 2 Z 1:9i (yi (7)) 9:(T)
i—1
@(T)
y(T)
z(T) — (T —m)
(T —m) — (T —n2)
y(T) —y(T = &)
y(T = &) —y(T —&2)

Vo(T) = & (T —m)Pia(T —m) — (L —i(T))a™ (T —0(T)) Pre(T — n(T))
+ a2 (T)Pox(T) — 2 (T — m)Pox(T —m) + 2" (T —m)Psx(T —m)
— 2" (T = m2) Psa(T —m2) + & (T) Pyie(T) — & (T — m1) Psd(T — )
— (T = m2) Psii(T = m2),

=2"(T)R | +29" (y(T)) 25(T),

1 YT —-¢T) " —£(T))
Va(T) =~ =¢M) [g<y<7—em>> [ QJ [g(y(T—f(T)))]
y(T) 1" @ Q][ w(T)
" [g<y<’r>>} [ QJ g ]
—y (T = &)Qsy(T — &) +y (T Qsy(T) + vy (T — £1)Quy(T — &)
—y" (T = &)Quy(T — &) + 5" (TQsy(T) — 4™ (T — £1)Qs(T — &)
+ 9T (T = £)Qe(T — &) — 4 (T — £)Qey(T — &),

-
Vi(T) = & (T) (St + m2S2)#(T) — / @7 (s)S1d(s)ds

T-m

T—m T—n(T)
- / 7 (5) S (s) ds — / 7 (5) S (s) ds

T—-n(T) T—n2

T

1

-
+ 2" (T) (S5 + m2Sa)a(T) — / 2T (5)S32(s) ds

T—m
- / 2T (s)Syx(s) ds + 22T (T) (1S + m2S10)2(T)
T—mn2

https://www.mii.vu.lt/NA
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T T-m
-2 T (s)Sgx(s)ds — 2 % (5)S10z(s) ds
T—/Tll 7'—/712
-
TS5+ EaS0IT) ~ [ 7(5)S5i(s)ds
T—&
T-& T—&(T)
- / y’T(s)Sﬁy(s) ds — / y'T(s)Sﬁy(s) ds
T—E&(T) T—&2

_
T (T)ESs + E2Ss)y(T) — / yT(5)Sry(s) ds
—£

T—&1
T—61
[ VTSl ds + 2T (DS + GaS12)u(T)
T—&2
T T—¢&1
22 [ Pesuneds -2 [ Sy ds
T—¢&1 T—&2
5 0o T
%(T):%zT(T)Uli:(T)—/ /a'cT(s)U1:'c(5)dsd6’Jrnath(T)Ug:'v(T)
—m T+60
-m T 5
7/ /x'T(s)Ugdc(s)dsd9+%ZJT(T)UP,QJ(T)
—n2 T+0
o 7T
- / / JT(s)Us5(s) dsdf + &9 (T) Ui (T)
—&1 TH+6
&1 T
- / / 3T (3)Ui(s) ds 6,
—&o TH+6
-
Vg(T) = ZxT(T)Wlx(T) - / xT(s)Wlx(s) ds+7J7T (y(T))WQJ(y(T))
T—UT)

-
- / T (y(s))Wad (y(s)) ds.
T—r(T)

Nonlinear Anal. Model. Control, 23(6):803-829
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Using Assumption 1 and Lemma 1, we get

_—Glf(T) + Hig(y(T —&(T))) + Ex } J(y(s))ds
T—r(T)
T

. —Goy(T) + Hax(T —n(T)) + E2 [ x(s)ds
V(T) < 2" (TR T-UT)

z(T) — (T —m)
(T —m) — (T —n2)

y(T) —y(T = &)
y(T — &) —y(T — &)

x(s) ds)

-
x 29" (y(T))$2 (-GQy(T) + Hox (T —n(T)) + E2 /
&

T-UT)
+ a7 (T)[P2 + mSs + maSs — mSeG1 — mGT Sy
—m2S10G1 — ma2GT Sty + W1 ] 2(T)

+y(T) [Q3 + 157 + 1285 — £1511G2 — &G ST

— £12512G2 — leGES};]y(T)

2
+ @ (T)[Py+mS1 + maSs + %IU1 + 0o Uz &(T)

+ 9 (T)[Qs + &S5 + 1256 + %Ug + & Us9(T)
= (1= N2 (T =n(T)) Pre(T = n(T))
—2"(T = m)(Pa — Pr = Ps)x(T —m) — 2" (T — m2) Psx(T — )
&T(T =) Psit(T —m2) — & (T —m)(Py — Ps)i(T —m)

_(1_5)[ y(T ~&(T)) ]T[Ql Q7] [ (y((T—ﬁ(T))}

gW(T =&TN)] | = Q2 [9w(T —&(T)))
y(7) 1" [ Qs
L) 1% &Lt }
—y (T —&)(Qs — Qu)y(T — &) —y" (T — &£)Quy(T — &)
— 9N (T = &)(@s — Qs5)9(T f ) Y ( = &)Qey(T — &2)
T T—-m T—n(T)
- / T () Sy (s) ds — / T (8) S (s) ds — / 7 (5) S (s) ds
T—m T—n(T) T =2
T T-m T
- / 27 (5)S32(s) ds — / 27 (s5)Syx(s)ds — 2 / T (s5)Sox(s) ds
T-m T—n2 T-m

https://www.mii.vu.lt/NA



An advanced delay-dependent approach of impulsive genetic regulatory networks

815

T-m T T—¢&:
-2 " (s)Shox(s) ds — / 9" (5)S55(s) ds — " (5)Seu(s) ds
T—n2 T—& T—-¢(T)
T&(T) T T-&
= [ s [ esweds- [ i esee
T—¢2 T-& T—42
T T—61 0o T
/ y7(5)S11y(s)ds — 2 / y7(5)S12y(s) ds — / / T (s)Ura(s) ds df
—-& T—&2 -1 T+6
—m 0o T
/ / s)Uqir(s) dsdf — / / yT (s)Usy(s) ds df
M2 T+ e, THo
&1 T T
/ / $)Usy(s) dsdf — / 2T (s)Whz(s)ds + 7J " (y(T))Wad (y(T))
—&2 T+0 T—UT)
-
- T (y(s))Wad (y(s)) ds. (7
T—r(T)
Using Jensen’s inequality, we get
T T T
- / 2T (5)S3x(s) ds < 1 T (s)ds- S3 / x(s) ds,
T-m " T-m T-m
T-m T-m T—m
- 2T (5)S,z(s) ds < S T (s)ds - S, / x(s) ds,
T—n2 e T—n2 T—n2
T T
— / T (s) - Sox(s)ds < 1 [xT('T) T - 771)] 9 / z(s) ds,
T-—m " T-m
T-m T—m
- (s)S10z(s)ds < —?71?[ (T —m) —a" (T —n2)] Sto z(s) ds,
T—n2 T—n2
T T T
- (s)Wha(s) ds < —% / (s)ds - W 2(s)ds,
T—U(T) T—UT) T—UT)
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T ) T T
- / y (s)S7y(s)ds < 5 / y(s)ds - Sy / y(s)ds,
T—61 T—61 T—61
T—¢&1 T—61 T—¢&1
- [ esweas< -z [ e [ s
T—&2 T—&2 T—&2
T 1 T
— [ @S ds <~ [T =y (T-)] Su [ wle)ds
T—¢&1 T—61
T—¢&1 T2
.T T T
— [ @Sl ds < -l (T-6) ~ " (T-)] S [ w9
T =62 T—&2
T 1 T T
JT (y(s))Wad (y(s)) ds < D / I (y(s)) ds - Wy J(y(s)) ds
T—r(T) T—r(T) T—r(T)
Using Assumption 1, for¢ =1,2,..., n, we get

9i(yi(T)) [9: (vi(T)) — qswi(T)] <0,
9i(yi (T = &(T)) [9i (wi (T — &(T)) — @i (T — &(T))] <0.

Then, for any positive definite diagonal matrices, Z; = diag{z14, 22i, ... 2n:} (1 = 1,2),
we have
0< =2 29 (wi(T)) [9i (wi(T)) — qiwis(T)]

i=1
n

-2 Zziggi (yi (T = &(T))) [9i (Wi (T = &(T))) — @i (T — &(T))]

=2 (TQZ1g(t(T)) — 29" (y(T)) Z1g(y(T)) + 29" (T — &(T))Q
x Zog(y(T = &(T))) — 29" (y(T = &(T))) Zog(y(T = &(T))),

(3
where Q = diag{q1,q2,...,qn}-
According to the Newton—Leibniz formula, for any matrices K1, Ko, K3, L1, Lo, L3
and M; (¢ = 1,...,4) with appropriate dimensions, the following equations hold:
T
0=20"(TK; |2(T) — (T —m) — / x(s) ds} , 9)
T—m
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T-m
0=20"(T)K |z(T —m) — (T —n(T)) — z(s)ds|,
T—n(T)
T—n(T)
0=20"(T)Ks |z(T —n(T)) — (T —n2) — x(s)ds|,
T—n2
-
0=20"(T) L1 |y(T) —y(T — &) — / y(s) dS],
o T—&1
OZQUT(T)L2 y(T—fl)—y(T—f( )) - y(s)ds|,
T—&(T)
T—E(T)
0=20"(T)Ls |y(T — &(T)) —y(T — &) - y(s)ds|,
T—¢&2
T o T
0= 20T (T) My |ma(T) - / x(s)ds — / / 2(s)ds dH] ,
T—m —m T+0
T—n(T) T-m
0 =20 (T) My | n122(T) — x(s)ds — / z(s)ds
- T—n2 T-n(T)
-m T
— / / z(s) dsd@] ,
—n2 T+60
T 0o 7T
0=2"Mtafey(T) - [ wsds— [ [ gas de] 7
- T-&1 =61 T+0
T—E(T) T=&
0=2(T0 ()~ [ w)ds— [yl
T—¢&2 T—E(T)

817

(10)

(1)

12)

13)

(14)

5)

(16)

A7)

(18)

o(T) = {m(TL y(T), (T —n(T)), y(T = &(T)), 9(u(T)), g(u(T —&(7))),

(T —m), (T —n2), y(T — &), y(T — &), (T —m), (T —n2),
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T T
9(T — &), 9(T — &2), / z(s) ds, / x(s) ds, / y(s)ds,
=7 3

T=& T T

/y(s)ds, / z(s)ds, J(y(T)), / J(y(s))ds}T.

T—& T—U(T) T—r(T)
Substituting Eqs. (8)—(18) into Eq. (7), we have

V(T) < o™ (T)uao(T) + & (T) N1 (T) + 5" (T) Nag(T)

T T—m T—n(T)
— / T (s)S@(s) ds — / i1 (5)Sad(s) ds — / @7 (5)Sqi(s) ds
T—m T—n(T) T =2
T-& T-E(T)
- [ s [ i Esieds- [ i e)Swme)ds
T 6 T-¢(T) T 6
o T -m T
7/ /:’cT(s)Ulzb(s)dsdé)—/ /g'cT(s)UQ:z(s)dsde
—m T+0 —n2 T+6
0o T & T
[ [ e asa - [ [ v asds
—&1 T+0 —6 T+0
T T—E(T)
—20M(T K, / i(s)ds — 20" (T) L3 / y(s)ds
T-m T—¢2
T-m T—n(T)
— 20T (T K, / i(s)ds — 20T (T) K3 i(s) ds
T—n(T) T—n2
T-&
—20T(T Ly / y(s)ds — 20T (T) Ly y(s)ds
T—m T—-E(T)

o T -m T
—QUT(T)Ml/ /i(s)dsd@—QvT(T)Mg/ /a’:(s)dsd@
—m T+0 —n2 T+0

o 7T =& T
—QUT(T)M3/ /y(s)dsdﬁ—QvT(T)M4/ /y(s)dsde.
—&1 T+0 —&2 T+0
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Subsequently, by using the preliminary inequality —2eT f < eTS~le + fTSf with S =
ST > 0, we arrive at

V(T) < OT (T (T) + 0N (T) AN ATV (T) + 0™ (T) Ay No AT 0 (T)
+mo (T)KLST 0(T) + ((T) = m)v™ (T) K285 K3 o(T)
+ (12 = n(T)) ™ (T)K3Sy K3 v(T) + &0™ (T) LS5 ' LT o(T)
+ (5(7') & )T (T)LaSg ' L3 v(T) + (&2 — &(T))v™(T)LsSg ' L3 v(T)
(T MU MR (T 4 1, (T)MaU5 MEo(T)
+ %UT(T)MgUg_lM:;FU(T) + & T (T) MU Mo (T
= T (T)Wu(T),

where

1
U =Wy + AN AT + AaNo AT + 2771M1U1 M+, MyUy MY

1
+ 5ngSUglMBT + &MU M+ KSR + 60,5 LT
+ (n(T) - m) K285 Ky + (n2 —n(T)) K355 ' K3

+ (&(T) — &) L2S5 ' Ly + (&2 — §(T))LsS5 ' Ls -

Noting 1 < 7(T) < 72, the term ((1(T') — 771)/U12)K25_1K2 + ((m2 = n(T))/m2) X
K3S5 'K is a convex combination of K555 ' Ky and K355 ' Ky w1threspectt0 n(T).

Similarly, it follows from &; < &(T) < &, the term ((&(T) — &1)/&12)L2Sg ' L3 +
((&2 — &€(T))/€12)L3Ss ' LT is a convex combination of LySg ' L3 and L3Sz ' LT with
respect to (7).

By the convex combination method, ¥ < 0 holds if the following inequalities hold:

Uy + Ay N1 AT + A3 Np A + ;771M1U1 "M+ e MUy ' My

+ %nggUglM;f + &MU M)+ K ST

+ &L ST + n12K25—1K2T + &9 LS5 Ly <0, (19)
Wy + A N1 AT + AaNo A + nlMlUl "ME . MaUy P MY

+ %S%M?)UgflM:;r + &MU MY +m K ST KT

+& LS5 LT + 7712K25'71K2T +&12L3S5 'Ly <0, (20)
Wy + AN AT 4 AaNo AT + n IMUT M + o MUy P MY

+ flMS My + &MU MY+ Ky Sy KT

+§1L155 LT 4 oK Sy PR + €1000S5 'Ly < 0, Q1)
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1
U1 + AN AT + AyNo AT + 5nfMlUflMlT + 1o MaUy My
1
+ € MsUs M + € MU MY+ Sy K
+ & LS LT 4+ o K3 Sy P KT + 121355 1 LT < 0. (22)

Using Schur complement lemma, it is easy to view that inequalities (19)—(22) are equiva-
lentto¥; <0,¥, <0,¥3 <0and ¥, < 0.
On the other hand, from (6) and Theorem 1 conditions, we note that

Vi(Ti, ¢(Ti), ) = Va(T,,C(T,)0) = CH(TR) Bi¢(Ta) — ¢ (T ) A C(Ty)

= CH(Ty ) FaBiFud(Ty ) — CH (T ) AC(T)
= CT(T;C )( #BiFix — Bj)¢(T) <0,
Vl(uk,g( ) Vl( ,i), keZ,,

which implies that
V(U 2(Uk), ) <V (U, 2(Uy), i), k€ Zy

System (5) with impulsive effect is globally asymptotically stable. Hence, the proof is
completed. O

Consider the following impulsive GRNs with leakage delays, distributed delays and
parameter uncertainties:

2(T) =—(G1+ AG)z(T

~

+ (H1 + AHy)g(y(T — &(T)))

+ (E1 + AE,)
-
9(T) = —(G2 + AG)y(T

J(y(s)) ds,

\\]

-
+ (Hs + AH2)z (T — n(T))

\3
—~
—

~

(23)

+ (Es + AE») x(s) ds,

\\]

T—U(T)
o(Tr) = D12(Te)™, y(Tx) = Doy(Te)™, keZ™,
Ty = ‘T(G) = 7/)(9)7 Yo = y(a) = 7T(9) Vo € [*’(D,O],

where AG1, AH,, AE;, AGs, AH,, AE5 denotes the time-varying parameter uncer-
tainties, which is defined as

[AGl AHl AEl AGQ AHQ AEQ} = AC(U)[Fl FQ F3 F4 F5 Fﬁ],

where F; (i = 1,...,6) and G are notable constant matrices, and C'(L)) denotes the
unspecified time-changing matrix-valued function satisfying C'T(U)C'(U) < I. Then, the
following theorem will give the stability criterion for GRNs with parameter uncertainties.

https://www.mii.vu.lt/NA



An advanced delay-dependent approach of impulsive genetic regulatory networks 821

Theorem 2. With the help of Assumptions 1 and 2, for given positive scalars ns > 11,
& > &, A and 6, system (23) becomes globally asymptotically stable if there exists
positive-definite matrices R = [Ryjloxe, B (0 = 1,2,...,5), Q; (i = 1,2...,6),
S G =1,2,...,8) and U; (i = 1,...,4), matrices Q7, S; (i = 9,10,11,12), K3,
Ky, K3, Ly, Lo, L3, M; (i = 1,...,4) and positive definite diagonal matrices {2 =
diag{z14, 22i, - - ., 2ni } (@ = 1,2) such that the following LMIs hold:

FBFy, — B; <0,

Ql Q? Sl Sg SQ 510
A N G ET N bl EY

{Ss S11

[Se Si2
* S7

|20 [ %

Uiy Y2 Vi3 g’l(i)
* WQQ 0 0
k k W:g 3 O
* * * W44 |

!pi: <07 (7:21’2)374)7

with

2 2
Uiy = [2]01x21, Wiz = [A1N1 A3Np], W3 = {77211% Ne Mo %M3 §0M4:|7

2 2
Uy = diag{—Ni, —No}, W33 = diag{TgUl, —neUs, *%U:s, €aU4},

Wy = diag{—n151, 6155, — 252, €128}, U1y = (K1 &1Ly 2K €12La),
Wﬁ) = [m K1 &Ly maKs &i2Ls), Wl(j) = [m K1 &Ly maKs i2Ls),
![/1(2) = [m K1 &Ly maKs &i2Ls),
Q11 =—Ri1Gy — Rjje AAY —GTRyy —eFLFRy 4+ Ris + R, + Py
+ K11+ K{y + S5 + maSs + m My + ni My + maMis + mi2 My
—mSg G1 —mSg e "AAT — G Sy — mSee F1 FT — 11281 Ga
— m2SToe T AAT — n1oGT S10 — maS1e FLFY,
o= ~GTRi2 — Rioe i F — Rip + Ry3 — R12Ga — Rioe P AAT + Ry,
3= RioHy + Rioe " AAT + K3y — K1 + Kz + m Mgy + mi2 My,
6= Ry Hy + Rype P AAT + 1Sy Hy + 12810 Ha,

1
115 = —Gi Riz — Rise Fi F' + Ra3 — 77759 — My,
1

Q119 = BoRy + Rie P AAT, 0116 = ~G{ Riy — RuueFi F' + Ryq — Mo,
117 = —G{ Ri5 — Rise FLF" + Rss,
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2118 = —G1 Rig — Rige 1 F" + Rag, 2101 = E1 Ry + Rie T AAT,
252 = —RosGy — Rooe ' AAT — G5 Ray — Rooe FIFY' + Ros + Ry
+ Q14 Q3+ Lit + L]} + &7 + &2 + &Mz + & M5 + o My
+ &My — 651Gy — 61516 T AATE G S — LS Fy
- 771251TgG2 - 771251T2871AAT - 7712G2TSlQ - 7712512€F2F2T,
(23 = RosHy + Raoe™ "AAT + & ST Hy + €157 e " AAT + €155, Hy
+ 12815 T AAT 25 5 = —GT Q2 — QR FY + QZy + Qn,
96 = Ri{,Hy + Riye "AAT, (2519 = ExRy + Rae " AAT,
2516 = —G5 Roy — Rose P Fy + RY;,

1
2917 = =G5 Ros — Rose Fo Fy — ?1511 + Rs5 — M3,

{2918 = _G;FR26 - R265F2F2T + Rsg — Mia, $2201 = E1Ry + R2571AAT,
Q35 =HyQ+ QcFsFy, (2515 = H) Rog + RoseFsFy — Moy,
Q316 = H) Roy + Rose FsFy — Moo, $2317 = H) Ros + RoseFoFy
2318 = Hy Rog + RogeFFy , (2519 = 2E, + 2e ' AAT,
Q615 = H Ri3 + Rize FoFy, Q616 = Hi Ry + RiseFoFy
Q617 = HI Ry5 + Rise o FY, .18 = H Rig + Rise FoFy
510 = EaRy + Rye ' AAT, (1591 = E1R3 + Rse™ 'AAT,
6,19 = EaRa + Rye ' AAT, 21621 = E1Rs + Ry 1 AAT,
Q1719 = BaRs + Rse P AAT, 21791 = E1Rs + Rse ' AAT,
Q18,19 = EoRe + Rge "AA™, (1521 = BE1Rg + Ree ' AAT.
Proof. By replacing D1, F1, Hy, Do, Fs, Hy in (4) with D1 + ADq, E1 + AFEy, Hy +

AHy, Dy + ADs, E5 + AEs, Hy + AHo, respectively, and using Lemmas 1, 2 and
Theorem 1, follows the proof. O

Corollary 1. With the help of Assumptions 1 and 2, for given positive scalars ny > 11,
&y > &, system (5) becomes globally asymptotically stable, if there exists positive-definite
matrices R = [Rij]ﬁxﬁ, ]DZ (l = 2, ,5), Qz (l = 37...,6), 31 (Z = 1,2,...,8) andUl
(Z = ]., ey 4), matrices Sz (Z = 9, 10, ].]., 12), Kl, KQ, Kg, Ll, L2, L3, Mz (’L = ]., ce 74)
and positive definite diagonal matrices 2 = diag{z1;, 22, .. ., zni } (i = 1,2) such that
the following LMIs hold:

F1£BZF’L,€ — B; < O,

S1 Sy Sa Sio S5 S Se  Si2
R T bl T el T Gl Y
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Ui Y2 Vis Epl(?
. 0 0 .
go— | * P —1,2,3,4
1 * * !psg 0 < O (/L ) ’3’ )7
* * x WUy
where
Vi1 = [2]21x21,
_ T T _ T T
233 =—Kop — Koy + Koz + Kg3, (244 =—Los — Lyy + Loz + Lys,

Q46 =QZ2, 55 =271, (6=—222, (27=—(P2—P3).
Other elements of {2 and W are same as in Theorem 1.

Proof. The proof follows from Theorem 1. [

Remark 1. In the Lyapunov—Krasovskii functional, the triple integral terms

T —N1
///mT YU i(s) dsdp df, /// s)Uyi(s) ds dpu dé,
—m 0 T+p —n2 0 T+p
o 0 T -6 0 T
/ / / 7T (s)Usy(s)dsdpudd and / / / s)Uqy(s)dsdp df
—&1 0 T+p —&3 0 T+u

are introduced with hope to reduce the less conservativeness of the advanced results. In
addition, the improved vector v(7") consists of the terms

T-m

T T
/x(s)ds, /az:(s)ds7 /y(s)ds, /y(s)dsT.
-n —£

1 T—n2 T
Then, the integral terms are different compared with the existing works [33,34].

Remark 2. In this work, some convex combination technique and free-weighting ma-
trix method is approached. Because, convex combination method helps us to reduce the
decision variables in LMIs, which is the relevance lemma of Jensen’s inequality and free-
weighting matrix assist to decrease the conservatism of stability criterion than the existing
literature.

Remark 3. As much as know, all the existing results concerning the dynamical behaviors
of genetic regulatory networks [20, 33, 41] have not considered the global asymptotic
stability performance in the mean square and time-varying delayed situation, which are
investigated via LMI approach in this paper. Therefore, our conclusions are new when
compared to the previous results.
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Remark 4. In this paper, we also consider the relationship between time-varying delays
and their upper bounds. In order to obtain the maximum upper bounds of distributed de-
lays and time-varying delays, we used some inequality techniques, see Example 1. Hence,
the techniques and methods used in this paper may lead to less conservative criterions. To
this evident, Table 1 shows the maximum upper bound of &, which guarantees the global
asymptotic stability of the addressed genetic networks (5). These tables demonstrate the
effectiveness of our proposed method.

4 Numerical simulations

In this portion, twin examples with simulations are provided to demonstrate the usefulness
of the obtained results.

Example 1. Consider the GRN (5) with the following parameters:
03 O —-0.5 0.2 04 O
Gl_(o 0.2)’ G2_<0.2 0.8>’ Hl_(o 0.1)’
03 0 036 0 04 O
HZ_(O 0.9) El_(o 0.4)’ E2_(0 0.8)'

Let g(y) = y2/(1 + y?) is taken as the regulatory function. It can be easily checked
that the derivative of g(y) is less than 0.65. Assume that the feedback regulation delay
n(T) = 2 and the translation delay £(7) = 2. Then n; = 0.3, 72 = 0.5, & = 0.5,
& =2.5, A =0.2and § = 0.4 can be obtained.

By Theorem 1 we can obtain the following feasible parameters. From Table 1 our

work is more effective and less conservative than the existing works. Due to space con-
sideration, we only provide a part of the feasible solutions here.

R — (00331 —0.0309 R, — (00485 —0.1063
1=\ -0.0309 0.1319 /) 27 1-0.1063 0.0238 )’
R — (00798 0.2106 R, — (0-54400.0003
3710.2106 0.0689 )’ 4710.0003 1.7873)°
p _ (0-0050 0.0000 p, _ (0-2461 0.0186
1= 10.0000 0.0081)° 2710.018 0.1769 )’
01 - 1.9658 —0.0575 Qs — 0.0050  0.0000
1= -0.0575  2.0320 /° 2710.0000 0.0081 )"
g _ (17391 01795 U, — (01639 0.0001
1= 10.1795 —0.3801 ) 17 10.0001 0.1249 )
7 _ (0-1001 0.0020 W, — (01001 0.0020
1= 10.0020 0.1615)° 17 10.0020 0.1615)°

From Theorem 1 one can conclude that the continuous-time GRNs (5) with im-

pulsive effects are globally asymptotically stable. The concentrations of mRNAs and

https://www.mii.vu.lt/NA



An advanced delay-dependent approach of impulsive genetic regulatory networks 825

30 40 50 60 0 10 20 30 40 50 60
t t

Figure 1. mRNA and Protein concentrations with impulsive effects.

0.6 0.6 :
) v
a2 y2
0.4f 0.4 g
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= =
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= =
S 04 =04
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Figure 2. mRNA and Protein concentrations without impulsive effects.

Table 1. Comparisons of upper bounds of
time-delay £(7") for various ;.

Methods &1 =0.5 &L =1
In [33] 3.78 2.50
In [41] 5.91 6.41
In [20] 6.15 6.62
In Theorem 1 7.18 7.98

proteins with impulsive effects are illustrated in Fig. 1 with the initial conditions 2(0) =
[0.01 0.02], y(0) = [0.1 0.2]T and the concentrations of mRNAs and proteins without
impulsive effects are illustrated in Fig. 2 with the initial conditions z(0) = [0.01 0.1]T
and y(0) = [0.10.3]T.

Example 2. Consider the parameter uncertainty GRN (23) with the following parameters:
03 0 —-0.5 0.2 04 0
G = ( 0 0.2)  Ge= ( 0.2 0.8) M= ( 0 0.1) ’

03 0 036 0 04 0
H2_(O 0.9)’ El_(o 0.4)’ E2_(0 O.8>’
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03 0 04 0
F12F2:F3:<0 0.3)’ F4:F5:(0 0.4>'

The regulatory function is taken as g(y) = y?/(1 + y?). It can be easily checked
that the derivative of g(y) is less than 0.65. Assume that the feedback regulation delay
n(7T) = 2 and the translation delay £(7) = 2. Then 71 = 0.3, 5o = 0.5, & = 0.45,
& = 2.5, A =0.2and § = 0.4 can be obtained.

By Theorem 2 we can obtain the following feasible parameters. Due to space consid-
eration, we only provide a part of the feasible solutions here.

R — (06770 0.0005 R, — (0-0328 0.0031
! 0.0005 1.2181 2 0.0031 0.0730

0.2942  0.0000
0.0000 0.4591

0.1504 0.0002
0.0002 0.0081

e )
e )
(O .3440 0.0003)
= )

)

0.1440 0.0003
0.0003 0.7873

)
).
0.1461 0.0186> ’
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From Theorem 2 one can conclude that the continuous-time GRNs (23) with impul-
sive effects are globally asymptotically stable. The concentrations of mRNAs and proteins
with impulsive effects are illustrated in Fig. 3 with the initial conditions z(0) = [0.01 —
0.01]T, y(0) = [0.3 — 0.2]T, and the concentrations of mRNAs and proteins without
impulsive effects are illustrated in Fig. 4 with the initial conditions z:(0) = [0.01 —0.02]T
and y(0) = 0.3 0.1]T.

o =
— Y2

Xy (t), xZo (f)

y1(t), y2(t)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t t

Figure 3. mRNA and Protein concentrations with impulsive effects.
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Figure 4. mRNA and Protein concentrations without impulsive effects.

5 Conclusions

In this work, we have investigated the global asymptotic stability problem for a class
of uncertain genetic regulatory networks with distributed delays, time-varying delays
and impulses. By constructing new Lyapunov—Krasovskii functional with triple integral
terms, sufficient stability analysis has been rooted in terms of LMIs. By applying convex
combination technique and free-weighting matrix method, conservatism of the stability
criteria have been diminished greatly. Lastly, the feasibility and advantages of the devel-
oped results have been demonstrated by the numerical simulation examples.

In the near future, we plan to work with stabilization of stochastic genetic regulatory
networks with leakage and impulsive effects in finite-time stable sense. Also, we will try
to present a real life model to justify our theoretical concepts for the considered GRN.
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