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Abstract. We prove the existence of a unique weak solution to the time periodic nonhomogeneous
boundary value Stokes problem in a domain having an outlet to infinity.
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1 Introduction

The Stokes and stationary Navier—Stokes equations with homogeneous boundary con-
dition were intensively studied in domains with outlets to infinity during the last 40
years (see [2, 3, 18, 19,29, 30] and the literature cited there). In the last 10 years, the
special attention was given to problems with nonhomogeneous boundary conditions (see
[1,4-6,23-28]). Moreover, recently a big progress was obtained in Leray’s problem in
bounded and exterior domains [8—14]. On the other hand, the time periodic problem
for the Navier—Stokes equations was mainly studied only in the case of homogeneous
boundary conditions (see, for example, [15, 20, 21]). The time periodic problems with
nonhomogeneous boundary conditions were essentially considered by H. Morimoto [22]
and T. Kobayashi [7]. However, they investigated the problem only in domains with
compact boundaries. A wide review and study of periodic problems could be found in
the habilitation thesis of M. Kyed [16].

In this paper, we consider the time periodic Stokes system with nonhomogeneous
boundary condition

u(x,t) — vAu(x,t) + Vp(a,t) = f(x,t), (x,t) € 2 x(0,27),
divu(z,t) =0, (x,t) € 2 x(0,2n),

u(z,t) = p(z), (x,t) €02 x(0,2m),

u(z,0) = u(z,27), x € 2,

6]
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Figure 1. Domain (2.

in a two dimensional multiply connected unbounded domain (2. Here the vector valued
function u(z, t) is the unknown velocity field, the scalar function p(z,t) is the pressure
of the fluid, while the vector valued functions ¢(x) and f(z, t) denote the given boundary
value and the external force, v is the viscosity constant of the given fluid.

Let £2 C R? be a domain with an outlet to infinity (see Fig. 1). Then denote by
20 = 02N Bg,(0) = 2N {z € R? || < Ry} a bounded part of the domain {2 and by
D = {x € R% |z1] < g(22), 22 > Ro} an outlet to infinity. We suppose that function g
satisfies the Lipschitz condition

lg(t1) — g(t2)| = Llty — ta|, t1,t2 > Ro, g(t) > const > 0

and 92 € C?. The boundary 92 consists of the inner boundary I'; and the outer bound-
ary Iy. Notice that the inner boundary I} is compact, while the outer boundary I is
unbounded. We assume that boundary value ¢ € W3/2:2(942) has a compact support:
suppe C 9f2. Denote A = suppp NIy C Iy N Bgr,(0). Integrating by parts the
divergence equation divu = 0 over the domain {2 N Br(0) with sufficiently large R, we
obtain

0= / divudx = / u-ndzx

2NBr(0) a(£2NBr(0))
:/<p~nd5+/cp~nd5+ / u-ndS,
I A o(R)

where o(R) = (—¢(R),g(R)) is a cross-section of the outlet to infinity D with the
vertical straight line parallel to x;-axis and passing through the (0, R)-point.

Let F(nn) — Jr, ¢ -ndSand Flu) = [ @ -ndS be the fluxes of the boundary
value ¢ over the inner and the outer boundary, respectively. Then

/ u-ndS = _(}‘(inn) _|_]_‘(Out))'
o(R)

This condition is natural, because we consider incompressible fluid.

In this paper, we prove the existence and uniqueness of a weak solution to problem (1)
in a domain with an outlet to infinity {2 (see Fig. 1). Notice that this result is the first step
to study the nonlinear time periodic Navier—Stokes problem in such domains.
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2 Notation and preliminaries

Vector valued functions are denoted by bold letters, while function spaces for scalar and
vector valued functions are denoted in the same way.

We use the symbols ¢, C, ¢;, C;, 7 = 1,2,..., to denote constants whose numerical
values are unessential to our considerations. In such case, ¢, C' may have different values
in single computations.

Let G be a domain in R™. As usual, C*°(G) denotes the set of all infinitely differ-
entiable functions defined on {2, and C§°(G) is the subset of all functions from C*°(G)
having compact supports in (2. For a given nonnegative integer k and ¢ > 1, L%({2) and
Wk4(§2) indicate the usual Lebesgue and Sobolev spaces, while W#~1/4:4(52) is the
trace space on 042 of functions from W*:4((2). Denote by J§°(£2) the set of all solenoidal
(divu = 0) vector fields u from C§°(2). By H(S2) we indicate the space formed as the
closure of .J§°(¢2) in the Dirichlet norm ||u|| () = [|Vu||z2(0) generated by the scalar
product

(u,v) = /Vu : Vvdz,
o)

where Vu : Vv =370 Vu; - Vo; = 3770 370 (0u; /Oy ) (9 /Oxy,).
Definition 1. By a weak solution of problem (1) we understand a solenoidal vector field u

with Vu,u; € L?(0,2m; L?(2)) satisfying the boundary condition u|s; = ¢, the time
periodicity condition u(z, 0) = u(z, 27) and the integral identity

27 27 2m
//ut-ndxdt—l—v//Vu:Vndxdt://f~77dxdt
00 0 0 0

for all m; € L2(0,2m; J§°(12)), where J§°(£2) = {w € C°(£2): divw = 0}.
Later, we will use the notion of the regularized distance.

Lemma 1. (See [31].) Let M be a closed set in R?. Denote by A, (x) the regularized
distance from the point x to the set M. Function Apq(x) is infinitely differentiable in
R2\ M, and the following estimates

ardpm(z) < Ap(z) < agdpa(z),  |D*Am(2)| < asdyy (), )

hold, where dg(z) = dist(x, G) is the distance from x to M, positive constants ay, as
and ag are independent of M.

3 Construction of the extension of the boundary value

We start with the construction of a suitable extension A of the boundary value ¢. Then
we can reduce a nonhomogeneous condition to the homogeneous one. Since the boundary
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value ¢ is independent of time, the extension of the boundary value could be constructed
using the similar ideas as in [5]. Additionally, we need to estimate the term ||AA||. We
construct the extension A in the following form:

A(x) _ B(inn) (1’) + B(out)($>7

where B(") extends the boundary value ¢ from the inner boundary I, and B(°u®)

extends ( from the outer boundary 7.

3.1 Construction of the extension B(inn)

First, we construct a vector field b(™®) such that

0, b(inn) .ndS = ]_-(inn).

o(R)

div b(inn) =0, b(inn) ‘3[)039 —

Let A, , and Agpnagn be the regularized distances from a point € D to the line
v+ = {x: 1 = 0, x9 > Ry} and the boundary 9D N 912, respectively. Define in D
a Hopf’s-type cut-off function

() = 22D

Appron(z)

where ¥ is a smooth monotone function, 0 < ¥ < 1,
0, t<0,
w(t) = - 3)
1, t>1
o(7) is smooth monotone function

Udy, 1< Ldy,
Q<T)={2° o 4)

T,

where dj is a positive number such that dist(y4., 9D N9£2) > do, and a1, as are positive
constants from the estimates of the regularized distance (see Lemma 1).

Lemma 2. The function {(x) = 0 at those points of D where o(A.,, (z)) < Aapnan(x),
while the dy/2-neighborhood of the line .. is contained in this set; £(x) = 1 at those
points of D where Agpran(x) < e_lg(AﬂH (x)). The following estimates hold:

9¢(x) c >¢(x) ¢
’ dxy |~ Aspron(z)’ ’833;@89:; = A pron()’
>E(x) ¢
‘32xk8xl T A e0(@)

Nonlinear Anal. Model. Control, 23(6):866-888
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Proof. The proof of the lemma follows directly from the definition of the function £(x),
properties of the regularized distance and the fact that supp V() is contained in the set
where Appron(r) < o(4,, (x)). O

Let us define the vector field

b{™™ (z) = —F(mw (88550) ; —885;:”))7 reD Y ={zeD: x>0}, (5
2 1

where
&(z), we DT,
0, xeD\Dt.

Lemma 3. The solenoidal vector field bginn) (x) is infinitely differentiable, vanishes near
the boundary 0D N OS2 and the contour 7y, the support of bg‘““) (x) is contained in the
set of points x € D7 satisfying the inequalities

Q(A'y+ (x))eil < AaDmaQ(fﬂ) < Q(A'H_ (:L’)) (6)
Moreover,
/ b{"™ . nds = Flm), @)
o(R)

and the following inequalities hold:

(inn) C|]:(inn)| .
|b1 (x)‘ < T r € DT, d(z) = dist(z, 0D N 892), (8)
) ]:(inn)|
bl (2)] < 0‘7, z €D, 9
| ! ( )} 9(332) ©)
(inn) c|]:(inn)| (inn) C|]_‘(inn)|
Vb )| < ———, |Ab )| < ——, z€D. 10
| 1 ( )| gQ(Z'Q) ‘ 1 ( )‘ 93(3:2) ( )
Proof. Relation (6) follows d_irectly from Lemma 2.
By the construction of bgmn) we easily show (7):
T ok oé@)\ (0
(inn) . _ (inn) . _ _ 7(inn) € _ T .
/ b; ndS = / b; ndS =-F / ( 02y | Oz, ) (1) dzy
o(R) —g(R) —g(R)
g(R) oF g(R) oF
— _J,—_-(inn) / (_ €(I)> d.fCl — J,—_~(inn) / 6(17) d.I‘l
o0x O0x1
—9(R) —9(R)

= FOm (E(g(R), B) —€(~g(R). R)) = FO.

https://www.mii.vu.lt/NA
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According to the definition of bgi““) () and Lemma 2, we obtain the following estimates:

2 = 2 ;
mn af (x) c|f(lnn) |
b (3] < |G <-4 11
| <| | 3331 Appnan () (b
27 2 27 2 (inn)
8x18x2 O0x9017 A% proo (@)
2 = 2

lnn 83£(x) C‘I(IIIH) |
Ab( (inn) —_ < —. 13
| <\ ’\/ a%lazg * (32x239§1 Ay @) )

Due to estimates for the regularized distance (2), estimate (8) follows from (11). Notice

. (inn
that for points x € supp b, )

the inequalities
c19(22) < (@) < caglas)

hold, where c;, co are positive constants (see [30] for details). Then estimates (9), (10)
follow from inequalities (11)—(13). O]

Let us define on 02 another vector field

0, S Flv
hy(z) = { BI™ 4+ U™, 2 € 812 N OD,
bl z €082\ (I U (0020 N OD)),

with bgi““) given by (5) and bg;nn) defined as following:
by () = FOmV(a),

where q(x) = —1/(27) In |x| is a fundamental solution of the Laplace operator in R?.

Notice that b;iénn) (z) is a solenoidal vector field:

divb§™ = div FIm vg(x) = F div Vg(z) = FO Ag(z) = 0.

Since

/Vq(x) -ndS =1, / Vq(z) -ndS = -1,

I B.Q()\Fl

we have that

/ bl nds = / Fimyg(z) -nds = Fim) / Vg(z)-ndS = Fim),

It In In

Nonlinear Anal. Model. Control, 23(6):866-888
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bSﬁnn) ‘ndS = / Fimge(z)-ndS
8(20\1“1 8Q0\F1

= Flinn) / Vq(z) -ndS = —Fim,
800\F1

Then according to the properties of the vector fields b{"™ and b;iﬁnn), we get

/ h; ndS = / b{™) . nds + / by™ - nds
02 920NdD 0R20\T'y

_ ]:(inn) _ ]:(inn) = 0.

In order to extend h; into {2, first, we define the solenoidal vector field

b = (%), -2,

! sz ’ 3171

where H € W?2:3(() satisfies the following boundary conditions:

8H lnn lnn
92 |p0snon 9020M0D
6H(x) (inn) 1nn)
02 loenan = (b1y " + by, )|090mD7
9°H(z) B (ab (fnn) abggg;“))
8']:% 9020NOD 33:2 8732 QQUI’TBD,
<3H(”3) _m(ff)> (i) '
02 9r1 ) |gne\ru@onon) #1020\ U(020n0D)

Then we extend h; into 2y in the form

b () = <3(H(I)H($)) O(k(z)H(x)) ) 7

8:52 ’ (9.’);‘1

where the support of Hopf’s- type smooth cut-off function « is contained in the neighbor-
hood of 2y \ I'y. Moreover, bolln " € W22()) and satisfies the following estimate:

”b(mn)||W2,2 o) S C||h1||W3/2‘2(390)
(£20)

S c(||b§;““)stm(ano\m + ||b(inn)HWB/w(aQomaD))

< C’]:(inn)

)

where the constant ¢ depends only on the domain {2y (see [17]).

https://www.mii.vu.lt/NA
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Next, we define the vector field, which “removes” the non-zero flux from the inner
boundary I7:

o[BG, e,
b, veD.

Notice that by construction the function b(™® and its derivatives 9b("™) /9z;, oblin") /
dx5 have no jump discontinuity passing from 2y to D. Therefore, b(™) ¢ TW?22(12).
Then we define a vector field

(inn)
hy = go—b# , xeli,
0, xe@QO\Fl,

which satisfies the following condition:
/hO .ndS = /SO .ndS — /b:(,;nn) .ndS = f(inn) _ J,—_'(inn) = 0.
I n I

Therefore, the function hg can be extended inside {2 in the form

b () = <5(X($)E(ff)) O(x(z)E(z)) ) ’

8%2 ’ 67)1

where E(z) € W22((2), (0E(x)/0xa, —OE(x)/0z1) = hy, the support of Hopf’s-type
smooth cut-off function y is contained in the neighborhood of I7 (see [17]).
Finally, we put
B (z) = b (1) + b{™ (x).

The properties of the extension B(""™) we formulate in the following lemma.

Lemma 4. The vector field BU™) is solenoidal, BU"™ |, = |y, BEW|50\ = 0,
B ¢ W22(2) and satisfies the following estimates:

C|]:(inn) |

, T€D,
g(x2)

‘B(inn) (Z‘)‘ <

C|]:(inn)|
9*(22)

|B(inn)(m)| + |VB(inn)(x)| + |AB(inn)(m)| < C|f‘(inn)|, r € 2\D.

C|]:'(inn)|

VB(inn) < ,
’ (x)| 93 (z2)

|AB(i““) (z)] < z €D,

3.2 Construction of the extension B(°ut)

Take any point (1) € A C I. Let v be a smooth simple curve, which intersects 042 at
the point (1), and
v =75U,

Nonlinear Anal. Model. Control, 23(6):866—-888
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where 4 is a semi-infinite line lying in D, 7y, is a finite simple curve connecting 4 and the
point (). Assume that inf,c. yeam 4 |2 — y| = do.
Define a Hopf’s-type cut-off function

o(44(x)) )
) =¥Iln—"—*= ),
(@) ( Agana(T)
where functions ¥ and p are defined by (3) and (4), respectively.

Lemma 5. Fuction ((x) = 0if o( A (z)) < Ago\a(x), while the dy /2-neighborhood of
the curve is contained in this set. Function {(x) = 1 at those points where Ay 4(x) <
e to(A,(x)). Moreover; the following estimates hold:

‘ag(x) c ‘ 9*((x) ¢

dzy, | Apona(z)’ Oy | A%Q\A(‘T)’
‘ 3¢ (x) c
82$k61‘1 h AgQ\A(x).

Proof. The proof follows directly from the definition of {(x), properties of the regular-
ized distance and the fact that supp V((z) is contained in the set where Ago\4(z) <

o(Ay(2))- H

Let us introduce the vector field

o (x)  9(x)
(out) _ (out) .
b (37) =7 ( Bxg ’ 8%1 >’

where ((z) = ¢() above the curve -y, and {(x) = 0 under the curve 7.

Lemma 6. The vector field b(°") is infinitely differentiable and solenoidal, vanishes near
the set 002\ A and in a small neighborhood of the curve ~y. The following estimates hold:

C

{b(out) (JC)| < , x€ l)7 (14)
dao\A
TbEO(@) < 5 [AbC@)| < 5 weD, ()
GIoAVi dc’m\/l
(out)
()| < U e p, (16)
g(2)
Flout)] o Flomt)|
Vb(out) T < C|77 Ab(out) T < —_—, T € D, 17
| @< o5 | @ <3 (17)
/ b g = Flou) (18)
A
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Proof. Estimates (14)—(17) could be proved in the same way as in Lemma 3. Due to the
construction of b we get (18):

9(R)
/b(OUt)-ndS:f/b'ndS:— / b(OUt)~ndS
A a(R) —9(R)
el alw)y (o
_ _ 7(out) r) z)\
d / ( dzy ' Oy ) (1) dz
—9(R)
9(R) ¢ 9(R) 5¢
_ _]_-(out) / _ C(Z‘) d.’L‘l — ]_-(out) / C(Jf) dxl
0xy o0x
—g(R) —g(R)
— F(out) (5(9(3),}3) _ 5(_9(3),}3)) _ plout) 0
Let us take
h(z) = ¢(x)|a — b (z)]4.
Then

/ h(z) -ndS = / @(z) -ndS — / b (z) . ndS = Flout) — Flout) —q
A A A

and h can be extended (see [17]) inside {2 in the form

b () (8(X($)E(x)) . Ox(=)E(z)) ) ,

81'2 ’ &rl

where E(z) € W22(£), (0E(x)/dx2; —OE(z)/0z1)| 4 = h and x is a Hopf’s cut-off
function such that Y = 1 on A, supp ¥ is contained in a small neighborhood of A.
Finally, we put

B(out) (:L’) _ b(out) (1’) + b(()out) (iL’)
The properties of the extension B(°"*) are formulated in the following lemma.

Lemma 7. The vector field B(°") (z) is solenoidal, B(°"W |4 = ¢
B ¢ W22(12) and satisfies the following estimates:

4 B 504 =0,

f’(out)‘
B(out) 7)| < C| , z €D,
| ( )‘ 9(x2)
(out) (out)
|VB(out)(x)‘ < C|-F |7 |AB(Out)(£L’)’ < C‘J—'. | = D,

9%(22) g*(x2)

|B(Out)(1‘)| + |VB(Out)(I)| + |AB(OUt)(I)| < C|]'-(O“t)|, r e \ D.

Nonlinear Anal. Model. Control, 23(6):866-888
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Therefore, we have constructed the extension A = B(*®) 4 B(©ut) of the boundary
value . The properties of A are given in the following theorem.

Theorem 1. The constructed extension A € W>2(§2) is solenoidal, satisfies the bound-
ary condition A|pn = ¢ and the following estimates:

c(|F] +|F )

A(x)| < , x€D, (19)
’ ( )| g(x2)
(inn) (out)
IVA(z)| < o7 2|+ ikl VR (20)
9 (w2)
(inn) (out)
|AA(2)] < G 3|+ P e, Q1)
9 (z2)

|A(z)] + |[VA(2)| + |AA(2)] < (| FI™ | 4 |FCeW]), ze2\D.  (22)

Proof. Since A (z) = B(") (z)+B©") (z), estimates (19)—~(22) follows from Lemmas 4
and 7. O

4 Solvability of problem (1)
We look for the solution of (1) in the form
u(e,t) = Az) +v(x,1),

where A is the suitable extension of the boundary value ¢ constructed in the previous
section. Then problem (1) is reduced to the problem with homogeneous boundary condi-
tion

vi(z,t) —vAv(z,t) + Vp(x,t) = vAA(z) + f(z,t), (z,t) € £2 % (0,2n),

divv(z,t) =0, (z,t) € 2 x(0,2m),

v(z,t) =0, (x,t) €0 x(0,2m),

v(z,0) =v(z,2m), x€ L2,

(23)

and now we look for the new unknown velocity field v.
Let us denote the following space:

L2..(0,2m; L (2)) := C2 (072W;L%(0))L (o,zﬂ)’

per per

where L3(2) is weighted space with the norm

ol 2y = / o292 dz + / fwl? da.
D o

https://www.mii.vu.lt/NA
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Definition 2. Let f € L2 (0,27; L3(£2)). By a weak solution of problem (23) we

per

understand a solenoidal vector field v with Vv, v; € L2(0,2m; L?(£2)) satisfying the
homogeneous boundary condition v|g5, = 0, the time periodicity condition v(z,0) =
v(z,27) and the integral identity:

2

2m
//vt-ndxdt—l—u//Vv:Vndxdt
0 0 0 0

27 27
:—y//VA:Vndxdt+//f~77dxdt 24)
00 0 0

for all n € L2(0,2m; J§°(£2)).
Theorem 2. Assume that the domain 2 C R? has one outlet to infinity, boundary value
p € W3/22(902) has a compact support, £ € L2,.(0,27; L3(12)). Iffl+OO dza/g3(z2) <

per
400, then problem (1) has a unique weak solution u = A + v satisfying the following

estimate:

HutHL2(0,27r;L2(Q)) + HVUHH(O,%;LQ(Q))

oo 1/2
<C<<||‘P||€V3/2>2(arz) <1+/g3(x2)dx2>> +||fL2(o,27r;L§(Q))>- (25)
1

Proof. We start with the choosing a family of bounded domains {2, i.e.,
Qk = QO U Dk,

where 29 = 2N Bpr, and Dy, = {x € D: xo < Ry} withRy =1, Ryy1 = Ry +g(Ry)/
(2L), k > 1.

The existence of a unique solution v satisfying the integral identity (24) could be
proved by three following steps. Firstly, we prove the existence of the approximate solu-
tion v(*) to the problem

V,Ek’N) —vAVEN) L ypEN) — yAA + £ (t) € 24 x (0,27),
divv®N) =0, (z,t) € 24 x (0,2m),
vEN) =0 (2,t) € 92, x (0,27),

v(ka) (./177 O) = V(k’N) (.’1:, 27(-)7 HASS ‘le

(26)

Secondly, we show the convergence of the approximate weak solution v(*™) to the weak
solution v(¥) | which satisfies

vl UAvE) £ vp®) = UAA + £, (2,t) € 21 x (0,27),
divv®N) =0, (x,t) € 2 x (0,27),

v =0, (z,t) € 90 x (0,27),

v (2,0) = v¥ (z,27), € .

27

Nonlinear Anal. Model. Control, 23(6):866—-888
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Finally, passing to a limit as k — +o00, we get the existence of a weak solution v to
problem (23).

Consider problem (26). It is well known that every 27-periodic function in L?(0, 27)
could be written as Fourier sieries:

2 Z (f,(f)(x) sin(nt) + £ () cos(nt)). (28)

Let f™) be a partial sum of (28).
We look for the approximate solution (v(*:N) p(k:N)Y in the form

(C)

vEN) (1 t) )sin(nt) + b () cos(nt)), (29)

n

p(k,N)(x ) sin(nt) er( )( )cos(nt)). (30)

N
(0) N
Z P
In order to prove the existence of the approximate solution, we need to prove the existence
of Fourier coefficients a'®) and b{®), n = 0,1,...,N. To do this, we substitute (28)—(30)
into problem (26), and by collecting the coefficients of sin and cos functions we obtain
the following stationary problems:

—vAbY () + Vpi? (z) = 20AA(z) + £ (2),

(¢) (c) Gh
divby’(z) =0, bol (@)]og, =0,
nagls) (x) - I/Abgf ( ) + vp(c)( ) _ f7(1/0) (I),
—nb{Y) (x) — vAal) (z) + Vpi () = £ (@), (32)

dival® (z) =0, divb{9(z) =0,
al®(z)|on, =0, b (zx)lsn, =0, n=1,2,...,N.

Notice that (31) is the Stokes system with homogeneous boundary condition and the
existence of a weak solution of (31) is well known (see [17]).

In order to prove the existence of a unique solution to problem (32), we multiply (32);
by n € H(£2;) and (32)2 by € € H(§2;). Then by integrating by parts over {2, we obtain
the following system:

n/agf)~ndx+V/Vb£f):Vndx:/f,(f)~ndx,
k

2 2y (33)

—n/bgf)-édx—l—u/Vagf):Védm:/f,(f)-édx.

.Qk- Qk Qk
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To prove the existence of the unique solution of (33), we use Fredholm alternative by
reducing (33) to the system of operator equations

Ba() +vb(?) =F\ vne H(%),
BbY) +val® = FG) Ve e H(1),

where B is linear completely continuous operator.
Then we consider homogeneous operator equations

Bal®) +vbl® =0 Vne H(2),
Bbl® +vald) =0 VE e H(2),

ie.,

n/agf)~ndw+u/Vb£f):Vndx:(),

2 Q2
—n/bgﬁ -gdx+u/Va£f> :Védz = 0.
.Qk .Qk

After substituting n(z) = bl (z) and &(z) = agf)(:c) and summing up the equations,
we obtain

V/‘ngf)(x)]Qdm—&—y/’Vagf)(x)]de:O.

Then it follows that
b{?(z) =0, al)(z)=0.

According to Fredholm alternative, we obtained that (32) has a unique solution. There-
fore, the existence and uniqueness of the approximate solution v(*™V) to problem (26) is
proved.

In order to prove the convergence of an approximate solution v(%™¥) (2, ) to v(*) (, t)
in bounded domains £2;,, we need to obtain the estimates for the norms of v(*:¥)(z, ).
To do this, we multiply equation (26); by v(*) (. t), and after integrating by parts over
2k, we get

/vgk,N) Ly (EN) dx—i—u/ |Vv(k’N)’2da;
»Qk nk

= —V/VA AVAUGEAD dx—i—/f(N) vEN) qg. (34)

2 25
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Since

2

9

(k,N) E,N) 1d kN
vy v )_551‘,( )

from (34) it follows that

1d k,N) 2 E.N) |2

5&/\V(’ Pdz+v [ |[vvEN [T dz
2 25

= —V/VA AVAUGEAD dx_|_/f(N) cvEN) qo.

Qk -Qk

Integration with respect to time variable ¢ from 0 till 27 yields

27
1 1
§/|v(k’N)(z,27r)|2dx—5/|v(k’N)(x,0)|2dx+1///‘Vv(k’N)|2dxdt
2 (o 0 02
27 27
= —y//VA : Vv dxdt+//f(N) v EN) Qg dt.
0 2 0 £

Using the periodicity condition v(*™) (z,0) = v(*N) (z, 27), we derive

27

1///|Vv(k’N)|2da:dt
0 2
27 2
= —u//VA : Vv qg dt+//f(N) v N dg dt. (35)
0 2 0 2

Notice that we need to get estimates with the constant independent of the domain (2. To
do this, we rewrite equation (35) as follows:

27
V//|Vv(k’N)‘2dxdt
0 2
27 27
= fV//VA:VV(k’N) dxdtJr//f(N) cg-g - vBN) dg de.
0 2 0 02
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By Cauchy—-Schwarz inequality,

2m
V//|Vv(k’N)($,t)’2dxdt

0 2

:fu//VA ) : Vv EN) (2 1) da dt

0 2

27
[ [0 gla2) - g7 ) v o) ot

0 2
27 1/2 , 2« 1/2
1/(//|VA(:E)]2dxdt> (//|Vv(k7N)(x,t)}2dxdt>
0 2 0 2
2 2 1/2
+ (//|f(N)(a:,t)|2'|9(I2)|2dzdt> (// v (e d dt) . (36)
0 £2 |g $2

Since, due to Poincaré—Friedrichs inequality, we have that

(k,N)
//'V @OF 44 < //|Vka:ct|dxdt
lg(x2)[?

0 2
from (36) we obtain

2w

u//‘Vv(k’N)(a:,t)Fda:dt
0 Qk
1/2 , 2« 1/2
(//WA dxdt) (//|Vv(k’N)(x,t)|2dxdt>

0 2 0 2
o 1/2 , 2« 1/2
+c<//|f(N)(m,t)’2|g(x2)|2dxdt) (//|Vv(k’N)(m,t)f2dxdt>
0 2 0 2
1/2
< <VF(/NA )| daz) +c<//|f<N> @) | (:cz)IQd:cdt) )
0 2
/2
X <//|Vv(k’N)(x,t)|2dmdt> .
0 £
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Dividing both sides by V(fo27T Ja. |Vv N (2, 4)[2 dz dt)/2, we rewrite the last estimate
as follows:
k,N N
va( )’|L2(0,27T;L2(Qk)) < O(HVA”LQ(Q;C) + ||f( )g||L2(0,27r;L2(Qk)))’ (37

where the constant C' is independent of the domain (2.
Due to Theorem 1, we estimate the norm ||VA||%2( o)

c ]:'(inn) + ]:'(out) 2
”VAH%Z(Q,C) =/|VA2dx</( ( |+ | |)> Az
2

g (2)

k

Rp g(z2)

< C(’]_-(inn)’2+ ’]:(0111;)’2) <1+/
1

1
——dxz1d
g4 (22) T 372)
—g(z2)

Ry

. 1
< c(’]_-(mn)’2 + ’]_-(out)’2) (1 + / g3(m2) dx2> . (38)
1

According to the fact that
|]:(inn)|2 4 |]_—(out) |2 < C”‘P”%{/s/zz(ag),
from (37), using (38), we get

HVV(k’N) HLQ(O’QTI';Lz(Qk))

Ry, 1 1/2
2 N
(Y (R =T ) R ) A
1

where C' is independent of (2.

k,N)

Let us get the estimate for the norm of the term v, " ". Multiplying equation (26); by

vgk’N) (z,t) and after integrating by parts over {2, we arrive at

/ ’vik’N)|2 dz + V/Vv(k’N) : Vv,gk’N) dz
.Qk Qk

= / AA VPN dz 4 / FN) LN g, (40)
Qk ~Qk
Since
EN) oo (eN) 1 d k,N) |2
Vv gv Y = o ([T,
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from (40) it follows that

/y (EM)2 4, +2dt/(’Vv(k’N)f2)dx

Then integrating with respect to time variable ¢ from 0 till 27, we obtain

[ [ e P asas o e s L

0 2

= u//AA.vg’“m dxdt—l—//f(N) PN qgdt.

0 2 0 2

Using the periodicity condition Vv*™)(z,0) = Vv(&N)(z,2), the last equality re-
duces to

2 27 2
//|v§k’N)|2dzdt:u//AAwgk’N) dxdtJr//f(N) v qg dt.
0 2 0 2 0 02

By Cauchy-Schwarz inequality,

1/2 2m
//\ ®N2 4 dt < (//|AA|2dxdt> (// viEN 2 dxdt)
0 2 0
27 1/2
+ (//|f(N)|2dxdt> </ (k’N)|2dzdt>
0

0 2 2

< <uf(/|AA|2dx>1/ + (!/\f<N>;2dxdt>l/2>

97

2m
X (//|v£k’N)|2dxdt>

0 25

1/2

1/2

Then dividing both sides by ( 027r Ja, v (2, 4)|2 da dt)1/2, we rewrite the last esti-
mate as follows:

vak’N)HL2(0,27T;L2(Q;€)) <G (HAA”L"‘(J’?k) + Hf(N)HLz((),27r;L2(!2k)))’ 4D

where C'; is independent of the domain (2.
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884 R. Juodagalvyté, K. Kaulakyté

Due to Theorem 1, we estimate the norm ||AAH%2( o0

]:(inn)‘_’_|]:(out)|) 2
AA|Z2, :/ AAdeg/(c“ ) dz
|| HL (k) p | ‘ 93(172)
k

k
Ry 9(x2)

2 (out) |2 1
+|F y)<1+/ / g6(x2)dx1d:v2>

1 —g(z2)

Ry
2 | Flem]?) <1+/ s ) 42)
1

g°(x2)

< C( ’]_-(inn)

< C( ’]_-(inn)

According to the fact that

[FO | 4 | FC | < el ol zgon),

it follows from (41) using (42) the following estimate:

vac’N) HL2(O,27T;L2(~Qk))

< Ci([AA] 20, + Hf(N)HLZ(O,%r;Lz(Qk)))

Ry, 1 1/2
2 N
<G <<|‘P||Ws/2‘2(ag) (1 + / @) dx?)) + ||£¢ )"LQ(()A,ZW;LQ(Q;‘,)))
1
Ry 1 1/2
2 N
gCl(('‘F’||VV~°’/212(69> <1+/g3(@)dx2>> + | )||L2<o,2mL%(nk)>>’ 43)

1

where C is independent of (2.

For the fixed k, from estimates (39), (43) we conclude that {Vv(*M1} and {v{*")}
are bounded sequences in the space L2(0, 27; L?(£2;)). Hence there exists a subsequence
{v#Nm)} such that {Vv(#¥m)} and {vt(k’N’”)} are converging weakly to {Vv(®)} and
{vgk)} in the space L?(0,2m; L?(£2;)). Moreover, {f(N)} converges to {f} in the space
L?(0,27, L?(£2)). For the approximate solution, the following integral identity holds:

2 2
//V,(tk’N’")-ndxdt—i—u//Vv(k’N"L) :Vndzdt
0 2 0 2
27 2
:fu//VA:VndxdtJr//f(Nm).ndxdt
0 2% 0 2
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forn € L2(0,2m; W12(§2;)). Passing to the limit as IN,,, — +o0, we get

2 27

/vgk) -ndxdt+y//Vv(k) :Vndzdt
.Qk -Qk

0 0

27 27

:—I///VA:Vndacdt—i—//f—ndxdt. (44)

0 25 0 Q2

Thus, v(*) are weak solutions of problem (27) in bounded domains (2.

Finally, we will get the solution in whole domain (2. Since the estimates we got for the
approximate solution v(*:N) remain valid for the limit solution v(¥), using estimates (39)
and (43), we have:

k
+ [V 2

Hv,gk) ||L2(0,27T;L2(Qk))

Ry, ) 1/2
< C<<|So||%/[/3/2,2(69) (1 + / m d932>> + |fL2(0,27r;L§(Qk))> ,  (45)

1

(0,2m;L2(£2))

where constant c¢ is independent of domain (2.

Since f1+°° 1/g3(x2) dza < +00, the right-hand side of estimate (45) is bounded by
a constant independent of k. So {Vv(*)} and {V,Ek)} are bounded sequences in the space
L?(0,27; L?(2)). Therefore, there exists a subsequence {v(¥~)} such that {Vv(km)}
and {v;,"™’} converge weakly to {Vv} and {v;} as k,,, — o0 in the space L%(0,2m;
L?(£2)). Taking in integral identity (44) an arbitrary test function 17 with a compact sup-
port, we can pass to a limit as £k — +o00. As a result, we get for the limit function v
integral identity (24).

The uniqueness is obtained by standard way assuming that (23) has two weak solu-
tions w; and wy, which satisfy the integral identities

2 27
//%Wi‘ndxdtJru//Vwi:Vndxdt
0 0 0 0
27 2
:fy//VA:!Vndzdt+//f-ndxdt, i=1,2.
0 0 0 0

Making a difference of the last two integral identities, we get

27 27
gwlwa -ndxdt + v V(wy —wsy): Vndaxdt =0.
ot

0 0 0 0
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Taking n = w; — wg, we have

| @

(Wi —wa) - (w1 —wy)dxdt

o))

t

/I

27
“I‘V//V(Wl—WQ)ZV(Wl—Wz)d.’EdtZO.
0 0

Since O(w1 — wa) - (W1 — W) /0t = (1/2) O|w1 — wa|?/0t, it follows that

27
1
§/|W1—W2|2d$+l///|V(W1—wz)|2dxdt:0.
7} 0 2

Notice that both terms are positive. Therefore, we have

27
u//|V(W1—W2)|2da:dt=O.
0 2

Then wy; — wo = const = 0 a.e. in {2 since w1 |g = 0 and wa|p = 0.

Therefore, we have proved that u = A + v is a unique weak solution of problem (1).

Estimate (25) for v follows from (45). Since, for A, the analogues to (25) is also valid,

we obtain (25) for the sumu = A + v. O
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