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Abstract. This paper is concerned with the fixed-time stability of delayed neural networks with
impulsive perturbations. By means of inequality analysis technique and Lyapunov function method,
some novel fixed-time stability criteria for the addressed neural networks are derived in terms of
linear matrix inequalities (LMIs). The settling time can be estimated without depending on any
initial conditions but only on the designed controllers. In addition, two different controllers are
designed for the impulsive delayed neural networks. Moreover, each controller involves three parts,
in which each part has different role in the stabilization of the addressed neural networks. Finally,
two numerical examples are provided to illustrate the effectiveness of the theoretical analysis.

Keywords: fixed-time stability, delayed neural networks, impulsive perturbations, settling time,
linear matrix inequality.

1 Introduction

In the past few decades, neural networks have received considerable attention due to
their various applications in many fields such as associative memories, image processing,
speech recognition, automatic control engineering, etc. [2, 10, 39]. In implementations of
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artificial neural networks, time delays are unavoidable owing to the finite switching speed
of amplifiers and the inherent communication time between neurons [16, 32]. Moreover,
time delays always influence the dynamic properties of delayed neural networks, which
may cause instability, oscillation, chaos, and so on [5, 14, 17, 20]. In recent years, much
attention has been given to the analysis of time-delay systems [6, 8, 9, 38]. Impulsive
dynamical systems can be viewed as basic models to study the dynamics of processes
that are subject to abrupt changes in the system state at certain instants. Impulsive sys-
tems have three necessary components, that is, a continuous differential equation that
determines the evolution of the system between pulses; an impulse state jumping function
that describes how the system state changes at the impulse moments; and a criterion
that determines when the states of the system are to be changed. The basic theory for
impulsive differential systems has been widely studied in the past several years, see [15,
18,19,24,26,34,41,43] and the references therein. In [18], the authors established general
and applicable results for uniform stability, uniform asymptotic stability for nonlinear
differential systems with state-dependent delayed impulses. Paper [26] investigated the
globally exponential stability for a class of Markovian jumping Cohen–Grossberg BAM
neural networks with mixed time delays and impulsive effects. In [15], the authors studied
the periodic solutions problem for impulsive differential equations and derived some
conditions ensuring the existence and global attractiveness of unique periodic solution.

In recent years, finite-time stability and control of nonlinear dynamical systems have
attracted increasing attention [1, 3, 4, 22, 23, 25, 27, 33, 35, 36, 42]. Different from the
Lyapunov stability, finite-time stability requires that the state trajectories of the system
tend to an equilibrium state in a finite time, and the settling time for finite-time conver-
gence depends on the initial conditions. However, considering that the initial conditions
for many real systems may be difficult or impossible to obtain, it is difficult to obtain
a good estimate of the settling time. To address this problem, Polyakov in [29] introduced
the fixed-time stability, which meaning that the system is globally finite-time stable and
the settling time is bounded by some positive constant for any initial values. Although
finite-time stability has been investigated extensively, not so much has been developed
in the direction of fixed-time stability due to the lacking of the theory of fixed-time
stability. Some interesting results have been obtained for fixed-time stability and control
problems [5, 7, 11–13, 21, 28, 30, 37, 40, 44]. Paper [30] proposed finite-time and fixed-
time observation for linear multiple input and output control systems. In [11], a new
theorem of fixed-time stability of coupled discontinuous neural networks was given, and
the settling time was accurately estimated. Paper [44] investigated a fixed-time terminal
sliding-mode control method for a kind of second-order nonlinear systems with uncertain-
ties and perturbations and obtained a guaranteed closed-loop convergence time by using
the Lyapunov functions. In [7], authors designed a novel feedback controller to realize
the fixed-time synchronization for complex-valued neural networks with uncertainty and
discontinuous activation functions and especially derived criteria of modified controller
for fixed-time anti-synchronization. Comparing with the existing literatures on fixed-time
stability, there are rare results on the fixed-time stability of neural networks with impulsive
perturbations [12, 37]. Even more rare are papers that deal with the fixed-time stability
of neural networks with time delays and impulsive perturbations. Since time-delays and
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impulses can affect the system’s dynamic behavior, which will result in oscillations and
instabilities, it is necessary to study the effects of impulses and delays on the fixed-time
stability of neural networks.

In this paper, motivated by the above discussions, we investigate the fixed-time control
of delayed neural networks with impulsive perturbations. By using the Lyapunov stability
theory, some sufficient conditions are derived to guarantee the fixed-time stability in
terms of linear matrix inequalities, which can be easily verified by the LMI toolbox.
The delay-dependent controllers are designed via the established LMIs. Our proposed
controllers include three parts: one part is used to stabilize the impulsive delayed system
in Lyapunov sense; another one is used to realize the finite-time stability; the other is used
to achieve the fixed-time stable. In this paper, two different types of delayed feedback
controller are designed for the fixed-time stability of the addressed neural networks.
The remainder of the paper is organized as follows. In Section 2, the model of delayed
neural networks with impulsive perturbations and some necessary definitions, lemmas,
assumptions are given. The fixed-time stability theorems for delayed neural networks
with impulsive perturbations are established in Section 3. In Section 4, two numerical
simulation examples are provided to show the effectiveness of theoretical analysis.

2 Preliminaries

Notations. Let R denote the set of real numbers, R+ the set of positive numbers, N the
set of positive integer numbers, Rn the n-dimensional real spaces equipped with the
Euclidean norm |·|. A > 0 orA < 0 denotes that the matrixA is a symmetric and positive
definite or negative definite matrix. The notations AT and A−1 denote the transpose and
the inverse of A, respectively. If A, B are symmetric matrices, A > B means that A−B
is positive definite matrix. λmax(A) and λmin(A) denote the maximum eigenvalue and
the minimum eigenvalue of matrix A, respectively. I denotes the identity matrix with
appropriate dimensions, and Ω = {1, 2, . . . , n}. For any interval D ⊆ R, set H ⊆ Rl
(1 6 l 6 n), PC (D,H) = {φ : D → H is continuous for all but at most a finite number
of points t, at which φ(t+), φ(t−) exist and φ(t+) = φ(t)}.

Consider the following delayed neural networks with impulsive perturbations:

ẋ(t) = −Cx(t) +Af
(
x(t)

)
+Bg

(
x
(
t− τ(t)

))
+ u(t), t ∈ [tk, tk+1),

∆x(tk) = −Dkx
(
t−k
)
, k ∈ N,

x(s) = ϕ(s), s ∈ [−τ, 0],

(1)

where ϕ(·) ∈ PC ([−τ, 0],Rn); x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn stands for the
neuron state vector of the neural network. f(x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T and
g(x(t − τ(t))) = (g1(x1(t − τ1(t))), . . . , gn(xn(t − τn(t))))T represent the neuron
activation functions. τ(t) is a time-varying delay, which satisfies 0 6 τ(t) 6 τ , and τ is
a positive constant. C = diag(c1, . . . , cn) > 0 is a positive diagonal matrix. A and B are
the connection weight matrix and the delayed connection weight matrix. For all k ∈ N,
∆x(tk) = x(tk) − x(t−k ), in which x(t−k ) = limx→t−k

x(t) denotes the state jumps at
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the impulse moments tk. Without loss of generalization, in this paper, we suppose that
x(t+k ) = limx→t+k

x(t) = x(tk), i.e., the solution x(t) is right continuous at impulse
point tk. The impulsive sequence {tk} satisfies 0 6 t0 < t1 < · · · < tk < · · · ,
limk→+∞ tk = +∞. u(t) is the control input, which will be designed in the following
form u(t) = u1(t) + u2(t) + u3(t), where the term u1(t) we will design can stabilize the
impulsive neural networks in Lyapunov sense, u2(t) will realize the system finite-time
stability, and u3(t) will be designed such that the neural networks is fixed-time stable.

Assumption 1. There exist constants Fi > 0, Gi > 0 such that the functions fi, gi
(i ∈ Ω) satisfy the following Lipschitz conditions:∣∣fi(x)− fi(y)

∣∣ 6 Fi|x− y|,
∣∣gi(x)− gi(y)

∣∣ 6 Gi|x− y| ∀x, y ∈ R,

and fi(0) = gi(0) = 0, F = diag(F1, . . . , Fn), G = diag(G1, . . . , Gn).

In the following, we will introduce some definitions and lemmas, which will play
important roles in deriving the main results.

Definition 1. (See [29].) The origin of system (1) is said to be globally finite-time stable
if it is Lyapunov stable and finite-time convergent. The finite-time convergence means for
any initial state x0 ∈ Rn, there is a function T : Rn \ {0} → (0,+∞), called the settling
time function, such that limt→T (x0) x(t, x0) = 0, and x(t, x0) = 0 for all t > T (x0).

Definition 2. (See [29].) The origin of system (1) is said to be globally fixed-time stable
if it is globally finite-time stable and the settling time function T (x0) is bounded, i.e.,
there exists Tmax > 0 such that T (x0) 6 Tmax for all x0 ∈ Rn.

Definition 3. For any vector x = (x1, . . . , xn)T ∈ Rn, functions S(x) and Γ (x) are
defined as

S(x) =
(
sign(x1), . . . , sign(xn)

)T
and Γ (x) = diag

(
|x1|µ, . . . , |xn|µ

)
.

Definition 4. (See [18].) Function V : [t0− τ,∞)×Rn → R+ is said to belong to class
V if

(i) V is continuous on each of the sets [tk−1, tk) × Rn for x ∈ Rn, k ∈ N, and
lim(t,u)→(t−k ,v)

V (t, u) = V (t−k , v) exists,
(ii) V is locally Lipschitzian in x and v(t, 0) ≡ 0 for all t ∈ R+.

Lemma 1. (See [12].) If there exists a positive definite, radially unbounded function
V (x) : Rn → R ∈ V such that any solution x(t) of (1) satisfies the following inequalities:

V̇
(
x(t)

)
6 −µV γ

(
x(t)

)
− λV δ

(
x(t)

)
, t ∈ [tk, tk+1), t ∈ R+,

V
(
x(tk)

)
6 V

(
x
(
t−k )
)
, k ∈ N,

where λ > 0, µ > 0, 0 < δ < 1, γ > 1, then system (1) is globally fixed-time stable, and
the settling time T is estimated by T = 1/(λ(1− δ)) + 1/(µ(γ − 1)).
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Lemma 2. (See [38].) For any vectors x, y ∈ Rn, a scalar ε > 0, if the matrix Q ∈ Rn,
Q > 0, then the following inequality holds:

xTy + yTx 6 ε−1xTQ−1x+ εyTQy.

Lemma 3. (See [31].) For any ai ∈ R, i ∈ N, and any real numbers 0 < p 6 1,
0 < q < 2, we have the following inequalities:

|a1|q + |a2|q + · · ·+ |an|q >
(
|a1|2 + |a2|2 + · · ·+ |an|2

)q/2
,(

|a1|+ |a2|+ · · ·+ |an|
)p

6 |a1|p + |a2|p + · · ·+ |an|p.

3 Main results

In this section, we shall present some sufficient conditions for the fixed-time stability of
delayed impulsive neural networks (1) by employing Lyapunov stability theory.

Theorem 1. Suppose that Assumption 1 holds. If there exist n × n symmetric positive
definite matrix P > 0, a positive definite diagonal matrix Q > 0, an n× n real matrix L,
and some constants k > 0, δ > 0, 0 6 µ < 1, µ̄ > 0, γ > 1 such that(

−PC − CTP − L− LT PA
ATP −Q

)
6 0,

(I −Dk)TP (I −Dk)− P 6 0,

then system (1) is fixed-time stable with the controller u(t) given by

u1(t) = −0.5λmax(Q)P−1F 2x(t)− 0.5P−1
(
L+ LT

)
x(t)

− 0.5kλmax

(
PBBTP

)
P−1S(x)

− 0.5k−1P−1S(x)xT
(
t− τ(t)

)
G2x

(
t− τ(t)

)
,

u2(t) = −0.5δλ(1+µ)/2max (P )P−1Γ (x)S(x),

u3(t) = −0.5µ̄x(t)
[
xT(t)Px(t)

]γ−1
.

Moreover, the settling time is estimated by

T =
1

δ(1− 1+µ
2 )

+
1

µ̄(γ − 1)
.

Proof. Let x(t) = x(t, 0, ϕ) be the solution of system (1) through (0, ϕ). Choose the
following Lyapunov function:

V (t) = xT(t)Px(t).
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Taking the derivative of V (t) along the trajectories of system (1) for t ∈ [tk, tk+1), k ∈ N,

D+V (t) = 2xT(t)Pẋ(t)

= 2xT(t)P
[
−Cx(t) +Af

(
x(t)

)
+Bg

(
x
(
t− τ(t)

))
+ u(t)

]
= xT(t)

(
−PC − CTP

)
x(t) + 2xT(t)PAf

(
x(t)

)
+ 2xT(t)PBg

(
x
(
t− τ(t)

))
+ 2xT(t)Pu1(t)

+ 2xT(t)Pu2(t) + 2xT(t)Pu3(t). (2)

It follows from Lemma 2 that

2xT(t)PAf
(
x(t)

)
6 xT(t)PAQ−1ATPx(t) + fT

(
x(t)

)
Qf
(
x(t)

)
6 xT(t)PAQ−1ATPx(t) + xT(t)FQFx(t)

6 xT(t)PAQ−1ATPx(t) + λmax(Q)xT(t)F 2x(t). (3)

Note that
xT(t)x(t) 6

[
xT(t)S(x)

]2 ∀x ∈ Rn.

When |x(t)| 6= 0, it then follows from Assumption 1 and Lemma 2 that

2xT(t)PBg
(
x
(
t− τ(t)

))
6 k

xT(t)PBBTPx(t)

xT(t)S(x)
+ k−1gT

(
x
(
t− τ(t)

))
g
(
x
(
t− τ(t)

))
xT(t)S(x)

6 kλmax

(
PBBTP

) xT(t)x(t)

xT(t)S(x)
+ k−1xT

(
t− τ(t)

)
G2x

(
t− τ(t)

)
xT(t)S(x)

6 kλmax

(
PBBTP

)
xT(t)S(x) + k−1xT

(
t− τ(t)

)
G2x

(
t− τ(t)

)
xT(t)S(x).

Moreover, when |x(t)| = 0, it is easy to derive that

2xT(t)PBg
(
x
(
t− τ(t)

))
= kλmax

(
PBBTP

)
xT(t)S(x)

+ k−1xT
(
t− τ(t)

)
G2x

(
t− τ(t)

)
xT(t)S(x) = 0.

Hence, the following inequality holds for any x ∈ Rn:

2xT(t)PBg
(
x
(
t− τ(t)

))
6 kλmax

(
PBBTP

)
xT(t)S(x)

+ k−1xT
(
t− τ(t)

)
G2x

(
t− τ(t)

)
xT(t)S(x). (4)

Substituting (3) and (4) into (2) and using Lemma 3, it then can be derived that

D+V (t) 6 xT(t)
[
−PC − CTP − L− LT + PAQ−1ATP

+ λmax(Q)F 2
]
x(t) + kλmax

(
PBBTP

)
xT(t)S(x)

+ k−1xT
(
t−τ(t)

)
G2x

(
t−τ(t)

)
xT(t)S(x) + xT(t)

(
L+ LT

)
x(t)

+ 2xT(t)Pu1(t) + 2xT(t)Pu2(t) + 2xT(t)Pu3(t)
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6 2xT(t)Pu2(t) + 2xT(t)Pu3(t)

6 −δλ(1+µ)/2max (P )xT(t)Γ (x)S(x)− µ̄xT(t)Px(t)
[
xT(t)Px(t)

]γ−1
6 −δ

[
xT(t)Px(t)

](1+µ)/2 − µ̄[xT(t)Px(t)
]γ

= −δV (1+µ)/2(t)− µ̄V γ(t).

On the other hand, when t = tk, it can be deduced that

V (tk) = xT(tk)Px(tk) =
[
(I −Dk)x

(
t−k
)]T

P (I −Dk)x
(
t−k
)

= xT
(
t−k
)
(I −Dk)TP (I −Dk)x

(
t−k
)
6 xT

(
t−k
)
Px
(
t−k
)

= V
(
t−k
)
.

By Lemma 1, we obtain that system (1) is fixed-time stable via the controller u in Theorem
1, and the settling time is estimated by

T =
1

δ(1− 1+µ
2 )

+
1

µ̄(γ − 1)
.

This completes the proof.

Remark 1. As we all known, the fixed-time stability is a special case of finite-time
stability. One may observe from Theorem 1 that the term u1 in controller u is used to
stabilize the impulsive system in Lyapunov sense, u2 to realize the system finite-time
stability, and u3 to achieve the fixed-time stable. Moreover, the settling time for fixed-
time stability can be derived by choosing different parameters δ, µ, µ̄, and γ.

Remark 2. A important problem for fixed-time stability of delayed neural networks is
to deal with the time delay. In this paper, we introduce the function xT(t)S(x) to ensure
that the inequality (4) holds, which provides an effective way to balance the relationship
between the delay term and non-delay term. Moreover, the fixed-time stability conditions
are derived in terms of linear matrix inequalities, which can make the controller easier to
implement in practices.

In particular, if we only consider the finite-time stability of system (1), then the
following corollary can be derived based on Theorem 1.

Corollary 1. (See [35].) Suppose that Assumption 1 holds. If there exist n × n matrix
P > 0, a positive definite diagonal matrix Q, an n×n real matrix L, and some constants
k > 0, δ > 0, 0 6 µ < 1 such that(

−PC − CTP − L− LT PA
ATP −Q

)
6 0,

(I −Dk)TP (I −Dk)− P 6 0.

Then system (1) is finite-time stable with the controller u(t) = u1(t)+u2(t), where u1(t)
and u2(t) are the same as Theorem 1, and the settling time is estimated by

T = t0 +
V 1−(1+µ)/2(t0)

δ(1− 1+µ
2 )

.
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On the other hand, the fixed-time stability of system (1) is investigated by designing
another controller, then we obtain the following theorem.

Theorem 2. Assume that there exist n × n diagonal matrix P > 0, an n × n diagonal
matrix L, and some constants δ > 0, 0 6 µ < 1, µ̄ > 0, γ > 1, k1, k2 > 0 such that

n∑
j=1

pj |dij | 6 pi, 2pici + li > 0,

where (I − Dk)T = (dij)n×n, L = diag(l1, l2, . . . , ln), P = diag(p1, p2, . . . , pn),
pi > 0, i ∈ Ω. Then system (1) is fixed-time stable with the controller u(t) given by

u1(t) = −0.5
[
P−1Lx(t) +AATPS(x)k1S

T(x)Fx(t) + P−1Fk−11 x(t)

+ k2BB
TPS(x) + k−12 P−1S(x)xT

(
t− τ(t)

)
G2x

(
t− τ(t)

)]
,

u2(t) = −0.5δP−1S(x)
[
2xT(t)PS(x)

](1+µ)/2
,

u3(t) = −µ̄x(t)
[
2xT(t)PS(x)

]γ−1
.

Moreover, the settling time is estimated by

T =
1

δ(1− 1+µ
2 )

+
1

µ̄(γ − 1)
. (5)

Proof. Let x(t) = x(t, 0, ϕ) be the solution of system (1) through (0, ϕ). Consider the
Lyapunov function as follows:

V (t) = 2xT(t)PS(x).

When t ∈ [tk, tk+1), k ∈ N, taking the derivative of V (t) along the solution of system (1),
we have

D+V (t) = 2xT(t)PṠ(x) + 2ẋT(t)PS(x) = 2ST(x)Pẋ(t)

= 2ST(x)P
[
−Cx(t) +Af

(
x(t)

)
+Bg

(
x
(
t− τ(t)

))
+ u(t)

]
= ST(x)

(
−PC − CTP

)
x(t) + 2ST(x)PAf

(
x(t)

)
+ 2ST(x)PBg

(
x
(
t− τ(t)

))
+ 2ST(x)Pu1(t)

+ 2ST(x)Pu2(t) + 2ST(x)Pu3(t). (6)

When |x(t)| 6= 0, based on Assumption 1 and Lemma 2, one can obtain the following
inequality:

2ST(x)PAf
(
x(t)

)
6 ST(x)PAATPS(x)k1x

T(t)FS(x) + fT
(
x(t)

)
f
(
x(t)

)
k−11

1

xT(t)FS(x)

6 ST(x)PAATPS(x)k1x
T(t)FS(x) + xT(t)F 2x(t)k−11

1

xT(t)FS(x)

6 ST(x)PAATPS(x)k1x
T(t)FS(x) + xT(t)FS(x)k−11 .

Nonlinear Anal. Model. Control, 23(6):904–920
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While |x(t)| = 0, it is easy to derive that

2ST(x)PAf
(
x(t)

)
= ST(x)PAATPS(x)k1x

T(t)FS(x) + xT(t)FS(x)k−11 = 0.

Hence, the following inequality holds for any x ∈ Rn:

2ST(x)PAf
(
x(t)

)
6 ST(x)PAATPS(x)k1x

T(t)FS(x) + xT(t)FS(x)k−11 . (7)

Note that

ST(x)S(x) =

{
Θ ∈ [1, n], |x| 6= 0,

0, |x| = 0.
(8)

It then follows from Assumption 1, Lemma 2, and (8) that

2ST(x)PBg
(
x
(
t− τ(t)

))
6 k2S

T(x)PBBTPS(x) + k−12 gT
(
x
(
t− τ(t)

))
g
(
x
(
t− τ(t)

))
6 k2S

T(x)PBBTPS(x) + k−12 xT
(
t− τ(t)

)
G2x

(
t− τ(t)

)
ST(x)S(x). (9)

Substituting (7), (9) into (6), it can be deduced that

D+V (t) 6 ST(x)
[
−PC − CTP − L+ PAATPS(x)k1S

T(x)F + Fk−11

]
x(t)

+ k2S
T(x)PBBTPS(x) + k−12 ST(x)S(x)xT

(
t− τ(t)

)
G2x

(
t− τ(t)

)
+ ST(x)Lx(t) + 2ST(x)Pu1(t) + 2ST(x)Pu2(t) + 2ST(x)Pu3(t)

6 2ST(x)Pu2(t) + 2ST(x)Pu3(t)

= −δST(x)S(x)
[
2xT(t)PS(x)

](1+µ)/2
+ 2ST(x)P (−µ̄)x(t)

[
2xT(t)PS(x)

]γ−1
6 −δV (1+µ)/2(t)− µ̄V γ(t).

On the other hand, when t = tk, it can be deduced that

V (tk) = 2xT(tk)PS
(
x(tk)

)
= 2
[
(I −Dk)x

(
t−k
)]T

PS(x(tk))

= 2xT(t−k )(I −Dk)TPS
(
x(tk)

)
= 2
(
x1
(
t−k
)
, . . . , xn

(
t−k
))

(I −Dk)TP
[
sign

(
x1(tk)

)
, . . . , sign

(
xn(tk)

)]T
= 2
[
p1d11x1

(
t−k
)

sign
(
x1(tk)

)
+ p2d12x1

(
t−k
)

sign
(
x2(tk)

)
+ · · ·

+ pnd1nx1
(
t−k
)

sign
(
xn(tk)

)]
+ · · ·+ 2

[
p1dn1xn

(
t−k
)

sign
(
x1(tk)

)
+ p2dn2xn

(
t−k
)

sign
(
x2(tk)

)
+ · · ·+ pndnnxn

(
t−k
)

sign
(
xn(tk)

)]
6 2
[
p1|d11|

∣∣x1(t−k )∣∣+ p2|d12|
∣∣x1(t−k )∣∣+ . . .+ pn|d1n|

∣∣x1(t−k )∣∣]+ · · ·
+ 2
[
p1|dn1|

∣∣xn(t−k )∣∣+ p2|dn2|
∣∣xn(t−k )∣∣+ · · ·+ pn|dnn|

∣∣xn(t−k )∣∣]
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= 2
(
p1|d11|+ p2|d12|+ · · ·+ pn|d1n|

)∣∣x1(t−k )∣∣+ · · ·
+ 2
(
p1|dn1|+ p2|dn2|+ · · ·+ pn|dnn|

)
|xn
(
t−k
)∣∣

6 2p1
∣∣x1(t−k )∣∣+ · · ·+ 2pn

∣∣xn(t−k )∣∣ = 2
(
p1|x1

(
t−k
)∣∣+ · · ·+ pn

∣∣xn(t−k )∣∣)
= 2xT

(
t−k
)
PS
(
t−k
)

= V
(
t−k
)
.

By Lemma 1, we obtain that system (1) is fixed-time stable by the controller u in Theo-
rem 2, and the settling time is estimated in (5). This completes the proof.

Remark 3. Dealing with impulsive effects and time delays is a challenging problem for
fixed-time stability. In this paper, the addressed neural network involves the impulsive
effects and time delays. In recent years, some interesting results about fixed-time stability
have been reported, such as those in [7, 11–13, 21, 28, 30, 37, 40, 44]. Among them, the
impulse and time delay are excluded in [7,11]. Paper [37] considered fixed-time synchro-
nization of complex networks with impulsive effects by designing non-chattering con-
troller, and paper [12] studied the fixed-time stabilization for impulsive Cohen–Grossberg
BAM neural networks by designing two different controllers. However, the addressed
systems in [12,37] do not consider the effect of time delays. In this sense, our development
results improve and extend the existing results in [7, 11–13, 21, 28, 30, 37, 40, 44].

As a special case, if there is no impulsive perturbation, then the following corollary
for fixed-time stability can be derived.

Corollary 2. Assume that there exist n × n diagonal matrix P > 0 and n × n diagonal
matrix L, some constants δ > 0, 0 6 µ < 1, µ̄ > 0, γ > 1, k1, k2 > 0 such that
2pici + li > 0, where L = diag(l1, l2, . . . , ln), P = diag(p1, p2, . . . , pn), pi > 0,
i ∈ Ω. Then ystem (1) without impulsive perturbations is fixed-time stable. Moreover, the
estimated settling time is the same as Theorem 2.

4 Examples

In this section, two examples are presented to demonstrate the effectiveness and applica-
bility of the proposed design schemes.

Example 1. Consider the 2D system (1) with the following parameters:

C =

(
1 0
0 1

)
, A =

(
−3 0.4
−0.8 2

)
,

B =

(
−2.5 0.6
0.2 −1.5

)
, Dk =

(
1.8 0.1
0.2 1.8

)
,

τ = 1, fi(x) = gi(x) = tanh(x) (i = 1, 2), ϕ(s) = (2,−2)T, tk = 0.4k, k ∈ N. We
then consider the fixed-time control of system (1) with the above parameters. By simple
calculation, one can get F = G = I . Choose µ = 0.5, µ̄ = 0.5, γ = 2, and k = δ = 1.

Nonlinear Anal. Model. Control, 23(6):904–920
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(a) (b)

Figure 1. State trajectories of system (1) with the initial condition ϕ(s) = [2,−2]: (a) without control; (b)
under the controller u(t) in (10).

It then follows that there exist feasible solutions for LMIs in Theorem 1. The controller
u(t) is designed by

u11(t) = −4.3x1(t)− 1.4x2(t)− 2.3 sign
(
x1(t)

)
− 0.7 sign

(
x2(t)

)
−
[
2 sign

(
x1(t)

)
+ 0.6 sign

(
x2(t)

)]
xT(t− 1)x(t− 1),

u12(t) = −1.5x1(t)− 2.8x2(t)− 0.7 sign
(
x1(t)

)
− 1.7 sign

(
x2(t)

)
−
[
0.6 sign

(
x1(t)

)
+ 1.5 sign

(
x2(t)

)]
xT(t− 1)x(t− 1),

u21(t) = −1.1
∣∣x1(t)

∣∣0.5 sign
(
x1(t)

)
− 0.4

∣∣x2(t)
∣∣0.5 sign

(
x2(t)

)
,

u22(t) = −0.4
∣∣x1(t)

∣∣0.5 sign
(
x1(t)

)
− 0.8

∣∣x2(t)
∣∣0.5 sign

(
x2(t)

)
,

u31(t) =
[
−0.1x21(t) + 0.1x1(t)x2(t)− 0.1x22(t)

]
x1(t),

u32(t) =
[
−0.1x21(t) + 0.1x1(t)x2(t)− 0.1x22(t)

]
x2(t).

(10)

It then follows from Theorem 1 that system (1) is globally fixed-time stable by con-
troller (10). The settling time is estimated by T ≈ 6. From Fig. 1(a) one can see that
the impulsive system (1) without control protocol is unstable. Then based on the designed
controller (10), it becomes globally fixed-time stable, which is shown in Fig. 1(b).

Example 2. Consider the 3D system (1) with the following parameters:

C =

1 0 0
0 1 0
0 0 1

 , A =

0.3 2 1.5
1 0.5 1

2.5 3 0.2

 ,

B =

−3 0.3 1
0.5 0.8 0.5
−3 1.5 −2

 , Dk =

1.5 0.2 0.1
0.2 1.6 0.1
0.1 0.1 1.4

 ,

τ = 0.5, fi(x) = tanh(x), gi(x) = 0.5[|x+1|−|x−1|] (i = 1, 2, 3), ϕ(s) = (2, 1,−2)T,
tk = 0.3k, k ∈ N. Next, we investigate the fixed-time control of system (1). Note that

https://www.mii.vu.lt/NA
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F = G = I . Choose µ = 0.5, µ̄ = 0.5, γ = 2, and k = δ = 1. It then follows from
Theorem 1 that a feasible solution to LMIs can be obtained via the Matlab LMI toolbox.
Then the controller u(t) is designed by

u11(t) = −3.1x1(t)− 1.1x2(t)− 2.5x3(t)− 3.5 sign
(
x1(t)

)
− sign

(
x2(t)

)
− 2.3 sign

(
x3(t)

)
−
[
1.6 sign

(
x1(t)

)
+ 0.5 sign

(
x2(t)

)
+ 1.1 sign

(
x3(t)

)]
xT(t− 0.5)x(t− 0.5),

u12(t) = −1.2x1(t)− 1.4x2(t)− 1.5x3(t)− sign
(
x1(t)

)
− 2.1 sign

(
x2(t)

)
− 1.4 sign

(
x3(t)

)
−
[
0.5 sign

(
x1(t)

)
+ sign

(
x2(t)

)
+ 0.7 sign

(
x3(t)

)]
xT(t− 0.5)x(t− 0.5),

u13(t) = −2.4x1(t)− 1.5x2(t)− 6x3(t)− 2.3 sign
(
x1(t)

)
− 1.4 sign

(
x2(t)

)
− 6.1 sign

(
x3(t)

)
−
[
1.1 sign

(
x1(t)

)
+ 0.7 sign

(
x2(t)

)
+ 2.8 sign

(
x3(t)

)]
xT(t− 0.5)x(t− 0.5),

u21(t) = −1.2
∣∣x1(t)

∣∣0.5 sign
(
x1(t)

)
− 0.4

∣∣x2(t)
∣∣0.5 sign

(
x2(t)

)
− 0.8

∣∣x3(t)
∣∣0.5 sign

(
x3(t)

)
,

u22(t) = −0.4
∣∣x1(t)

∣∣0.5 sign
(
x1(t)

)
− 0.7

∣∣x2(t)
∣∣0.5 sign

(
x2(t)

)
− 0.5

∣∣x3(t)
∣∣0.5 sign

(
x3(t)

)
,

u23(t) = −0.8
∣∣x1(t)

∣∣0.5 sign
(
x1(t)

)
− 0.5

∣∣x2(t)
∣∣0.5 sign

(
x2(t)

)
− 2.1

∣∣x3(t)
∣∣0.5 sign

(
x3(t)

)
,

u31(t) =
[
−0.1x21(t)− 0.2x22(t)− 0.1x23(t) + 0.1x1(t)x2(t) + 0.1x1(t)x3(t)

+ 0.1x2(t)x3(t)
]
x1(t),

u32(t) =
[
−0.1x21(t)− 0.2x22(t)− 0.1x23(t) + 0.1x1(t)x2(t) + 0.1x1(t)x3(t)

+ 0.1x2(t)x3(t)
]
x2(t),

u33(t) =
[
−0.1x21(t)− 0.2x22(t)− 0.1x23(t) + 0.1x1(t)x2(t) + 0.1x1(t)x3(t)

+ 0.1x2(t)x3(t)
]
x3(t).

(11)

It then follows from Theorem 1 that system (1) is globally fixed-time stable by con-
troller (11). The settling time is estimated by T ≈ 6. The state trajectories of the impulsive
system (1) with and without controller u are shown in Figs. 2(a) and 2(b), where Fig. 2(a)
shows the state trajectories without control, and Fig. 2(b) shows state trajectories with the
controller (11).

On the other hand, based on Theorem 2, one may design another controller u(t). In
fact, choose δ = 1, γ = 2, and µ = µ̄ = k1 = k2 = 0.5. Based on Theorem 2, one can
obtain a feasible solution to LMIs via the Matlab LMI toolbox. Then the controller u(t)

Nonlinear Anal. Model. Control, 23(6):904–920
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(a) (b)

Figure 2. State trajectories of system (1) with the initial condition ϕ(s) = [2, 1,−2]: (a) without the control;
(b) under the controller u(t) in (11).

is designed by

u11(t) = −0.1x1(t)−
[
9.3 sign

(
x1(t)

)
+ 4.8 sign

(
x2(t)

)
+ 7.3 sign

(
x3(t)

)]
ST(x)x(t)− 14.7 sign

(
x1(t)

)
+ 1.3 sign

(
x2(t)

)
− 7.7 sign

(
x3(t)

)
− 0.2 sign

(
x1(t)

)
xT(t− 0.5)x(t− 0.5),

u12(t) = −0.1x2(t)−
[
4.1 sign

(
x1(t)

)
+ 3.8 sign

(
x2(t)

)
+ 4.4 sign

(
x3(t)

)]
ST(x)x(t) + 1.1 sign

(
x1(t)

)
− 1.9 sign

(
x2(t)

)
+ 1.3 sign

(
x3(t)

)
− 0.2 sign

(
x2(t)

)
xT(t− 0.5)x(t− 0.5),

u13(t) = −0.2x3(t)−
[
10.3 sign

(
x1(t)

)
+ 7.1 sign

(
x2(t)

)
+ 15.8 sign

(
x3(t)

)]
ST(x)x(t)− 10.9 sign

(
x1(t)

)
+ 2.2 sign

(
x2(t)

)
− 15.8 sign

(
x3(t)

)
− 0.2 sign

(
x3(t)

)
xT(t− 0.5)x(t− 0.5),

u21(t) = −0.1 sign
(
x1(t))

[
11.7x1(t) sign

(
x1(t)

)
+ 13.6x2(t) sign

(
x2(t)

)
+ 8.3x3(t) sign

(
x3(t)

)]0.75
,

u22(t) = −0.1 sign
(
x2(t)

)[
11.7x1(t) sign

(
x1(t)

)
+ 13.6x2(t) sign

(
x2(t)

)
+ 8.3x3(t) sign

(
x3(t)

)]0.75
,

u23(t) = −0.1 sign
(
x3(t)

)[
11.7x1(t) sign

(
x1(t)

)
+ 13.6x2(t) sign

(
x2(t)

)
+ 8.3x3(t) sign

(
x3(t)

)]0.75
,

u31(t) = x1(t)
[
−5.8x1(t) sign

(
x1(t)

)
− 6.8x2(t) sign

(
x2(t)

)
− 4.1x3(t) sign

(
x3(t)

)]
,

u32(t) = x2(t)
[
−5.8x1(t) sign

(
x1(t)

)
− 6.8x2(t) sign

(
x2(t)

)
− 4.1x3(t) sign

(
x3(t)

)]
,

u33(t) = x3(t)
[
−5.8x1(t) sign

(
x1(t)

)
− 6.8x2(t) sign

(
x2(t)

)
− 4.1x3(t) sign

(
x3(t)

)]
.

(12)
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Figure 3. State trajectories of system (1) under the controller u(t) in (12) for Example 2 with the initial
condition ϕ(s) = [2, 1,−2].

It then follows from Theorem 2 that system (1) is fixed-time stable under controller (12),
and the settling time is estimated by T ≈ 6, which is shown in Fig. 3.

5 Conclusion

This paper has addressed the fixed-time stability of delayed neural networks with impul-
sive perturbations. The criteria for fixed-time stability of impulsive neural networks with
delay have been obtained. The settling time can be estimated without depending on any
initial conditions and only on the designed controller. Two controllers have been designed
to guarantee the stabilization of delayed impulsive system, where the related control
parameters can be obtained by solving LMIs. Finally, the effectiveness of the derived
stability criteria has been tested by several numerical examples. A future work will focus
on the fixed-time stability for delayed neural networks with impulsive perturbations and
parameter uncertainties.

Acknowledgment. The authors would like to thank the referee for his/her very impor-
tant comments that improved the results and the quality of the paper.
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