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Abstract. In this paper, we study a new class of nonlocal problems for noninstantaneous impulsive
Hilfer-type fractional differential switched inclusions in Banach spaces. First, we introduce a mild
solution formula for this noninstantaneous impulsive inclusion problem. Second, we show the
existence of mild solutions using the Hausdorff measure of noncompactness on the space of
piecewise weighted continuous functions. Finally, an example is provided to illustrate the theory.
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1 Introduction

Fractional differential equations and fractional differential inclusions are important be-
cause of their applications in physics, mechanics, and engineering [6, 25]. For existence
results for fractional differential equations and inclusions, we refer the reader to [1, 2,
10, 25, 26, 38] and the references therein. Impulsive differential equations and impul-
sive differential inclusions have applications in physics, biology, engineering, medical
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fields, industry, and technology [8]. They model processes, which, at certain moments,
change their state rapidly. For results on mild solutions to impulsive differential equa-
tions and inclusions with instantaneous impulses, see [7, 9, 30, 32]. However, the action
of instantaneous impulses do not describe certain dynamics of evolution processes in
pharmacotherapy. Considering the hemodynamic equilibrium of a person in the case of
a decompensation (for example, high or low levels of glucose), one can prescribe some
intravenous drugs (insulin), and the introduction of the drugs in the bloodstream and the
consequent absorption for the body are gradual and continuous processes. The impulsive
action starts at any arbitrary fixed point and stays active on a finite time interval and,
as a result, the authors in [18, 36] introduced noninstantaneous impulsive differential
equations.

Abstract nonlocal semilinear initial-value problems was initiated in [11, 12], where
existence and uniqueness of mild solutions for nonlocal differential equations without
impulsive was discussed (Lipschitz-type conditions were considered). In [27], the authors
studied the case where the operator semigroup T (t) is compact and the nonlinearity
is single valued. The authors in [3] discuss existence of integral solutions for nonlocal
differential inclusions when X is separable, the operator semigroup is compact, and the
nonlinearity F is closed valued and lower semicontinuous in its second variable, and,
using the measure of noncompactness, the authors in [39] obtain existence results for mild
solutions for nonlocal problems when the evolution system is not compact. The authors
in [22] considered a nonlocal impulsive differential inclusions governed by a noncompact
semigroup, and recently, in [21], the author established the existence of mild solutions
to impulsive differential inclusion of first order with nonlocal conditions and governed
by a noncompact semigroup when the nonlinearity F satisfies a condition expressed in
terms of the Hausdorff measure of noncompactness. For other contributions on nonlocal
Cauchy problems, we refer the reader to [4, 17, 35].

Hilfer [19] proposed a generalization of the Riemann–Liouville fractional deriva-
tive, the Hilfer fractional derivative, which includes the Riemann–Liouville fractional
derivative, and the Caputo fractional derivative. It appears in the theoretical simulation of
dielectric relaxation in glass forming materials [16]. The authors in [14] established the
existence and uniqueness of global solution in the space of weighted continuous functions
for a fractional differential equations involving the Hilfer derivative, the authors in [34]
discussed the existence of solutions to nonlocal initial value problems for differential
equations with the Hilfer fractional derivative, and the authors in [16] obtained some
sufficient conditions to ensure the existence of mild solutions of evolution equation with
the Hilfer fractional derivative. In [37], the authors investigated the approximate control-
lability of Hilfer fractional differential inclusions with nonlocal conditions, the authors in
[13] established the approximate controllability of impulsive Hilfer fractional differential
inclusions, the author in [24] derived an equivalent definition of the Hilfer derivative,
and the authors in [33] studied the controllability of Caputo fractional noninstantaneous
impulsive differential inclusions without compactness in reflexive Banach spaces.

The authors in [31] discussed Caputo-type fractional differential switched systems
with coupled nonlocal initial and impulsive conditions in a Euclidean space, which ex-
tends the classical impulsive switched systems. There are a few papers discussing Hilfer-
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type fractional differential switched inclusions inserting noninstantaneous impulsive and
nonlocal conditions. The aim of the paper is to study the following nonlocal problem for
Hilfer-type fractional noninstantaneous impulsive differential inclusions:

Dα,β

s+i
x(t) ∈ F

(
t, x(t)

)
, a.e. t ∈ (si, ti+1], i = 0, 1, . . . ,m,

x
(
t+i
)

= gi
(
ti, x

(
t−i
))
, i = 1, . . . ,m,

x(t) = gi
(
t, x
(
t−i
))
, t ∈ (ti, si], i = 1, . . . ,m,

I1−γ
0+ x

(
0+
)

= x0 + g(x),

I1−γ
s+i

x
(
s+
i

)
= gi

(
si, x

(
t−i
))
, i = 1, . . . ,m,

(1)

where 0 < α < 1, 0 6 β 6 1, γ = α + β − αβ, J = [0, b], b > 0, Dα,β

s+i
is the

Hilfer derivative with lower limit at si of order α and type β, E is a real Banach space,
0 = s0 < t1 < s1 < t2 < · · · < tm < sm < tm+1 = b, x(t+i ), x(t−i ) are the
right and left limits of x at the point ti, respectively, I1−γ

s+i
is the Riemann–Liouville

integral of order 1 − γ with lower limit at si, and I1−γ
s+i

x(s+
i ) = limt→s+i

I1−γ
s+i

x(t). In
addition, we set x(t−i ) = x(ti). Moreover, F : J × E → 2E − {φ} is a multifunction,
g : PC1−γ(J,E) → E, gi : [ti, si] × E → E, i = 1, 2, . . . ,m, and x0 is a fixed point
of E. The space PC1−γ(J,E) will be given in the next section.

The paper is organized as follows. In Section 2, we collect some background material
concerning multifunctions and fractional calculus, and we introduce a measure of non-
compactness on the space of piecewise weighted continuous functions. In Section 3, we
establish the existence of mild solutions of (1), and in Section 4, we give an example to
illustrate our theory.

2 Preliminaries

Denote Lp(J,E) = {v : J → E: v is Bochner integrable} endowed with the norm
‖v‖Lp(J,E) = (

∫
J
‖v(t)‖p dt)1/p, p ∈ [1,∞), Pb(E) = {B ⊆ E: B is nonempty and

bounded}, Pcl(E) = {B ⊆ E: B is nonempty, convex and closed}, Pck(E) = {B ⊆ E:
B is nonempty, convex and compact}, conv(B) (respectively, conv(B)) be the convex
hull (respectively, convex closed hull in E) of a subset B. Let C(J,E) be the Banach
space of all E valued continuous functions from J to E with the norm ‖x‖C(J,E) =
supt∈J ‖x(t)‖. For a ∈ [0, b) and 0 6 γ 6 1, consider the weighted spaces of con-
tinuous functions Cγ([a, b], E) = {x ∈ C((a, b], E): (t − a)γx(t) ∈ C([a, b], E)} and
Cnγ ([a, b], E) = {x ∈ Cn−1([a, b], E): x(n) ∈ Cγ([a, b], E), n ∈ N}.NowCγ([a, b], E)
andCnγ ([a, b], E) are Banach spaces with norms ‖x‖Cγ([a,b],E) = supt∈(a,b]‖(t−a)γx(t)‖
and ‖x‖Cnγ ([a,b],E) =

∑k=n−1
k=1 ‖x(k)‖C([a,b],E) + ‖x(n)‖Cγ([a,b],E), respectively.

Let Jk = (sk, tk+1], Jk = [sk, tk+1] (k = 0, 1, . . . ,m), Ti = (ti, si], Ti = [ti, si]
(i = 1, 2, . . . ,m), and consider the Banach space PC1−γ(J,E) = {x: (t − sk)1−γx ∈
C(Jk, E), limt→s+k

(t − sk)1−γx(t) exists, k = 0, 1, . . . ,m, x ∈ C(Ti, E), and
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limt→t+i
x(t) exist, i=1, 2, . . . ,m} with ‖x‖PC1−γ(J,E) =max{supt∈Jk, k=0,1,...,m(t−

sk)1−γ‖x(t)‖E , supt∈Ti, i=1,...,m ‖x(t)‖E}. Denote Cγ1−γ(J,E) = {x ∈ C1−γ(J,E),

Dγ
a+x ∈ C1−γ(J,E)}, Cα,β1−γ(J,E) = {x ∈ C1−γ(J,E), Dα,β

a+ x ∈ C1−γ(J,E)},
PCγ1−γ(J,E) = {x ∈ PC1−γ(J,E), Dγ

t+k
x|Jk ∈ C1−γ(Jk, E), k = 0, 1, . . . ,m}, and

PCα,β1−γ(J,E) = {x ∈ PC1−γ(J,E), Dα,β

t+k
x|Jk ∈ C1−γ(Jk, E), k = 0, 1, . . . ,m}. Let

us recall some facts concerning multifunctions (see [5, 20]).

Definition 1. Let X and Y be two topological spaces. A multifunction G : X → P (Y ) \
{∅} is said to be upper semicontinuous at x0 ∈ X , u.s.c. for short, if for any open V
containing G (x0), there exists a neighborhood N(x0) of x0 such that G (x) ⊆ V for all
x ∈ N(x0). We say that G is upper semicontinuous if it is so at every x0 ∈ X .

Lemma 1. Let X , Y be two Hausdorff topological spaces and G : X → P (Y ) \ {∅}.

(i) If G is upper semicontinuous with closed values, then the graph of G is closed in
X × Y , that is to say, if yn ∈ G (xn), n > 1, and (xn, yn)→ (x, y) with respect
to the product topology on X × Y, then y ∈ G (x).

(ii) If G is a closed and locally compact (i.e. for any x ∈ X , there is a neighborhood
N(x) of x such that

⋃
{G (z): z ∈ N(x)} is relatively compact in Y ) with closed

values, then G is u.s.c.
(iii) If G is upper semicontinuous and K is compact subset of X , then G (K) =⋃

{G (x): x ∈ K} is compact in Y .

We recall some definitions and facts concerning fractional integral and derivatives
[6, 19, 25].

Definition 2. The Riemann–Liouville fractional integral of order q > 0 with the lower
limit at a for a function f ∈ Lp([a, b], E), p ∈ [1,∞), is defined as follows: Iqa+f(t) =

(gq ∗ f)(t) =
∫ t
a
((t − s)q−1/Γ(q))f(s) ds, t ∈ [a, b], where the integration is in the

sense of Bochner, Γ is the Euler gamma function defined by Γ(q) =
∫∞

0
tq−1e−t dt,

gq(t) = tq−1/Γ(q) for t > 0, gq(t) = 0 for t 6 0, and ∗ denotes the convolution of
functions. For q = 0, we set I0

a+f(t) = f(t).

Definition 3. Let q > 0, m be the smallest integer greater than or equal to q, and
f ∈ L1([a, b], E) be such that gm−q ∗ f ∈ Wm,1([a, b], E). The Riemann–Liouville
fractional derivative of order q with the lower limit zero for f is defined by Dq

a+f(t) =
(dm/dtm)Im−qa+ f(t) = (dm/dtm)(gm−q ∗ f)(t), where Wm,1([a, b], E) = {f : f(t) =∑m−1
k=0 ckt

k/k! + Ima+ϕ(t), t ∈ [a, b], ϕ ∈ L1([a, b], E)}, and ϕ = f (m), and ck =

f (k)(0), k = 0, 1, . . . ,m− 1.

Definition 4. The Hilfer fractional derivative of order 0 < α < 1 and type 0 6 β 6 1
and with lower limit at a for a function f : [a, b] → E is defined by Dα,β

a+ f(t) =

(I
β(1−α)
a+ D(I

(1−β)(1−α)
a+ f))(t), t ∈ [a, b], provided that the right side is point-wise de-

fined on [a, b]; here D = d/dt.
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Linking Definitions 2 and 4, the operator Dα,β
a+ can also be written as Dα,β

a+ f(t) =
I
β(1−α)
a+ Dγ

a+f(t), γ = α + β − αβ, provided that Dγ
a+f exist (an example is f ∈

Cγ1−γ(J,E)).
Now we note some properties (the proofs are similar to the scalar case given in [14]).

Lemma 2. Let α > 0, β > 0, and 0 6 γ < 1.

(i) Iαa+ is bounded from Cγ([a, b], E) into Cγ([a, b], E), and if γ 6 α, then Iαa+ is
bounded from Cγ([a, b], E) into C([a, b], E).

(ii) If f ∈ Cγ([a, b], E), then Iαa+f(a+) = limt→a+ I
α
a+f(t) = 0, γ < α.

(iii) If f ∈ L1([a, b], E), then Iαa+I
β
a+f(t) = Iα+β

a+ f(t) a.e., in particular, if f ∈
Cγ([a, b], E) or f ∈ C([a, b], E), then equality holds for every t ∈ (a, b] or
t ∈ [a, b], respectively.

(iv) If f ∈ Cγ([a, b], E) and I1−α
a+ f(t) ∈ C1

γ([a, b], E), then Iαa+D
α
a+f(t) = f(t) −

(limt→a+ I
1−α
a+ f(t)/Γ(α))(t− a)α−1, t ∈ [a, b].

Remark 1. If x ∈ PC1−γ(J,E), then for any k = 0, 1, . . . ,m, the following hold:

(i) x is not necessarily defined at sk, but limt→sk+(t− sk)x(t) and x(s−k+1) exist.
(ii) x(tk+1) = x(t−k+1) and x(t+k+1) exists. Moreover, (tk+1 − sk)1−γ‖x(t−k+1)‖ 6
‖x‖PC1−γ(J,E).

(iii) If xn → x in PC1−γ(J,E), then xn(t) → x(t), t ∈ (tk, sk], k = 1, . . . ,m, and
(t − sk)1−γxn(t) → (t − sk)1−γx(t), t ∈ (sk, tk+1]. Consequently, xn(t) →
x(t), t ∈ (si, ti+1], and hence xn(ti+1) = xn(t−i+1) → x(ti+1) = x(t−i+1),
i = 0, 1, . . . ,m. It follows that xn(t)→ x(t) a.e. for t ∈ J .

The function χPC1−γ(J,E) : Pb(PC1−γ(J,E))→ [0,∞), defined by

χPC1−γ(J,E)(Z) = max
{

max
k=0,1,...,m

χC(Jk,E)(Z|Jk), max
i=1,...,m

χC(Ti,E)(Z|Ti)
}
, (2)

is a measure of noncompactness on PC1−γ(J,E), where Z|Jk = {y∗ ∈ C(Jk, E):
y∗(t) = (t − sk)1−γy(t), t ∈ Jk, y

∗(sk) = limt→s+k
(t − sk)1−γy(t), y ∈ Z}, and

Z|Ti = {y∗ ∈ C(Ti, E): y∗(t) = y(t), t ∈ Ti, y∗(ti) = y(t+i ), y ∈ Z}.

Remark 2. Since Dα,β
a+ x = (I

β(1−α)
a+ Dγ

a+x))(t), it follows from Lemma 2(i) that
Cγ1−γ(J,E) ⊆ Cα,β1−γ(J,E). Similarly, PCγ1−γ(J,E) ⊆ PCα,β1−γ(J,E).

Lemma 3. Let 0 < α < 1, 0 6 β 6 1, γ = α + β − αβ, and h ∈ PCβ(1−α)
1−γ (J,E).

Then the function u : J → E, defined by

u(t) =


u0

Γ(γ) t
γ−1 + Iα0+h(t), t ∈ (0, t1],

gi(t, u(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, u(t−i )) + Iα
s+i
h(t), t ∈ (si, ti+1], i = 1, . . . ,m,

(3)

Nonlinear Anal. Model. Control, 23(6):921–941
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belongs to PCγ1−γ(J,E), Dα,β
si+u(t) exists for any t ∈ (si, ti+1], i = 0, 1, . . . ,m, and

satisfies

Dα,β
si+u(t) = h(t), t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u
(
t+i
)

= gi
(
ti, u

(
t−i
))
, i = 1, . . . ,m,

u(t) = gi
(
t, u
(
t−i
))
, t ∈ (ti, si], i = 1, . . . ,m,

I1−γ
0+ u

(
0+
)

= u0,

I1−γ
s+i

u
(
s+
i

)
= gi

(
si, u

(
t−i
))
, i = 1, . . . ,m,

(4)

where x0 ∈ E, and gi : [ti, si]×E → E is a continuous function for all i = 1, 2, . . . ,m.

Proof. For any t ∈ (0, t1], from (4),

u(t) =
u0

Γ(γ)
tγ−1 + Iα0+h(t). (5)

Note Dγ
a+(t − a)γ−1 = 0. By applying the operator Dγ

a+ to both sides of (5), it follows
from Definition 3 and Lemma 2(iii) that

Dγ
a+u(t) = Dγ

a+I
α
a+h(t) = DI1−γ

a+ Iαa+h(t) = D I1−γ+α
a+ h(t)

= D I
1−β(1−α)
a+ = D

β(1−α)
a+ h(t). (6)

The assumption h ∈ PC
β(1−α)
1−γ (J,E) so h ∈ C1−γ([0, t1], E) and DI1−β(1−α)

0+ h =

D
β(1−α)
0+ h ∈ C1−γ([0, t1], E).

Then, it follows from (6) and Lemma 2(i) that u ∈ Cγ1−γ([0, t1], E), and hence by
Remark 2, u ∈ Cα,β1−γ([0, t1], E), so Dα,β

a+ u(t) exists for t ∈ (0, t1]. Moreover, from
Lemma 2(i) I1−β(1−α)

0+ h ∈ C1−γ([0, t1], E). Thus h and I1−β(1−α)
0+ h satisfy the condi-

tions of Lemma 2(iv). By applying Iβ(1−α)
0+ to both sides of (6) and using the definition

Dα,β
0+ u(t), we get

Dα,β
0+ u(t) = I

β(1−α)
0+ Dγ

0+u(t) = I
β(1−α)
0+ D

β(1−α)
0+ h(t)

= h(t)−
(I

1−β(1−α)
0+ h)(0+)

Γ(β(1− α))
tβ(1−α)−1, t ∈ (0, t1]. (7)

Next, since 1−γ<1−γ+α=1−β(1−α), Lemma 2(ii) implies that (I
1−β(1−α)
0+ h)(0+)=0.

Hence (7) reduces to Dα,β
a+ u(t) = h(t) on (0, t1].

Now we show that I1−γ
0+ u(0+) = u0. Applying I1−γ

0+ to both sides of (5), then

I1−γ
0+ u(t) = u0 + I1−γ+α

0+ h(t) = u0 +
(
I

1−β(1−α)
0+ h

)
(t), t ∈ (0, t1].

By taking the limit as t→ 0+, we get from Lemma 2(ii) that I1−γ
0+ u(0+) = u0.

For any t ∈ (ti, si], i = 1, . . . ,m, from (4) we have u(t) = ((t− si)γ−1/Γ(γ)) ×
gi(si, u(t−i )) + Iα

s+i
h(t). By arguing as above, u|(si,ti+1] ∈ C

β(1−α)
1−γ ((si, ti+1], E),

https://www.mii.vu.lt/NA
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Dα,β

s+i
u(t) exists for any t ∈ (si, ti+1],Dα,β

s+i
u(t) = h(t), t ∈ (si, ti+1], and I1−γ

s+i
u(s+

i ) =

gi(si, u(t−i )). This completes the proof.

Remark 3. If β = 1, then Dα,β

s+i
=c Dα

s+i
, where cDα

s+i
denotes the Caputo fractional

derivative of order α with lower limit at s+
i , and γ = 1. In this case, (3) becomes

u(t) =


u0 + Iα0+h(t), t ∈ (0, t1],

gi
(
t, u
(
t−i
))
, t ∈ (ti, si], i = 1, . . . ,m,

gi
(
si, u

(
t−i
))

+ Iα
s+i
h(t), t ∈ (si, ti+1], i = 1, . . . ,m,

and (4) becomes

Dα,1
si+u(t) = h(t), a.e. t ∈ (si, ti+1], i = 0, 1, . . . ,m,

u
(
t+i
)

= gi
(
ti, u

(
t−i
))
, i = 1, . . . ,m,

u(t) = gi
(
t, u
(
t−i
))
, t ∈ (ti, si], i = 1, . . . ,m,

u(0) = u0,

u
(
s+
i

)
= gi

(
si, u

(
t−i
))
, i = 1, . . . ,m.

Based on Lemma 3, we give a concept of mild solutions of problem (1).

Definition 5. A function x ∈ PC1−γ(J,E) is called a mild solution of problem (1)
if there is a f ∈ PC

β(1−α)
1−γ (J,E) such that f(t) ∈ F (t, x(t)) a.e. for t ∈ Jk, k =

0, 1, . . . ,m, and

x(t) =



tγ−1

Γ(γ) (x0 + g(x)) + 1
Γ(α)

∫ t
0
(t− s)α−1f(s) ds, t ∈ (0, t1],

gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, x(t−i )) + 1
Γ(α)

∫ t
si

(t− s)α−1f(s),

t ∈ (si, ti+1], i = 1, . . . ,m.

We need the following lemmas in Section 3.

Lemma 4. (See [28].) Let C ⊂ L1(J,E) be a countable set such that there is
a h ∈ L1(J,E) with f(t) 6 h(t) for a.e. t ∈ J and every f ∈ C. Then the func-
tion t → χ{f(t): f ∈ C} belongs to L1(J,E) and satisfies χ{

∫ b
0
f(s) ds: f ∈ C} 6

2
∫ b

0
χ{f(s): f ∈ C}ds.

Lemma 5. (See [15].) Let χC(J,E) be the Hausdorff measure of noncompactness on
C(J,E). If W ⊆ C(J,E) is bounded, then for every t ∈ J , χ(W (t)) 6 χC(J,E)(W ),
where W (t) = {x(t): x ∈W}. Furthermore, if W is equicontinuous on J , then the map
t→ χ{x(t): x ∈W} is continuous on J and χC(J,E)(W ) = supt∈J χ{x(t): x ∈W}.

Nonlinear Anal. Model. Control, 23(6):921–941



928 J.R. Wang et al.

Lemma 6. (See [29, Thm. 3.1].) Let D be a closed convex subset of a Banach space
X and N : D → Pc(D). Assume the graph of N is closed, N maps compact sets into
relatively compact sets and that, for some x0 ∈ U , one has

Z ⊆ D, Z = conv
(
{x0} ∪N(Z)

)
, Z = C with C ⊆ Z countable

=⇒ Z is relatively compact. (8)

Then N has a fixed point.

3 Main results

In this section, we present existence results of mild solutions of (1).
Let p be a real number such that p > 1/α, SpF (.,x(.)) = {z ∈ Lp(J,E): z(t) ∈

F (t, x(t)) a.e. for t ∈ Jk, k = 0, 1, . . . ,m}. and Iβ(1−α)(PC1−γ(J,E)) = {f : J → E,

there is a δ ∈ PC1−γ [0, b] such that f(t) = I
β(1−α)

s+i
δ(t), i = 1, 2, . . . ,m, t ∈ Jk, k =

0, 1, . . . ,m}.
We introduce the following assumptions:

(F1) Let F : J × E → Pck(E) be a multifunction. For every x ∈ PC1−γ(J,E),
SpF (.,x(.)) is a nonempty subset of Iβ(1−α)(PC1−γ(J,E)), and for almost every t ∈ J ,
x→ F (t, x) is upper semicontinuous.

Note, as an example, from [23, p. 22, Thm. 1.3.1 or p. 26, Lemma 1.3.3], if F (., x)
is measurable for each x ∈ E (here E is separable) or alternatively F (., x) is strongly
measurable for each x ∈ E (here E is not necessarily separable), then the multifunction
F (., x) : J → Pck(E) has a measurable selection for every x ∈ E. IfE is separable, then
strongly measurable coincides with measurable. Also from [23, p. 29, Thm. 1.3.5] note
that if F (., x) : J → Pck(E) has a strongly measurable selection for every x ∈ E and
if for a.e. t ∈ J , F (t, .) : E → Pck(E) is upper semicontinuous, then for every strongly
measurable function x : J → E, there exists a strongly measurable selection z : J → E
with z(t) ∈ F (t, x(t)) a.e.

(F2) There exist a function ϕ ∈ Lp(J,R+) and a continuous nondecreasing function
Ω : [0,∞) → (0,∞) such that ‖F (t, x(t))‖ 6 ϕ(t)Ω(‖x‖PC1−γ(J,E)) for (t, x) ∈
J × PC1−γ(J,E) and

lim sup
n→∞

Ω(n)

n
= υ <∞. (9)

(F ∗2 ) For any natural number n, there is a function ϕn ∈ Lp(J,R+) such that
sup‖x‖PC1−γ (J,E)6n ‖F (t, x(t))‖ 6 ϕn(t) for a.e. t ∈ J and

lim sup
n→∞

‖ϕn‖Lp(J,R+)

n
= 0. (10)
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(F3) There exists a function ς ∈ Lp(J,R+) such that for any bounded subset D ⊆ E
and any k = 0, 1, 2, . . . ,m, χ(F (t,D)) 6 (t− sk)1−γς(t)χ(D) for a.e. t ∈ Jk and

‖ς‖Lp(J,R+)
2ηb1−γ

Γ(α)
< 1, (11)

where η = bα−1/p((p − 1)/(pα − 1))(p−1)/p, and χ is the Hausdorff measure of non-
compactness on E.

(Hg) g : PC1−γ(J,E)→ E is continuous, completely continuous, and

lim sup
‖x‖→∞

‖g(x)‖
‖x‖PC1−γ(J,E)

= 0. (12)

(H∗g ) g : PC1−γ(J,E) → E is Lipschitz continuous with the Lipschitz constant k
and maps convergent sequences in PC(J,E) to strongly convergent sequences in E.

(H) For every i = 1, 2, . . . ,m, gi : [ti, si] × E → E is uniformly continuous on
bounded sets and for any t ∈ J , gi(t, .) maps bounded subsets of E to relatively compact
subsets, and there exists a positive constant hi such that for any x ∈ E,∥∥gi(t, x)

∥∥ 6 hi(ti − si−1)1−γ‖x‖, t ∈ [ti, si], x ∈ E.

We state the first existence result.

Theorem 1. Under assumptions (F1), (F2), (F3), (Hg), and (H), problem (1) has a mild
solution provided that

ηυb1−γ

Γ(α)
‖ϕ‖Lp(J,R+) + h+

h

Γ(γ)
< 1, (13)

where h =
∑i=m
i=0 hi.

Proof. In view of (F1), for every x ∈ PC1−γ(J,E), SpF (.,x(.)) is non empty, and hence
we can define a multifunction R : PC1−γ(J,E) → 2PC1−γ(J,E) as follows: let x ∈
PC1−γ(J,E), a function y ∈ R(x) if and only if

y(t) =



tγ−1

Γ(γ) (x0 + g(x)) + 1
Γ(α)

∫ t
0
(t− s)α−1f(s) ds, t ∈ (0, t1],

gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, x(t−i )) + 1
Γ(α)

∫ t
si

(t− s)α−1f(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m,

(14)

where f ∈ SpF (.,x(.)). Our goal is to prove, using Lemma 6, that R has a fixed point. The
proof will be given in several steps. It is easy to show that the values of R are convex.

Step 1. In this step, we claim that there is a natural number n such that R(Bn) ⊆
Bn, where Bn = {x ∈ PC1−γ(J,E): ‖x‖PC1−γ(J,E) 6 n}. Suppose the contrary.

Nonlinear Anal. Model. Control, 23(6):921–941
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Then, for any natural number n, there are xn, yn ∈ PC1−γ(J,E) with yn ∈ R(xn),
‖xn‖PC1−γ(J,E) 6 n, and ‖yn‖PC1−γ(J,E) > n. Then there exist (fn)n>1 ∈ SpF (.,xn(.))
such that

yn(t) =



tγ−1

Γ(γ) (x0 + g(xn)) + 1
Γ(α)

∫ t
0
(t− s)α−1fn(s) ds, t ∈ (0, t1],

gi(t, xn(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, xn(t−i )) + 1
Γ(α)

∫ t
si

(t− s)α−1fn(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m.

(15)

From (F2), ∣∣fn(t)
∥∥ 6 ϕ(t)Ω

(
‖xn‖PC1−γ(J,E)

)
, t ∈ J. (16)

Then from Hölder’s inequality and (16) we obtain

sup
t∈[0,t1]

t1−γ
∥∥yn(t)

∥∥ 6
1

Γ(γ)
sup

t∈[0,t1]

[
‖x0‖+

∥∥g(xn)
∥∥]

+ sup
t∈[0,t1]

t1−γΩ(‖xn‖PC1−γ(J,E))

Γ(α)

t∫
0

(t− s)α−1ϕ(s) ds

6
1

Γ(γ)

[
‖x0‖+

∥∥g(xn)
∥∥]+

b1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+)η. (17)

If i = 1, 2, . . . ,m, then from Remark 1(ii)

sup
t∈[ti,si]

∥∥yn(t)
∥∥ = sup

t∈[ti,si]

∥∥gi(t, xn(t−i ))∥∥ 6 h(ti − si−1)1−γ∥∥xn(t−i )∥∥
6 h‖xn‖PC1−γ(J,E) 6 hn. (18)

Similarly, for i = 1, 2, . . . ,m,

sup
t∈[si,ti+1]

(t− si)1−γ∥∥yn(t)
∥∥

6 sup
t∈[si,ti+1]

‖gi(si, xn(t−i ))‖
Γ(γ)

+
b1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+)η

6
hn

Γ(γ)
+
b1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+)η. (19)

From (17), (18), (19) it follows that

n < ‖yn‖PC1−γ(J,E)

6
1

Γ(γ)

[
‖x0‖+

∥∥g(xn)
∥∥]+ η

b1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+) + hn+

hn

Γ(γ)
.
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By dividing both sides by n and passing to the limit as n → ∞, we obtain from (9) and
(12) that 1 6 (ηυb1−γ/Γ(α))‖ϕ‖Lp(J,R+) + h + h/Γ(γ), which contradicts (13). Thus
there is a natural number n0 such that R(Bn0

) ⊆ Bn0
.

Step 2. Let K = {z ∈ PC1−γ(J,E): z ∈ R(Bn0)}. We claim that the subsets K|Jk
(k = 0, 1, . . . ,m) and K|Ti (i = 1, 2, . . . ,m) are equicontinuous, where

K|Jk =
{
z : Jk → E: z(t) = (t− sk)1−γy(t), t ∈ Jk,

z(sk) = lim
t→sk

(t− sk)1−γz(t), y ∈ R(x), x ∈ Bn0

}
,

and

K|Ti =
{
y∗ ∈ C(Ti, E): y∗(t) = y(t), t ∈ [ti, si], y

∗(ti) = y(t+i ),

y ∈ R(x), x ∈ Bn0

}
.

Case 1. Let z ∈ K|J0 . Then there is a x ∈ Bn0
(y ∈ R(x)) and f ∈ SpF (.,x(.)) such

that for t ∈ (0, t1], z(t) = t1−γ [(tγ−1/Γ(γ))(x0 + g(x)) + (1/Γ(α)) ×∫ t
0
(t− s)α−1f(s) ds] and z(0) = limt→0+ t

1−γy(t). If t = 0, δ ∈ (0, t1], then (see (14))
limδ→0+ z(δ) = limδ→0+ δ

1−γy(δ) = z(0).
Let t, t + δ be two points in (0, t1]. Then ‖z(t + δ) − z(t)‖ 6

∑i=2
i=1 Ii, where

I1 = ((t+ δ)1−γ/Γ(α))‖
∫ t+δ
t

(t + δ − s)α−1f(s) ds‖, and I2 = (1/Γ(α)) ×
‖
∫ t

0
[(t+ δ)1−γ(t+ δ − s)α−1 − t1−γ(t− s)α−1]f(s) ds‖.
It follows that limδ→0 I1 6 limδ→0((t+ δ)1−γΩ(n0)/Γ(α))

∫ t+δ
t

(t+ δ − s)α−1 ×
ϕ(s) ds = 0 (independently of x).

For I2, note that for almost s ∈ [0, t],∥∥[(t+ δ)1−γ(t+ δ − s)α−1 − t1−γ(t− s)α−1
]
f(s)

∥∥
6 Ω(n0)

∣∣(t+ δ)1−γ(t+ δ − s)α−1 + t1−γ(t− s)α−1
∣∣ϕ(s) a.e.

Since ϕ ∈ Lp(J,X) and
∫ t

0
[(t+ δ)1−γ(t+ δ − s)α−1 − t1−γ(t− s)α−1]ϕ(s) ds exists,

then by the Lebesgue dominated convergence theorem we derive that limδ→0 I2 = 0
(independently of x).

Case 2. Let y ∈ K|Ti , i = 1, . . . ,m. Then y(t) = gi(t, x(t−i )), t ∈ (ti, si], i =
1, . . . ,m. Let i ∈ {1, 2, . . . ,m} be fixed and t, t + δ ∈ (ti, si]. Since ‖x‖PC1−γ(J,E)

6
n0, it follows from the uniform continuity of gi on bounded sets that

lim
δ→0

∥∥y(t+ δ)− y(t)
∥∥ = lim

δ→0

∥∥gi(t+ δ, x
(
t−i
))
− gi

(
t, x
(
t−i
))∥∥ = 0

(independently of x). When t = ti, i = 1, . . . ,m, let δ > 0 be such that ti + δ ∈ (ti, si]
and λ > 0 such that ti < λ < ti + δ 6 si. Then we have ‖y∗(ti + δ) − y∗(ti)‖ =
limλ→t+i

‖y(ti + δ)− y(λ)‖ = 0.

Nonlinear Anal. Model. Control, 23(6):921–941
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Case 3. Let z ∈ K|Jk , k = 1, . . . ,m. Then there is a x ∈ Bn0 and f ∈ SpF (.,x(.))

such that for t ∈ (sk, tk+1],

z(t) = (t− sk)1−γ

[
(t− sk)γ−1

Γ(γ)
gk
(
sk, x

(
t−k
))

+
1

Γ(α)

t∫
sk

(t− s)α−1f(s) ds

]

=
gk(sk, x(t−k ))

Γ(γ)
+

(t− sk)1−γ

Γ(α)

t∫
sk

(t− s)α−1f(s) ds,

and z(sk) = limt→sk(t− sk)1−γz(t). Let k ∈ {1, . . . ,m} be fixed. If t = sk and δ > 0,
then

lim
δ→0+

z(sk + δ) = lim
δ→0+

(sk + δ − sk)1−γy(sk + δ)

= lim
t→sk+

(t− sk)1−γy(sk) = z(sk).

Next, let t, t+ δ ∈ (sk, tk+1], δ > 0. Then we have∥∥z(t+ δ)− z(t)
∥∥

=
(t+ δ)1−γ

Γ(α)

∥∥∥∥∥
t+δ∫
sk

(t+ δ − s)α−1f(s) ds− t1−γ

Γ(α)

t∫
sk

(t− s)α−1f(s) ds

∥∥∥∥∥.
Arguing as in Case 1, we conclude that

lim
δ→0

(t+ δ)1−γ

Γ(α)

∥∥∥∥∥
t+δ∫
sk

(t+ δ − s)α−1f(s) ds− t1−γ

Γ(α)

t∫
sk

(t− s)α−1f(s) ds

∥∥∥∥∥ = 0.

Step 3. The graph of the multivalued function R|Bn0
:Bn0

→ 2Bn0 is closed. Con-
sider a sequence {xn}n>1 in Bn0

with xn → x in Bn0
and let yn ∈ R(xn) with yn → y

in PC1−γ(J,E). We need to show that y ∈ R(x). Recalling the definition of R, for any
n > 1, there is a fn ∈ SpF (.,xn(.)) such that (15) holds.

In view of (16), ‖fn(t)‖ 6 n0ϕ(t) for every n > 1 and for a.e. t ∈ J . Then
{fn: n > 1} is bounded in Lp(J,E). Because p > 1, Lp(J,E) is reflexive, and hence
we can assume, without loss of generality, that (fn) converges weakly to a function
f ∈ Lp(J,E). From Mazur’s lemma, for every natural number j, there is a natural
number k0(j) > j and a sequence of nonnegative real numbers λj,k, k = k0(j), . . . , j,
such that

∑k0
k=j λj,k = 1 and the sequence of convex combinations zj =

∑k0
k=j λj,kfk,

j > 1, converges strongly to f in L1(J,E) as j →∞.
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Take yn(t) =
∑k0(n)
k=n λn,k yk. Then

yn(t) =



tγ−1

Γ(γ) (x0 + g(xn)) + 1
Γ(α)

∫ t
0
(t− s)α−1zn(s) ds, t ∈ (0, t1],

gi(t, xn(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, xn(t−i )) + 1
Γ(α)

∫ t
si

(t− s)α−1zn(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m.

From Remark 1(ii), the continuity of g, the uniform continuity of gi on bounded sets,
and the Lebesgue dominated convergence theorem we have that yn(t)→ v(t) and

v(t) =



tγ−1

Γ(γ) (x0 + g(x)) + 1
Γ(α)

∫ t
0
(t− s)α−1f(s) ds, t ∈ (0, t1],

gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi(si, x(t−i )) + 1
Γ(α)

∫ t
si

(t− s)α−1f(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m.

Since yn → y, then y = v. Now for a.e. t, F (t, .) is upper semicontinuous with closed
convex values, so from [5, Chap. 1, Sect.4] it follows that f ∈ SpF (.,x(.)), so R is closed.

Step 4. The implication (8) holds with x0 = 0.
LetZ ⊆ Bn0

, Z = conv({x0}∪R(Z)), Z = C withC ⊆ Z countable. We claim that
Z is relatively compact inPC1−γ(J,E). SinceC is countable andC ⊆ Z = conv({x0}∪
R(Z)), we can find a countable set H = {yn: n > 1} ⊆ R(Z) with C ⊆ conv({x0} ∪
H). Now for any n > 1, there exists xn ∈ Z ⊆ Bn0 with yn ∈ R(xn), so there
exists fn ∈ SpF (.,x(.)) such that (15) holds. From the definition of χPC1−γ(J,E)(Z) (2)
one obtains

χPC1−γ(J,E)(Z) = χPC1−γ(J,E)(Z) = χPC1−γ(J,E)(C)

= χPC1−γ(J,E)(C) 6 χPC1−γ(J,E)

(
conv

(
{x0} ∪H

))
= χPC1−γ(J,E)(H)

= max
{

max
k=0,1,...,m

χC(Jk,E)(H|Jk), max
i=1,...,m

χC(Ti,E)(H|Ti)
}
.

Since Z|Ji and Z|Ti are equicontinuous, then from Lemma 5 the last inequality be-
comes

χPC1−γ(J,E)(Z) 6 max
{

max
i=0,1,...,m

max
t∈Jk

χ
{
y∗n(t): n > 1

}
,

max
i=1,...,m

max
t∈Ti

χ
{
y∗n(t): n > 1

}}
, (20)
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where,

y∗n(t) =



t1−γy(t), t ∈ (0, t1],

limt→0 t
1−γy(t), t = 0,

gi(t, xn(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

yn(t+i ), t = ti

(t− si)1−γy(t), t ∈ (si, ti+1], i = 1, . . . ,m,

limt→si(t− si)γ−1y(t), t = si, i = 1, . . . ,m.

That is,

y∗n(t) =



1
Γ(γ) (x0 + g(xn)) + t1−γ

Γ(α)

∫ t
0
(t− s)α−1fn(s) ds, t ∈ (0, t1],

limt→0 t
1−γy(t), t = 0,

gi(t, xn(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

gi(ti, xn(t−i )), t = ti,

1
Γ(γ)gi(si, xn(t−i )) + (t−si)1−γ

Γ(α)

∫ t
si

(t− s)α−1fn(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m,

limt→s+i
(t− si)γ−1y(t), t = si, i = 1, . . . ,m.

Then using the properties of the measure of noncompactness, one has

χ{y∗n(t): n > 1} 6



χ{ 1
Γ(γ) (x0 + g(xn)): n > 1}
+ t1−γ

Γ(α)χ{
∫ t

0
(t− s)α−1fn(s) ds: n > 1}, t ∈ (0, t1],

χ{limt→0+ t1−γyn(t): n > 1}, t = 0,

χ{gi(t, xn(t−i )): n > 1}, t ∈ (ti, si], i = 1, . . . ,m,

χ{gi(ti, xn(t−i )): n > 1}, t = ti, i = 1, . . . ,m,

χ{gi(si, xn(t−i )): n > 1}
+ (t−si)1−γ

Γ(α) χ{
∫ t
sm

(t− s)α−1fn(s) ds: n > 1},
t ∈ (si, ti+1], i = 1, . . . ,m,

χ{limt→si(t− si)1−γyn(t): n > 1},
t = si, i = 1, . . . ,m.

(21)

From (Hg) it follows that χ{(x0 + g(xn))/Γ(γ): n > 1} = 0, and hence

χ{y∗n(0): n > 1} = χ
{

lim
t→0+

t1−γyn(t): n > 1
}

= χ

{
1

Γ(γ)

(
x0 + g(xn)

)
: n > 1

}
= 0. (22)
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Moreover, since xn(t−i ) → x(t−i ), the set {xn(t−i ): n > 1} is bounded for every i =
1, 2, . . . ,m. Then from (H) we get for i = 1, . . . ,m,

χ{gi
(
t, xn

(
t−i
))

: n > 1
}

= 0, t ∈ (ti, si], (23)

and
χ
{
gi(ti, xn

(
t−i
))

: n > 1
}

= χ
{
gi(si, xn

(
t−i
))

: n > 1
}

= 0. (24)

Similarly, for i = 1, 2, . . . ,m,

χ
{
y∗n(si): n > 1

}
= χ

{
lim
t→s+i

(t− si)γ−1y(t): n > 1
}

= χ

{
1

Γ(γ)
gi
(
si, xn

(
t−i
))

: n > 1

}
= 0. (25)

Then, if t ∈ J0, using Lemma 4, we obtain that

χ
{
y∗n(t): n > 1

}
6

2b1−γ

Γ(α)

t∫
0

(t− s)α−1χ
{
fn(s): n > 1

}
ds. (26)

Observe that from (F3), for a.e. t ∈ J0, we have

χ
{
fn(t): n > 1

}
6 χ

{
F
(
t, xn(t)

)
: n > 1

}
6 ς(t)s1−γχ

{
xk(t): k > 1

}
= ς(t)χ

{
t1−γxk(t): k > 1

}
6 ς(t)χPC1−γ(J,E)(Z),

so it follows from (26) that

max
t∈J0

χ
{
y∗n: n > 1

}
6 χPC1−γ(J,E)(Z)

2ηb1−γ

Γ(α)
‖ς‖Lp(J,R+).

Similarly, we can show that for any k = 1, 2, . . . ,m,

max
t∈Jk

χ
{
y∗n(t): n > 1

}
6 χPC1−γ(J,E)(Z)

2ηb1−γ

Γ(α)
‖ς‖Lp(J,R+),

which yields with (20)–(25) and (11) that

χPC1−γ(J,E)(Z) 6 χPC1−γ(J,E)(Z)
2ηb1−γ

Γ(α)
‖ς‖Lp(J,R+) < χPC(Z).

Thus χPC1−γ(J,E)(Z) = 0, so Z is relatively compact.

Step 5. R maps compact sets into relatively compact sets.
Let B be a compact subset of Bn0

. Let (yn), n > 1, be a sequence in R(B). Then
there is a sequence (xn), n > 1, in B such that yn ∈ R(xn) (so there exists fn ∈
SpF (.,xn(.)) such that, for t∈J , (15) holds). We need to show that the set Z= {yn: n > 1}

Nonlinear Anal. Model. Control, 23(6):921–941
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is relatively compact in PC1−γ(J,E). Note that, since B is compact in PC1−γ(J,E),
then from (F3) we get for a.e. t ∈ J0,

χ
{
fn(t): n > 1

}
6 χ

{
F
(
t, xn(t)

)
: k > 1

}
6 ς(t)χ

{
t1−γxk(t): k > 1

}
6 ς(t)χPC1−γ(J,E)(B) = 0.

Arguing as in the previous step, we see that Z is relatively compact, and hence R(B) is
relatively compact.

Now apply Lemma 6. Then there is a x ∈ PC1−γ(J,E) and f ∈ SpF (.,x(.)) such that

x(t) =



tγ−1

Γ(γ) (x0 + g(x)) + 1
Γ(α)

∫ t
0
(t− s)α−1f(s) ds, t ∈ (0, t1],

gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

(t−si)γ−1

Γ(γ) gi
(
si, x

(
t−i
))

+ 1
Γ(α)

∫ t
si

(t− s)α−1f(s) ds,

t ∈ (si, ti+1], i = 1, . . . ,m.

Next, in view of (F1), there is a δ ∈ PC1−γ(J,E) such that f(t) = I
β(1−α)

s+i
δ(t),

t ∈ Jk, k = 0, 1, 2, . . . ,m. It follows that Dβ(1−α)

s+i
f(t) = D

β(1−α)

s+i
I
β(1−α)

s+i
δ(t) = δ(t),

t ∈ Jk, k = 0, 1, 2, . . . ,m. Thus f ∈ PCβ(1−α)
1−γ (J,E), and from Lemma 3 the function

x is a solution of (1).

Remark 4. If, in (12), we assume lim sup‖x‖→∞ ‖g(x)‖/‖x‖PC1−γ(J,E) = 0 is
replaced by lim‖x‖→∞ ‖g(x)‖/‖x‖PC1−γ(J,E) = 0, then, in (9), we could replace lim supn→∞Ω(n)/n =
υ <∞ with lim infn→∞Ω(n)/n = υ <∞.

Next, we present the following affine results.

Theorem 2. Under assumptions (F1), (F ∗2 ), (F3), (Hg), and (H), problem (1) has a mild
solution provided that

h+
h

Γ(γ)
< 1. (27)

Proof. The proof is similar to Theorem 1. The only difference is to show that there is
a natural number n such that R(Bn) ⊆ Bn under (F ∗2 ). Suppose the contrary holds.
Then, for any natural number n, there are xn, yn ∈ PC1−γ(J,E) with yn ∈ R(xn),
‖xn‖PC1−γ(J,E) 6 n and ‖yn‖PC1−γ(J,E) > n, and yn is defined by (15).

From Hölder’s inequality we obtain that

sup
t∈[0,t1]

t1−γ
∥∥yn(t)

∥∥ 6
1

Γ(γ)

[
‖x0‖+

∥∥g(xn)
∥∥]

+
b1−γ

Γ(α)
‖ϕn‖Lp(J,R+)b

α−1/p

(
p− 1

pα− 1

)(p−1)/p

=
1

Γ(γ)

[
‖x0‖+

∥∥g(xn)
∥∥]+ η

b1−γ

Γ(α)
‖ϕn‖Lp(J,R+). (28)
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Similarly, we get for i = 1, 2, . . . ,m that

sup
t∈[si,ti+1]

(t− si)1−γ∥∥yn(t)
∥∥ 6 sup

t∈[si,ti+1]

‖gi(si, xn(t−i ))‖
Γ(γ)

+
b1−γ

Γ(α)
‖ϕn‖Lp(J,R+)η

6
hn

Γ(γ)
+
b1−γ

Γ(α)
‖ϕn‖Lp(J,R+)η. (29)

It follows from (18), (28), and (29) that

n < ‖yn‖PC1−γ(J,E)

6
1

Γ(γ)

[
‖x0‖+

∥∥g(xn)
∥∥]+ η

b1−γ

Γ(α)
‖ϕn‖Lp(J,R+) + hn+

hn

Γ(γ)
.

By dividing both side by n and passing to the limit as n → ∞, we get 1 6 h + h/Γ(γ),
which contradicts (27). This completes the proof.

Theorem 3. Under assumptions (F1), (F ∗2 ), (F3), (H∗g ), and (H), problem (1) has a mild
solution provided that

k

Γ(γ)
+ h+

h

Γ(γ)
< 1. (30)

Proof. Like Theorem 2, we only need to note that

sup
t∈[0,t1]

t1−γ‖yn(t)‖ 6 1

Γ(γ)

[
‖x0‖+ k

∥∥xn∥∥PC1−γ(J,E)
+
∥∥g(0)

∥∥]
+
b1−γ

Γ(α)
‖ϕn‖Lp(J,R+)b

α−1/p

(
p− 1

pα− 1

)(p−1)/p

=
1

Γ(γ)

[
‖x0‖+ kn+

∥∥g(0)
∥∥]+ η

b1−γ

Γ(α)
‖ϕn‖Lp(J,R+).

From this inequality, (18), and (29) one obtains

n < ‖yn‖PC1−γ(J,E)

6
1

Γ(γ)

[
‖x0‖+ kn+

∥∥g(0)
∥∥]+ η

b1−γ

Γ(α)
‖ϕn‖Lp(J,R+) + hn+

hn

Γ(γ)
.

Dividing both side by n and passing to the limit as n → ∞, we get 1 6 k/Γ(γ) + h +
h/Γ(γ), which contradicts (30). The proof is complete.

4 An example

Let J = [0, 3], s0 = 0, t1 = 1, s1 = 2, t2 = 3, α = 1/4, β = 1/8, and γ = α+β−αβ =
11/32.

Nonlinear Anal. Model. Control, 23(6):921–941
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Consider F : [0, 3]× E → Pck(E) defined by

F (t, x) =


{0}, t = 0,

t−1/16Z, t ∈ (0, 1],

t2Z, t ∈ (1, 2],

(t− 2)−1/8Z, t ∈ (2, 3],

(31)

where Z is a convex compact subset of E. Note that 1 − γ = 21/32. For any z ∈ Z,
consider δz : J → E defined by

δz(t) =


Γ( 1

16 )

Γ( 27
32 )
t−5/32‖z‖, t ∈ (0, 1],

t2‖z‖, t ∈ (1, 2],

Γ( 28
32 )

Γ( 25
32 )

(t− 2)−7/32‖z‖, t ∈ (2, 3].

It is clear that, for any z ∈ Z, δz(t) ∈ PC1−γ(J,E). If f ∈ SpF (.,x(.)) and x ∈
PC1−γ(J,E), then

f(t) =

{
t−1/16‖z0‖, t ∈ (0, 1],

(t− 2)−1/8‖z0‖, t ∈ (2, 3],

where z0 ∈ Z. Note that

I
β(1−α)
0+ δz0(t) =



Γ( 1
16 )

Γ( 27
32 )
‖z0‖Iβ(1−α)

0+ t−5/32 =
Γ( 1

16 )

Γ( 27
32 )
‖z0‖

Γ( 27
32 )

Γ( 1
16 )
t−1/16,

t ∈ (0, 1]

Γ( 28
32 )

Γ( 25
32 )
‖z0‖Iβ(1−α)

0+ (t− 2)−7/32 =
Γ( 28

32 )

Γ( 25
32 )
‖z0‖

Γ( 25
32 )

Γ( 28
32 )

(t− 2)−1/8,

t ∈ (2, 3].

= f(t).

Then (F1) is satisfied. In order to show that (F2)∗ holds for any natural number n, we
let

ϕn(t) =


t−1/16σ, t ∈ (0, 1],

t2σ, t ∈ (1, 2],

(t− 2)−1/8σ, t ∈ (2, 3],

where σ = max{‖z‖: z ∈ Z}.
Clearly ϕn ∈ Lp(J,R+) and sup‖x‖PC1−γ (J,E)6n ‖F (t, x(t))‖ 6 ϕn(t) for a.e.

t ∈ J , and (10) is satisfied.
Next, let g1 : [t1, s1]× E → E be given by

g1(t, x) = (t1 − s0)1−γK(x), (32)
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where K : D(K) = E → E is a linear bounded completely continuous operator. Then
(H) is satisfied, and note h = ‖K‖. Let g : PC1−γ(J,E)→ E be given by

g(x) = c1K
(
x(t1)

)
, (33)

where c1 is a real number. For any x, y ∈ PC1−γ(J,E), ‖g(x)−g(y)‖ 6 ‖K‖|c1|‖x−y‖.
Moreover, if xn → x in PC(J,E), then xn(t1)→ x(t1), and the complete continuity

of K implies that K(xn(t1)) → K(x(t1)) in E, and hence g(xn) → g(x). Then (H∗g )
holds, and note k = ‖K‖ |c1|.

Now consider (1), where F , gi, and g are given in (31)–(33). Then from Theorem 3,
problem (1) has a mild solution, provided that ‖K‖(|c1|/Γ(γ) + 1 + 1/Γ(γ)) < 1.
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