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Abstract. This paper discusses shallow water waves that is modeled with Boussinesq equation
that comes with dual dispersion and logarithmic nonlinearity. The extended trial function scheme
retrieves exact Gaussian solitary wave solutions to the model.
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1 Introduction

There are several models that address the dynamics of shallow water waves along lake
shores and sea beaches. A few of these models that carry a lot of visibility and frequented
upon are the Korteweg–de Vries (KdV) equation, Kadomtsev–Petviashvili (KP) equation,
Kawahara equation, Boussinesq equation (BE), Benjamin–Bona–Mahoney equation, and
others. All of these models have been studied with algebraic forms of nonlinearity. The
current practice is to study these models with logarithmic nonlinearity; a trend that was
first introduced by Wazwaz during 2014 [20]. Thus, KdV equation, KP equation, and
Boussinesq equations have all been studied for logarithmic nonlinearities using a variety
of rich mathematical schemes such as soliton perturbation theory, semi-inverse variational
method, traveling wave hypothesis, and several others. In fact, there exists a plethora of
mathematical techniques that are applied to several nonlinear evolution equations in fluid
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dynamics, nonlinear optics, nuclear physics, and other areas to address them [1–23]. This
paper studies the dynamics of Gaussian solitary waves due to BE with logarithmic nonlin-
ear form by the aid of another powerful mathematical principle, namely, the extended trial
equation algorithm. The next couple of sections details the scheme that yields Gaussian
solitary waves to the BE.

2 Governing equation

BE with logarithmic nonlinearity and dual dispersion reads as follows [2, 21]:

qtt − k2qxx + a(q ln q)xx + b1qxxxx + b2qxxtt. (1)

This dynamical model was introduced by Wazwaz [21]. In Eq. (1), q(x, t) represents
the wave profile, where the independent variables x and t represent spatial and temporal
coordinates, respectively. The first two terms in Eq. (1) constitute the wave operator.
The coefficient of a is the logarithmic nonlinear term. The coefficients of b1 and b2
are dispersion terms, where, in particular, the coefficient of b2 gives the spatio–temporal
dispersion.

2.1 Mathematical analysis

To secure Gaussons or solitary wave solutions to Eq. (1), the starting hypothesis is

q(x, t) = g(x− vt) = g(s), (2)
where

s = x− vt.

In Eq. (2), v represents the speed of the wave, and the functional form of g will give the
solitary wave solution. Substituting hypothesis (2) into (1) and integrating twice yields(

v2 − k2)g + ag ln g +
(
b1 + b2v

2
)
g′′ = 0, (3)

where g′′ = d2g/ds2. The integration constant is taken to be zero, both times, since the
search is for a localized solitary wave solution.

To obtain a closed form analytic solution, we employ a transformation formula

ψ−1(x, t) = ln g(x, t),

equivalent to

g(x, t) = exp
1

ψ(x, t)
.

This formula carries (3) into

aψ3 +
(
v2 − k2

)
ψ4 +

(
b1 + b2v

2
){

(ψ′)2 + 2ψ(ψ′)2 − ψ2ψ′′
}

= 0. (4)

Equation (4) will now be studied by the aid of extended trial equation scheme (ETES)
[4–6, 13, 14, 18, 20] in the next section.

Nonlinear Anal. Model. Control, 23(6):942–950



944 A. Biswas et al.

3 Extended trial equation scheme

To start with the ETES, the following initial assumption for the solution structure of (4)
is considered:

ψ =

ς∑
i=0

τiΘ
i, (5)

where

(Θ′)2 = ∆(Θ) =
Φ(Θ)

Υ (Θ)
=
µσΘ

σ + · · ·+ µ1Θ + µ0

χρΘρ + · · ·+ χ1Θ + χ0
. (6)

Here τ0, . . . , τς ; µ0, . . . , µσ and χ0, . . . , χρ are constants to be determined later. From (5)
and (6), terms (ψ′)2 and ψ′′ can be derived as

(ψ′)2 =
Φ(Θ)

Υ (Θ)

(
ς∑
i=0

iτiΘ
i−1

)2

,

and

ψ′′ =
Φ′(Θ)Υ (Θ)− Φ(Θ)Υ ′(Θ)

2Υ 2(Θ)

ς∑
i=0

iτiΘ
i−1 +

Φ(Θ)

Υ (Θ)

ς∑
i=0

i(i− 1)τiΘ
i−2,

where Φ(Θ) and Υ (Θ) are polynomials of Θ. Equation (6) can be reduced the following
integral form:

± (s− s0) =

∫
dΘ√
∆(Θ)

=

∫ √
Υ (Θ)

Φ(Θ)
dΘ. (7)

Balancing the order of ψ2ψ′′ and ψ4 in Eq. (4) yields

σ = ρ+ ς + 2. (8)

Case 1. Let us choose σ = 3, ρ = 0, and ς = 1 in Eq. (8). Then, Eq. (4) have the
solution in the form

ψ = τ0 + τ1Θ, (9)

where τ0 and τ1 are constants to be determined later such that τ1 6= 0, and Θ satisfies
Eq. (6). Substituting (9) into (4) and solving the resulting system, the sets are derived as

µ2 = µ2, χ0 = χ0, τ1 = τ1,

µ0 =
µ3
2(2b1 + b2(a+ 2k2))2

108a2τ21χ
2
0

, µ1 = −µ
2
2(2b1 + b2(a+ 2k2))

6aτ1χ0
,

µ3 = − 2aτ1χ0

2b1 + b2(a+ 2k2)
, τ0 = −µ2(2b1 + b2(a+ 2k2))

6aχ0
, v =

√
a+ 2k2

2
.
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Substituting these results into (6) and (7) leads to

±(s− s0) =
√
Ω

∫
dΘ√
∆(Θ)

,

where

Ω =
χ0

µ3
, ∆(Θ) = Θ3 +

µ2

µ3
Θ2 +

µ1

µ3
Θ +

µ0

µ3
.

In view of these results, traveling wave solutions to BE with logarithmic nonlinearity are
derived in the following forms:

For ∆(Θ) = (Θ − γ1)3,

q(x, t) = exp

[
−µ2(2b1 + b2(a+ 2k2))− 6aχ0τ1γ1

6aχ0
+

4τ1Ω

(x−
√

a+2k2

2 t−s0)2

]−1
. (10)

If ∆(Θ) = (Θ − γ1)2(Θ − γ2) and γ2 > γ1,

q(x, t) = exp

[
−µ2(2b1 + b2(a+ 2k2))− 6aχ0τ1γ2

6aχ0

+ τ1(γ1 − γ2) tanh2

(
1

2

√
γ1 − γ2
Ω

[
x−

√
a+ 2k2

2
t− s0

])]−1
. (11)

However, when ∆(Θ) = (Θ − γ1)(Θ − γ2)2 and γ1 > γ2,

q(x, t) = exp

[
−µ2(2b1 + b2(a+ 2k2))− 6aχ0τ1γ1

6aχ0

+ τ1(γ1 − γ2) cosech2

(
1

2

√
γ1 − γ2
Ω

[
x−

√
a+ 2k2

2
t

])]−1
. (12)

Whenever ∆(Θ) = (Θ − γ1)(Θ − γ2)(Θ − γ3) and γ1 > γ2 > γ3,

q(x, t) = exp

[
−µ2(2b1 + b2(a+ 2k2))− 6aχ0τ1γ3

6aχ0

+ τ1(γ2 − γ3) sn2

(
∓1

2

√
γ1 − γ3
Ω

[
x−

√
a+ 2k2

2
t− s0

]
, l

)]−1
, (13)

where

l2 =
γ2 − γ3
γ1 − γ3

.

It is important to emphasize that γi for i = 1, 2, 3 are the roots of the equation

∆(Θ) = 0.
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For
s0 = 0, µ2

(
2b1 + b2

(
a+ 2k2

))
− 6aχ0τ1γ1 = 0,

solutions (10)–(12) can be reduced to the following exact solutions, respectively:

q(x, t) = exp

[
1

4τ1Ω

(
x−

√
a+ 2k2

2
t

)2 ]
,

q(x, t) = exp

[
1

τ1(γ2 − γ1)
cosh2

(
1

2

√
γ1 − γ2
Ω

(
x−

√
a+ 2k2

2
t

))]
,

and

q(x, t) = exp

[
1

τ1(γ1 − γ2)
sinh2

(
1

2

√
γ1 − γ2
Ω

(
x−

√
a+ 2k2

2
t

))]
.

Moreover, when

s0 = 0, µ2

(
2b1 + b2

(
a+ 2k2

))
− 6aχ0τ1γ3 = 0,

the exact solutions given by (13) can be reduced to

q(x, t) = exp

[
1

τ1(γ2 − γ3)
ns2
(
∓1

2

√
γ1 − γ3
Ω

[
x−

√
a+ 2k2

2
t

]
,
γ2 − γ3
γ1 − γ3

)]
.

Remark 1. When the modulus l→ 1, exact solutions fall out

q(x, t) = exp

[
1

τ1(γ2 − γ3)
coth2

(
∓1

2

√
γ1 − γ3
Ω

[
x−

√
a+ 2k2

2
t

])]
for γ1 = γ2.

Case 2. When σ = 4, ρ = 0, and ς = 2 in Eq. (8), we have

ψ = τ0 + τ1Θ + τ2Θ
2, (14)

and then

(ψ′)2 =
(τ1 + 2τ2Θ)2(µ4Θ

4 + µ3Θ
3 + µ2Θ

2 + µ1Θ + µ0)

χ0
, (15)

ψ′′ =
(τ1 + 2τ2Θ)(4µ4Θ

3 + 3µ3Θ
2 + 2µ2Θ + µ1)

2χ0

+
2τ2(µ4Θ

4 + µ3Θ
3 + µ2Θ

2 + µ1Θ + µ0)

χ0
, (16)
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where µ4 6= 0 and χ0 6= 0. Substituting Eqs. (14)–(16) into Eq. (4) and solving the
resulting system, the sets are obtained as

χ0 = χ0, τ1 = τ1, τ2 = τ2,

µ0 = − aτ41χ0

32τ32 (2b1 + b2(a+ 2k2))
, µ1 = − aτ31χ0

4τ22 (2b1 + b2(a+ 2k2))
,

µ2 = − 3aτ21χ0

4τ2(2b1 + b2(a+ 2k2))
, µ3 = − aτ1χ0

2b1 + b2(a+ 2k2)
,

µ4 = − aτ2χ0

4b1 + 2b2(a+ 2k2)
, τ0 =

τ21
4τ2

, v =

√
a+ 2k2

2
.

Substituting these results into (6) and (7) leads to

±(s− s0) = Ω1

∫
dΘ√
∆(Θ)

, (17)

where

Ω1 =

√
χ0

µ4
, ∆(Θ) = Θ4 +

µ3

µ4
Θ3 +

µ2

µ4
Θ2 +

µ1

µ4
Θ +

µ0

µ4
.

Integrating Eq. (17) and taking s0 = 0, exact solutions to BE with logarithmic nonlinear-
ity are secured as the following:

For ∆(Θ) = (Θ − γ1)4,

q(x, t) = exp

[
2∑
i=0

τi

(
γ1 ±

Ω1

x−
√

a+2k2

2 t

)i ]−1
.

If ∆(Θ) = (Θ − γ1)3(Θ − γ2) and γ2 > γ1,

q(x, t) = exp

[
2∑
i=0

τi

(
γ1 +

4Ω2
1(γ2 − γ1)

4Ω2
1 − [(γ1 − γ2)(x−

√
a+2k2

2 t)]2

)i ]−1
.

However, when ∆(Θ) = (Θ − γ1)2(Θ − γ2)2,

q(x, t) = exp

[
2∑
i=0

τi

(
γ2 +

γ2 − γ1
exp[γ1−γ2Ω1

(x−
√

a+2k2

2 t)]− 1

)i ]−1
,

and

q(x, t) = exp

[
2∑
i=0

τi

(
γ1 +

γ1 − γ2
exp[γ1−γ2Ω1

(x−
√

a+2k2

2 t)]− 1

)i ]−1
.
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Whenever ∆(Θ) = (Θ − γ1)2(Θ − γ2)(Θ − γ3) and γ1 > γ2 > γ3,

q(x, t) = exp

[
2∑
i=0

τi

(
γ1 −

2(γ1 − γ2)(γ1 − γ3)

γ̄1 + (γ3 − γ2) cosh[P1(x−
√

a+2k2

2 t)]

)i ]−1
,

where

γ̄1 = 2γ1 − γ2 − γ3, P1 =

√
(γ1 − γ2)(γ1 − γ3)

Ω1
.

Finally, if ∆(Θ) = (Θ − γ1)(Θ − γ2)(Θ − γ3)(Θ − γ4) and γ1 > γ2 > γ3 > γ4,

q(x, t) = exp

[
2∑
i=0

τi

(
γ2 +

γ̄2(γ1 − γ2)

γ̄2 + (γ1 − γ4) sn2[Pj(x−
√

a+2k2

2 t), l]

)i ]−1
,

where

γ̄2 = γ4 − γ2, l2 =
(γ2 − γ3)(γ1 − γ4)

(γ1 − γ3)(γ2 − γ4)
,

Pj =
(−1)j

√
(γ1 − γ3)(γ2 − γ4)

2Ω1
for j = 1, 2.

It is important to note that γi for i = 1, . . . , 4 are the roots of the equation

∆(Θ) = 0.

Remark 2. When the modulus l→ 1, the following solutions fall out:

q(x, t) = exp

[
2∑
i=0

τi

(
γ2 +

γ̄2(γ1 − γ2)

γ̄2 + (γ1 − γ4) tanh2[Pj(x−
√

a+2k2

2 t)]

)i ]−1

for γ3 = γ4.

Remark 3. However, if l→ 0, the solutions are obtained as

q(x, t) = exp

[
2∑
i=0

τi

(
γ2 +

γ̄2(γ1 − γ2)

γ̄2 + (γ1 − γ4) sin2[Pj(x−
√

a+2k2

2 t)]

)i ]−1

for γ2 = γ3.

4 Conclusions

This paper secured Gaussian solitary wave solutions to BE that is considered with loga-
rithmic nonlinearity and dual dispersion. The powerful extended trial function method is

https://www.mii.vu.lt/NA
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the integration scheme that has been implemented to retrieve the solitary wave solutions
that are also referred to as Gaussons in this context. These solutions appear with constraint
conditions that guarantee their existence.

The results of this manuscript are new and are being reported for the first time in
this paper. In regards to the physical meaning of the model, this represents shallow water
wave dynamics along lake shores and beaches. This is generalized model to the regular
Boussinesq equation that is known. Upon carrying out the Taylor series expansion of the
logarithmic function about q = 1 and retaining till the first term, the regular Boussinesq
equation, with drifting term, falls out. Thus the model of study incorporates all of the
previously established results.

The results of this paper paves way to carry out further research in this avenue. Later,
perturbation terms will be included in this model and thus the perturbed BE will be
addressed using this integration scheme as well as various other integration algorithms.
These will be Lie symmetry analysis, Kudryashov’s method, modified simple equation
method, and several others. Additionally, this model will be studied with time-dependent
coefficients along with stochastic perturbation terms. The results of those research will be
reported in the future.
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