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Abstract. In the paper, an universality theorem on the approximation of analytic functions by
generalized discrete shifts of zeta functions of Hecke-eigen cusp forms is obtained. These shifts
are defined by using the function having continuous derivative satisfying certain natural growth
conditions and, on positive integers, uniformly distributed modulo 1.
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1 Introduction

In [18], S.M. Voronin discovered the universality property of the Riemann zeta-function
¢(s), s = o + it, on the approximation of a wide class of analytic functions by shifts
¢(s + it), 7 € R. Later, it turned out that some other zeta and L-functions also are
universal in the Voronin sense, among them, zeta-functions of certain cusp forms. We
recall their definition.

Let
SL(Q,Z)déf{ (i Z): a,b,c,d € Z, ad — be = 1}

be the full modular group. The function F(z) is called a holomorphic cusp form of
weight  for SL(2,Z) if F(z) is holomorphic for Imz > 0, for all (¢%) € SL(2,7),
satisfies the functional equation

F(“Z +Z> = (cz + d)"F(2),

cz +
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and, at infinity, has the Fourier series expansion

F(z) = Z c¢(m)e*™m=,

=1

We assume additionally that the cusp form F'(z) is a normalized Hecke-eigen cusp form,
i.e., is an eigen form of all Hecke operators

1
ToF(z) =m™™ Y = 3 F(“Z;b) m e N.
)

a,d>0 b (modd
ad=m

Then it is known that the Fourier coefficients ¢(m) # 0. Therefore, after normalization,
we can assume that ¢(1) = 1.

The zeta-function ((s, F') associated to a normalized Hecke-eigen cusp form F'(z) of
weight & is defined, for o > (k + 1/2, by the Dirichlet series

(s, 1) = 3 )

mS

m=1

and can be analytically continued to an entire function. Moreover, as the Riemann zeta-
function, the function ((s, F'), for & > (x + 1)/2, has the Euler product expansion over

primes
on-I(-2)" (-2

p

where a(p) and 3(p) are conjugate complex numbers satisfying a(p) + 5(p) = ¢(p).

The universality of ((s, F) was obtained in [7]. Let Dp = {s € C: k/2 < 0 <
(k 4+ 1)/2}. Denote by K the class of compact subsets of the strip D with connected
complements and by Hy(K), K € Kp, the class of continuous non-vanishing functions
on K that are analytic in the interior of K. Let meas A stand for the Lebesgue measure
of a measurable set A C R. Then the main theorem of [7] is of the following form.

Theorem 1. Suppose that K € Kp and f(s) € Ho(K). Then, for every € > 0,

| :
hTrglo%meeas{T € [0,T7: :gg‘((s%—n’, F) = f(s)] < 6} > 0.

Generalizations of Theorem 1 were given in [8] and [6].

The discrete version of universality for zeta-functions was proposed by A.Reich.
In [16], he obtained a discrete universality theorem for Dedekind zeta-functions. In his
theorem, 7 takes values from the arithmetic progression {kh: k € Ny = NU{0}}, where
h > 0 is a fixed number. The first discrete universality theorem for (s, F) attached to
a new form F'(z), under a certain arithmetical hypothesis for the number h, was proved
in [9]. In [10], this hypothesis was removed, and the following statement was obtained.
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Theorem 2. Let # A denote the cardinality of a set A. Suppose that K € Kp, f(s) €
Hy(K), and h > 0 is an arbitrary fixed number. Then, for every € > 0,

#{0 <k <N: sup [C(s +ikh, F) — f(s)] < 5} > 0.

lim inf
N—oo seK

+1

There exists a problem to prove analogues of Theorem 2 for the sets different from the
progression {kh: k € Ng}. The first attempt in this direction, in the case of the Riemann
zeta-function, was made in [2], where the arithmetical progression was replaced by the
set {k“h: k € No} with a fixed @, 0 < o < 1. An analogue of the theorem from [2]
for the function {(s, F') was given in [5]. L. Pafikowski investigating the joint universality
of Dirichlet L-functions extended [15] the theorem of [2] for all non-integers « > 0 and
more general sets of the type {hk® log” k}, where

5 B ifo ¢z,
" | (=00,0]U(L,00) ifa€N.

The aim of this paper is to prove a discrete universality theorem for the function ((s, F')
when 7 in {(s + i, F') runs over some general sequence of real numbers.

For the definition of a class of sequences for 7, we will use the notion of uniform
distribution modulo 1. Let {u} denote the fractional part of u € R, and let x be the
indicator function of the set 7. We remind that a sequence {zy: k € N} C R is called
uniformly distributed modulo 1 if, for every interval I = [a,b) C [0,1),

o 1g
HILH;OE’;XI({QC;C}) =b—a.

Let kg € N. We say that a function ¢ € U(kop) if the following hypotheses are
satisfied:

(i) o(t) is a real-valued positive increasing function on [ky — 1/2, 00).
(ii) o(t) has a continuous derivative ¢'(t) on [k — 1/2, c0) satisfying the estimate

»(2t) < t.

tg%t @ (u)
(iii) A sequence {ap(k): k > ko} C Rwithevery a € R\{0} is uniformly distributed
modulo 1.

For example, the function ¢(¢) = ¢ log® ¢ with 0 < o < 1 is an element of the class U (2)
because the sequence {ak log™ k} is uniformly distributed modulo 1 [3, Exercise 3.14].
On the other hand, this sequence does not belong to the set of sequences of [15].

Theorem 3. Suppose that ¢ € U(ky). Let K € K and f(s) € Hyo(K). Then, for every
>0,
1

1ﬂigfm#{ko SkSN:swp 1C(s +ip(k), F) — f(s)| < 5} > 0.

Nonlinear Anal. Model. Control, 23(6):961-973
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Itis known [11,12] that universality theorems have a modified form. Thus, Theorem 3
can be stated in the following form.

Theorem 4. Suppose that ¢ € U(ko). Let K € Kp and f(s) € Ho(K). Then the limit

. 1 , .

exists for all but at most countably many € > 0.

2 Auxiliary results

For the proof of universality for the function ((s, F'), we will use the probabilistic ap-
proach. Denote by B(X) the Borel o-field of the space X. Let P,, n € N, and P be the
probability measures on (X, B(X)). We remind that P,, as n — 0o, converges weakly
to P if, for every real continuous bounded function g on X,

lim [ gdP, = /gdP.

n—oo
X X
Denote by H(Dp) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta. The proof of universality theorems is based on the
weak convergence for

def 1

Py = § it

#{ko<k<N: ((s+ip(k), F)eA}, AeB(H(Dr)),

as N — oo.
For the statement of a limit theorem for Py g, we need some notation. Let IP be the
set of all prime numbers, and let v denote the unit circle on the complex plane. Define the

set
= H Vo>

peP
where v, = v for all p € P. With the product topology and pointwise multiplication,
the infinite-dimensional torus (2 is a compact topological Abelian group, therefore, on
(£2,B(12)), the probability Haar measure my can be defined. This gives the probability
space (§2,B(£2),m). Denote by w(p) the projection of an element w € {2 to the
coordinate space y,, p € P, and, on the probability space ({2, B({2), m), define the
H(Dp)-valued random element ¢(s,w, F') by the formula

(o) = T (1 - 2200 (1 20) ™

o ps ps
Let Py r stand for the distribution of {(s,w, F), i.e.,
PC’F(A):mH{WGQZ ((s7w7F)€A}, AGB(H(DF))

Now we state the main result of this section.

https://www.mii.vu.lt/NA
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Theorem 5. Suppose that ¢ € U(kg). Then Py converges weakly to Pe p as N — oo.
Moreover, the support of P; p is the set Sp = {g € H(Dp): g(s) # 0 or g(s) = 0}.

We divide the proof of Theorem 5 into several lemmas. We start with the Weyl
criterion.

Lemma 1. A sequence {xy: k € N} C R is uniformly distributed modulo 1 if and only
if, for allm € 7.\ {0},

1 n
lim — E e?mimTE — (),
n—o0o N
k=1

Proof of the lemma can be found, for example, in [3].
For A € B(£2), define

= ————#{ko <k <N: (p7¥W: peP) e A}
Lemma 2. Suppose that ¢ € U(kg). Then Qn converges weakly to the Haar measure

mpyg as N — oo.

Proof. We apply the Fourier transform method. It is well known that the dual group of 2
is isomorphic to the group
D = @ Zp,
P

where Z, = Z for all p € P. Anelement k = {k,: k, € Z, p € P} of D, where only
a finite number of integers k,, are distinct from zero, acts on {2 by

!
w— wh = H wk"(p),
p€eP

«/ o

where the sign means that only a finite number of integers &, are distinct from zero.
Hence, the characters are of the form

/
[T &™),
peP
therefore, the Fourier transform gy (k) of Q is given by the formula
/
an(®) = [ T] &) dax.
N pEIF’

Thus, by the definition of @y,

N
1 I
gN(E) = m E | I p koo (k)

k=Fko peP
1 N . /
=N Rl Z exp{—up(k‘)z kp logp}. (1)
k=ko peP

Nonlinear Anal. Model. Control, 23(6):961-973
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Obviously,
gn(0) = 1. (@)

Since the set {logp: p € P} is linearly independent over the field of rational numbers
Q, we have that Z;ep kplogp # 0 for k # 0. Therefore, since ¢ € U(ky), in the case

k # 0, the sequence
k /
{QOQ(W) Z kplogp: k> k:o}

peP

is uniformly distributed modulo 1. Thus, by Lemma 1 with m = —1 and (1), we find that,
for k # 0,

li k)=0.
This and (2) show that gy (k), as N — oo, converges to the Fourier transform of the Haar
measure my, and the lemma is a consequence of a continuity theorem for probability
measures on compact groups. O]

Lemma 2 implies a limit theorem in the space of analytic functions for a certain abso-
lutely convergent Dirichlet series. This theorem is very important for proving Theorem 5,
therefore, we give its precise statement.

We extend the functions w(p), p € P, to the set N by

w(m) = H wl(p), meN.
pt|m
p'tim

Let # > 1/2 be a fixed number. For m,n € N, define the series

o F) = S )y § ()

m
m=1 m=1

o= -(2)}

Then, the latter series are absolutely convergent for o > «/2. Let the function u,, p: 2 —
H(Dr) be given by the formula u,, p(w) = (,(s,w, F'). Since the series for ,, (s, w, F)
is absolutely convergent for o > & Z 2, the function u,, r is continuous, thus, it is (B({2),
B(H(Dp)))-measurable. Hence, P, p = mHu;’lF, where

where

Pap(A) = migi o (A) = mu (u [ A), - A€ BH(Dp)),
is a probability measure on (H(Dp), B(H(DF))). For A € B(H(DpF)), define

1

P, r(A) = N kil

#{ko <k < N: (u(s+ip(k), F) € A}.
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The above remarks, Lemma 2, and Theorem 5.1 of [1] lead to

Lemma 3. Suppose that ¢ € U(ko). Then Py, r converges weakly to ]3”7}: as
N — .

Our ‘next aim is to prove that Py g, as N — oo, converges weakly to the limit measure
Pr of P, r as n — oo. For this, we need some mean square results for the function

C(s, F).

Lemma 4. Suppose that p € U(ko), and 0, £/2 < 0 < (k+1)/2, is fixed. Then, for all

T ER,
T

¢ (o +iT +ip(t) )| dt < T(1+]7]).
ko—1/2

Proof. Tt is well known that, for fixed o, /2 < o < (k +1)/2,
/\g(a+it, F)dt <T. 3)

Let X > 1. Since the function ¢(t) is increasing and continuously differentiable, we have
that

2X

/|§(a—|—17’—|—1<p )| dt

X

2X .
:/¢/(t)|C(a+1T+1¢ )| d( )
X

[T+ (t)

< ¢(0 + i, F)\Qdu) (4)

2X
max —— [ d
X<t<2X @' (t)

X 0

By estimate (3),
[T+ (t)
C(o +iu, F)]? du < |7| + o(2).
0
Since ¢ € U(ky), the latter estimate together with (4) shows that

1
/‘C o+ it +ip(t )‘ dt<<(|7‘+‘p(2X))x22§xT(t)
< X(1+|7]).
Now, taking X = 27*~1T and summing over k, gives the lemma. O

Nonlinear Anal. Model. Control, 23(6):961-973
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Lemma 4 together with Gallagher’s lemma, which connects the continuous and dis-
crete mean squares of some functions, allows to estimate the discrete mean square

N
In(o,t, F) = Z ¢ (o + it +ip(k), F)|2

k=ko
For convenience, we state Gallagher’s lemma, see [14, Lemma 1.4].

Lemma 5. Suppose that Ty, T > 6 > 0 are real numbers, and T # 0 is a finite set in the
interval [Ty + /2, Ty + T — 6/2]. Define
>

teT
[t—x|<6

Let S(x) be a complex-valued continuous function on [Ty, T + Ty| having a continuous
derivative on (Ty, T + Ty). Then

To+T To+T To+T /2
>N 5/ys\dx+</ys\dx/|s'\dx>.

teT

Lemma 6. Suppose that ¢ € U(ky), and o, k/2 < o0 < (k + 1)/2, is fixed. Then, for
teR,
In(o,t,F) < N(1+]t]).

Proof. An application of the Cauchy integral formula and Lemma 4 gives, for k/2 < 0 <
(k + 1)/2, the bound

N+1/2
/ ’C(0+1t+1<p )‘ dt < N(1+ t]). 3)
ko—1/2

Actually, in view of the Cauchy integral formula,

/§z+1t+1g0 T), F)d
~ 2mi

z—0)2

¢ (0‘ +it 4+ ip(T) ,
where L is the circle with a center o lying in D. Then

C(z+ it +ip(7), F)d 2

(z —0)?

¢ (o +it +ip(r), F

471'2

d . .
<</|z| 0|4/‘C(z+1t+1<p(r), F)‘Q‘dz|
3 3

< / ¢ (2 + it + ip(T), F)\2 |dz|.
L
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Hence, in view of Lemma 4,

N+1/2
’C(O’-i—lt-i—l(p )| dr
ko—1/2
N+1/2
<</|dz| / C Rez +ilmz + it + ip(r )| dr
ko—1/2
< N(1+[t]).

We apply Lemma 5 with 7 = {k: k € Ny ko < k < N}, Ty = ko —1/2, T =
N — kg + 1, and 6 = 1. Then, clearly, Ns(z) = 1, and, in view of Lemma 5 with
S(7) = ((o + it +ip(T), F), we have

IN(O',t,F)
N+1/2
< / |C(0+1t+1<p )| dr
ko—1/2
N+1/2 N+1/2 1/2
( /‘CU—FIt-ﬁ-lﬁp ‘dT /!C o+ it +ip(r )‘ d7'> .
ko—1/2 ko—1/2
This, Lemma 4, and estimate (5) prove the lemma. O

Now we are ready to approximate (s, F') by (,(s, F') in the mean. For g1,¢g> €
H(DF), let

o(01.92) in SUp,c e, [91(5) — g2(5)]
92) = 2 g 101(5) — 9a(5)]

where {K;: | € N} C Dy is a sequence of compact subsets such that
Dp = U Kla
1=1

K; C Kjyq forl € N, and if K C Dp is a compact subset, then K C K; for some
[ € N. Then p is the metric in H (D) inducing its topology of uniform convergence on
compacta.

Lemma 7. Suppose that ¢ € U(ko). Then
1 N

oy 5y 30 p(Cs+iph), P s +ielh), F)) =0,

Nonlinear Anal. Model. Control, 23(6):961-973
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Proof. Let § > 1/2 be from the definition of v,,(m), and

In(s) = ;F(Z)n

where T'(s) is the Euler gamma-function. Then the function (, (s, F') has the representa-
tion [7]

O+ioco
1 dz K
0—ioco

Let K be an arbitrary compact subset of D. Then, using the above integral representation
and the residue theorem, we find that

1 al _ .
W71 2 [ it F) —Galo o8, £

o N
< / |ln(a\'+i7')’<zv_;0+1 > |C(U+it+iT+i<p(k),F)|> dr, (6)
k=ko

— 00

where ¢ < 0, K/2 < 0 < (k4 1)/2, and t is bounded by a constant depending on K.
Now an application of Lemma 6 and (6) implies the equality

N

L 1 : .
At gy 2 sl ie®) — G (s i) =0

This and the definition of the metric p prove the lemma. O

Proof of Theorem 5. Let 0 be a random variable defined on a certain probability space
with the measure ; and having the distribution

1

=——— k=ky...,N.
N—ko—'—l, 05 )

p{On = p(k)}
Consider the H (Dp)-valued random element
XN,k = XN F(s) = (s +i0n, F).

We recall that 13n F 18 the limit measure in Lemma 3. Then, in view of Lemma 3,

~

D
Xy r — XpF, @)
N—oo

where 3 means the convergence in distribution, and X n,F 18 the H(Dp)-valued random
element with distribution P, . Using the absolute convergence of the series for ¢, (s, F')
and (7), we prove by using the method of [4] that the family of probability measures

https://www.mii.vu.lt/NA
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{]3n i n € N}is tight. Hence, by Theorem 6.1 of [1], it is relatively compact. Therefore,
each subsequence of {P, r} contains a subsequence { P, r}, which converges weakly
to a certain probability measure Py on (H(Dp), B(H(DF))) as r — oco. Thus

X, 5 > Pp. (8)
700

On the probability space of the random variable 0y, define the H(Dp)-valued random
element

XN,F = XN,F(S) = C(S + 19]\[, F)
Then the application of Lemma 7 shows that, for every € > 0,

lim hmsupu( (XnFs XNm,F) = 5)
N—s

n—oo

= lim N _
) VN A |

X#{ko\ <N p(¢(s+ip(k), F),Ca(s +ip(k), F)) = e}

N
< Jim limsup e k:+1 E; (s +ip(k), F),¢a(s +ip(k), F)) = 0.

From this, (7), (8), and Theorem 4.2 of [1] it follows that
XN F ﬂ> Pp. ©)

This means that Py r converges weakly to Pr as N — 00. On the other hand, (9) shows
that the measure P is independent of the sequence {Pn F}. Since the family {P,L F}is
relatively compact, hence we have, by Theorem 2.3 of [1] that

o D
Xnr — Pp,
n— oo
or equivalently, P, r converges weakly to Pp as n — oo.

It remains to identity the measure Pr. For this, usually, elements of the ergodic theory
are applied. However, we use a very simple observation. It is known [7, 17] that

1
7 meas {rel0,T): {((s+ir, F) € A}, A€ B(H(Dp)),
as T' — oo, converges weakly to the limit measure Pr of ]3” r and that Pr = P p.

Moreover, the support of P r is the set Sp. Therefore, Py r also converges weakly to
PQ ras N — oco. O

3 Proofs of universality theorems

Proof of Theorem 3. Define

G, = {g € H(D): sup |g(s) —ep(s)’ < E},
seK 2

Nonlinear Anal. Model. Control, 23(6):961-973
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where p(s) is a polynomial. By Theorem 5, the function e”(*) is an element of the support
of the measure P; r. Therefore,

P r(Ge) > 0. (10)

By Theorem 5 and the equivalent of weak convergence of probability measures in terms
of open sets [1, Thm. 2.1],

lim inf PNyp(GE) 2 PQF(Gs).
N—o00

This, the definitions of Py, r and G, and (10) show that

1 €
iminf ————— < k< N: i - 5
lim inf —— e 1#{k0 <k<N sup C(s +ip(k), F) - f(s)| < 2}

> 0. (1)

By the Mergelyan theorem on the approximation of analytic functions by polynomials
[13], we can choose the polynomial p(s) to satisfy the inequality

sup‘f(s)—ep(s)‘ <§. (12)
seK 2
This inequality together with (11) proves Theorem 3. O

Proof of Theorem 4. Define the set
G. = {g € H(D): sup |g(s) — f(s)] < 5}.
seK
Then we have that the boundary 8@5 of @8 is the set

{9€ HD): sup|g(s) - f(s)] =},

seEK

Hence, 8é51 N 6652 = () for €1 # &5. Therefore, the set CA}E is a continuity set of
the measure P r for all but at most countably many £ > 0. Using Theorem 5 and the
equivalent of weak convergence of probability measures in terms of continuity sets [1,
Thm. 2.1], we obtain that

lim PN,F(éa) = PC,F(éE) (13)

N—o0
for all but at most countably many € > 0. In view of (12), if g € G, then g € (A?s. Thus,

G. C ég. Therefore, in virtue of (10), P, F(@E) > (. Combining this with (13) and the
definitions of Py r and G, proves Theorem 4. O

https://www.mii.vu.lt/NA
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