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Abstract. In this paper, we consider a cholera model with periodic incidence rate and saturated
treatment function. Under certain conditions, we establish a criterion on the global exponential
stability of positive periodic solutions for this model by using a novel method. We illustrate our
theoretical results with numerical simulations by using Matlab.
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1 Introduction

Cholera is an acute intestinal infectious disease caused by infection of the bacterium Vib-
rio cholerae, such as Vibrio cholerae serogroups O1 and 0139, which is the major public
health problem and affect primarily developing world populations with no proper access
to adequate water and sanitation resources. Once they colonise the intestinal gut, then
produce enterotoxin (which stimulates water and electrolyte secretion by the endothelial
cells of the small intestine) that leads to copious, painless, and watery diarrhoea that can
quickly lead to severe dehydration and death if treatment isn’t promptly given [4]. Up
to now, the control of deadly outbreaks remains a challenge. In recent years, the number
of cholera cases reported to World Health Organization (WHO) is on the increase. In
2015, 172454 cases and 1304 deaths of cholera were reported to WHO worldwide [25].
Outbreaks continued to affect several countries [25]. Overall, 41% of cases were reported
from Africa, 37% from Asia, and 21% from the Americas [25]. So, cholera is also a global
threat to public health, and it is one of the important indicators of social development.
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Mathematical models have been proven to be central importance for understanding
dynamical behavior of the epidemic spreading in the infectious diseases [12,21,27]. The
mathematical model of cholera epidemics pandemic was first proposed by Capasso et al
in 1979 [2]. Some researchers considered a cholera model with imperfect vaccination,
which studied the stability of a disease-free equilibrium and an endemic equilibrium
[4, 14,22,23,26,29,30]. Also, the literature [22] analysed control strategies of cholera.
Mwasa et al. formulated a mathematical model that captures some essential dynamics of
cholera transmission to study the impact of some control strategies, such as public health
educational campaigns, vaccination and treatment in reducing the incidence of disease
[15,20]. In [16], Safi presented a new two-strain model, for assessing the impact of basic
control measures, treatment and dose-structured mass vaccination on cholera transmission
dynamics in a population. In [10], Khan et al. studied the dynamical behavior of cholera
epidemic model with nonlinear incidence rate. To the best of our knowledge, these is
no paper to consider a cholera model with both periodic incidence rate and saturated
treatment function.

As it is well known, many infectious diseases exhibit seasonal fluctuations, and there
is a saturation phenomenon during the treatment process. Therefore, the coefficients in the
differential equations of ecology, epidemics, and population problems are usually time-
varying. Usually, we use the periodic coefficients. So, to describe the dynamics of the
cholera, we consider the following model:

() = At) ~ m ()50 - T UR,

I'(t) = M (V(t)+u1(t)+5(t))1(t)*

R(t) =~y()I(t) +

B'(t) = n(t)I(t) — uz( )B(t)

Here S represents the number of individuals susceptible to the disease, I represents the
number of infected individuals infectious and able to spread the disease by contacting
with the susceptibles, R is the number of the infectives removed or recovered, and B is
the number of the pathogen population. In this paper, A, K, j1, pt2,7v, 9,9, a,n : R —
(0,00) and B : R — R are continuous T-periodic functions with 7' > 0. Moreover,the
natural human birth rate A(¢) is a + bterm(t) and term(¢) = sin(27t/365) is a periodic
function, and a and b are positive. The contact rate 5(t) is ¢ + d term(t) and term(t) =
cos(27t/365) is a periodic function, and ¢ and d are positive.

The notation R and R refers to the space of real number and nonnegative real num-
ber, respectively. The notation R™ and R} refers to the space of n-dimensional real col-
umn vector and n-dimensional nonnegative real column vector, respectively. The notation

R™*™ refers to the n x n nonnegative real matrix space. Forany z = (1, za, ..., 2,) €ER",
let || denotes the absolute-value vector given by |z| = (Jz1], |z2], - . -, \xn\) “1” denotes
the transpose (#7 = (21, 22,...,2,)"), and we define ||z| = max;eq10,. 0} @] I

A € R™ " AT refers to the transpose of A.
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Global exponential stability of positive periodic solutions for a cholera model 621

The initial conditions associated with (1) are as follows:
S(to) >0, I(to) > 0, B(to) > 0, R(to) = 0. 2)

For simplicity, we first assume that a bounded continuous function g defined on R
given by

+:

g sup ’g(t)| and ¢~ = inf ‘g(t)’
teR

teR
In the following, we will always assume that

n(t)

2 Preliminaries and lemmas

Firstly, we show that the existence of the disease free periodic solution of (1). To find the
disease free periodic solution of (1), we consider the following equation:

S(t) = A(t) — pa (£)S(2), 4)

with initial condition S(0) = S° € R,. (4) admits a unique positive w-periodic solution
S*(t) > 0, which is globally attractive in R and hence, (1) has a unique disease free
periodic solution (S*(¢), 0,0, 0).

Let us define the basic reproduction number of (1), by applying the theory in Wang
and Zhang [28] with

BMSH)B(t) 0
K(t)(+B(t) 0
- )] + _
Fay=| MW v = Aw |
0 V(I + 1+£v()t)l
()] )
(@) + pa () + 00 + 557
_ p2B(t)
% (l’) = )
’@re +m)S
R

where z = (I, B, S, R)T. For our purpose, we check conditions (A1)—(A7) in Section 1
of [28]. (1) is equivalent to the following form:

d
00 = F(ta(t) = V(t2(t)). ©

where V(t, z(t)) = V™ (t,x(t)) — VT (¢, z(t)). Itis easy to see that conditions (A1)—(A5)
are satisfied.

We know that (6) has the disease free periodic solution z*(t) = (5*(t), 0,0, 0). Now,
we define f(t,z(t)) = F(t,2(t)) — V(t,2(t)) and M(t) = (0fi(t, 2" (t))/07;)3<i.j<a,
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where f;(t,2(t)) and x; is the ith component of f (¢, 2(t)) and x, respectively. From (5)

we can get
_(—m@) 0
M{(e) = < MO —Ml(t)) ’

and hence, r(@as(w)) < 1, which implies that ©*(¢) is linearly asymptotically stable in
the disease free subspace X = (0,0, 5, R) € Ri. Thus, the condition (A6) also holds.

Next, we set F'(t) and V() are 2 x 2 matrices defined by F'(t) = (0F;(t,z*(t))/
8l‘j)1<i’j<2 and V(t) = (6]}1(15, l'*(t))/axj)lgi’jgg, where ]:i(t, LL’) and Vi(lf, l‘) is the
ith component of F (¢, z) and V(¢, x), respectively. Then from (2.4) it follows that

[0 2Es) _ (YO + )+ 6 +9(E) 0
F<n(t) " ) V( 0 uz(t))'

Let Y (¢, s) is a 2 x 2 matrix solution of the system

d
aY(t, s)==-V(@)Y(ts)

forany t > s,Y (s,s) = I, where I is 2 x 2 identity matrix. Therefore, condition (A7)
holds.

Let C,, be the ordered Banach space of all w-periodic function from R — R2, which
is equipped with maximum norm ||-|| and the positive cone C¢ = {¢ € Cy: ¢(t) > 0
for any t € R}. Consider the following linear operator L : C,, — C,, by

+o0
(Lo)(t) = / Yt t —a)F(t, t— a)p(t,t —a)da foranyt € R, ¢ € Cl,
0

Finally, we can define the basic reproduction number R, of (1) as follows:

From the above discussion, we obtain the following result for the local asymptotic
stability of the disease free periodic solution (S*(t), 0,0, 0) for (1).

Theorem 1. (See [28, Thm. 2.2].) The following statements are valid:

(i) Ro = 1 ifand only if r(ép—y () = 1,
(i) Ro > Lifandonly if r(¢pp_v(w)) > 1.
(iii) Ro < lifand only if r(dpp—v(w)) < 1.

Thus, (S*(t),0,0,0) of (1) is asymptotically stable if Ry < 1, and unstable if Ry > 1.

Lemma 1. Every solution of system (1) with initial value conditions (2) is positive and
bounded on (tg, o).
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Proof. From Theorem 1.3.1 in [6] we can deduce that there exists a unique solution
(S(t,to, x0), I(t, to, x0), R(t, to, z0), B(t,to, zo)) of (1) passing through (g, z¢) with
initial value zo = (S(to), I(to), R(to), B(to) satisfying (2). Let [to, T*) be the maximal
right-interval of existence of

(S(t), I(t), R(t), B(t)) = (S(t, to, o), I(t, to, o), R(t, to, o), B(t, to, x0)).

We first prove that
S(t) >0 forallt € [tg,T™). 7

Assume, by way of contradiction, that (7) doesn’t hold. Then there must exist 77 € [to, ™)
such that

S(Ty) =0,S(s) >0 foralls e [ty, ), S'(T1) < 0.

But from the first equation of (1), we have

B(T1)S(T1)B(Ty)
K(Th) + B(Th)

S'"(Th) = A(Th) — pa (T1)S(T1) — = A(Ty) > 0,

a contradiction. Hence, (7) holds.
Next, we claim that I(¢t) > 0 for ¢ € [tg,T*). Otherwise, there must exist T» €
[to, T*) such that

I(Ty) =0, I(s)>0 foralls e [ty,T5).

From the second equation of (1) we obtain

1) = G = (100 + 1alo) + 00 10)
_ B)SE)B()
~ K(v) + B(v)
_ B)SWB(E)
” K(v) + B)

= (7(v) + p1(v) +6(v)) I (v)
— (P +pf +67)I(v) forallv € [ty, To],

and hence,

I'(Ty) > e (Tt i +6%) 14y
T>
+ /ef(T27v)('y++,u;r+5+)/B(U)S(U)B(U) dv > 0.
K(v) + B(v)

to

This contradicts I(T%) = 0 and the claim is proved.
Now, we prove that R(t) > 0 forall t € [to, T*). If R(¢) > 0, then by continuity we

can choose a small positive constant p* such that

R(t) >0 forallt € (to, to + p*] C (to,T"). 3)
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If R(tp) = 0, then
R'(to) = ~(to)I(to) +

= y(to)I(to) + TS alt)l(t)
which implies that (8) also holds. Now, we claim that
R(t) >0 forallt e (to+ p*, T"). )
Otherwise, there must exist T5 € [to + p*, T) such that
R(T3) =0, R(s) >0 forall s € [tg+ p*, T3). (10)
From (1) and (10) we have

O(T3)I(T5)

0> R(Ts) = v(To)(Ts) + T~ (7T

> 0,
which is a contradiction, and hence, (9) holds.
Finally, we prove that
B(t) >0 forallt € [tg,T"). (11

We will prove it by the way of contradiction. Assume that (11) doesn’t hold. Then there
must exist Ty € [tg, T*) such that

B(T,) =0, B(s) >0 foralls € [tg,Ty), B'(Ty) < 0.
But in view of the first equation of (1), we have
B(Ty) = n(Ta)I(Ty) — p2(Ta) B(Ts) = n(Ta)1(T1) > 0,

a contradiction. Hence, (11) holds.
From the above discussion, we find that

S(t)>0, I(t)>0, R(t)>0, B(t)>0 forallte (to,T7),
which, together with (1), yields

S'(t) = A(t) — (DS (t) — iﬁ’zf 95;;) < A* — uy S()
L BSHB() 20)I(1)
10 = e = (0 + l0) + 60)T0) - P
<BYS() — (v +py +67)I(1)
Rt =010t + 2O R < (v + 911 - iy R,

1+ a()I(t)
B'(t) = n(t)I(t) — p2(t)B(t) < nTI(t) — pg B(2).
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Therefore,
eH1to At epat _ grato At
S(t) < S(to) T it < S(to) + — =: My,
e 1 /‘Ll e 1 Nl
T s (Y +h +07 )t Yoy (YT HRT ATt _ o(vT Huy +67 )t
t) < I(tg) ——————— -
Q (to) (Y~ Huy +67)t +5 ! e(y"+py +o7)t
M
g[(to)—‘r ﬁ 71 =: MQ,
YA pg +0T
eH1to M- + + 9T) ep1t — ghito
R(t) < R(to . 2(7 - ) t
eH1 Nl eH1
My(yT + 91
< R<t0) + M =: M3,
Hq
et2to Man™ eb2t _ ah2to Mant
B(t) < Blto) —r + —!  <Bty) + L =
ek o ek Ho

forall t € (tog, T*). It follows that S(t), I(t), R(t), and B(t) are bounded on (tg, 7).
From Theorem 1.2.1 in [6] we easily obtain 7™ = oo. ]

Lemma 2. Let

LS = sup Alt) > 1% = inf Lt) >0,
ter p1(t) ter f1q(t) + B(t)
B(t)n(t) - A(t)
F o K pa(t) [ Knmm Wik mmrsm — 00
I* = inf —1| >0,
ek 1(t) () + pa(t) +6(t)

t . A(t
P [ O K@) [ E@m A0 ek w00
L' = inf inf — 1] >0,
tek | p2(t) ter  m(t Y(t) + pa(t) +6(¢)
and let (S(t), I(t), R(t), B(t)) be a solution of system (1) with initial conditions (2). Then

1% <liminf S(¢) < limsup S(t) < LY,
oo t—o0

t—

liminf I(t) > 1, liminf B(t) > L7, lim inf R(t) > 0.
—00

t—o0 t—o0

Proof. From Lemma 1 we can find that the solution (S(t), I(t), R(t), B(t)) is positive
and bounded on (tg,00). By the fluctuation lemma [17, Lemma A.1], there exist se-

quences
{tll?}p>1’ {ti}p21’ {t?’}p21’ {té}p>1’ {tf?}p21

such that, as p — oo,

t, =00, S(t) > limsupS(e),  S'(t) =0,

2 2 o /(42 (12a)
t, — 00, S(tp) — htrglor.}f S(t), S (tp) — 0,
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ty—oo,  I(t;) —»liminfI(t),  I'(t;) =0,
t,— oo, B(ty) —lminf B(t),  B'(t;) »0, (12b)
t> =00, R(t)) —liminf R(t), R'(t) —0,

t—o0

The first two lines in (12) yield

, B(ty)S(t))B(t,
(1) = A1)~ ()3(}) - SR o

and

'(tp) A on
R YO (13)
S'(5) . A(t)

— P >inf——"  — §(¢3). (14)
pa(ty) + B(t3) ~ tek pa(t) + B(t) (t)
Letting p — oo in (13), (14) implies that

¥ < liminf S(t) < limsup S(t) < LS.
t—o00

t—o0

Furthermore, we prove that there exists positive constants / and L such that

liminf I(t) > 17, lim inf B(t) > L'
—00

t—o0

Otherwise, lim inf;_,, I(t) = 0, liminf,_,, B(t) = 0. For each ¢ > t(, we define

m(t) = max{gz €<t I(§) = min I(s)}

to<s<t

ﬂmax{f: §<t, B(§) = min B(s)}.

to<s<t
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Notice that m(t) — oo as t — oo and that
htrggolf I(m(t)) =0, htrggolf B(m(t)) = 0.

However, I(m(t)) = ming, <s<¢ 1(§), B(m(t)) = ming, <s<t B(§), and so I'(m(t)) <0,
B'(m(t)) < 0forall m(t) > to. Let € > 0 and t§ > to be such that

o E@pa(t) et (fie® s —©) 90 1 >0
i S—r () + pa (t) + 0(2) ’
and
S(t) > At) —¢ forallt > t5.

B (0 + B0

Since 0 > B'(m(t)) = n(m(t))I(m(t)) — pa(m(t))B(m(t)) and ua(m(t)) is positive,
then

B(m(®) > 1) 1)), (15)

According to (1), (3), and (15), we have
0= 1I'(m(t))
_ B(m(t))S(m(t))B(m(t)) _ (’y(m(t)) T (m(t)) +5(m(t)))](m(t))

K(m(t)) + B(m(t))
O(m(t)I(m

WV

14 a(m(t)

t
_ SUnOISE) (o (1)) + i (m(1)) + 8 (m(®)) L (m(®)

Bimm) T 1
~O(m(t)I(m())
T+ a(m(O)Im(®)

> Kf(@ffj)gjfgfti -~ (3 (m0) + 1 m(@) + 5(m(0) 1 (m(0)
n(m(¢))I(m(t))
_O(m(t)I(m(t))
L+ a(m(t))I(m(1))
() B(m(t))S (m(t)) — I(m(t))

> I(m(t)) { RG]

n(m(t))
L+ Rt mey L (1)

— (v(m(®)) + 1 (m(t)) + 5(m(t)))} for all m(t) > t;.

ﬁ.\_//\
~
—~
3
—~
~—
~

Thus, for all m(t) > ¢,

Tl D) B(m(t)) S (m(t)) — 9(m(t))
m(t)) + p1 (m(t)) + 6(m(t)) > K(m(t))p2(m(t))
y(m(t) + ma (m(t)) +6(m(t)) )
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and
K(m(t))pa(m(t)) [ Romtiaday Bm (1) S(m(t)) — d(mi(t))
1m(®) > == o) { Ym(®) + m(m(D) +om@®) 1}
_ K(m®)m(m(t))
- n(m(t))
y {fwl%/s(mu»(mfteu@ s —© — d(m() 1]
y(m(t)) + p1(m(t)) + 6(m(t))

[ K(m(t)pa(m(1))
o “f{ n(m(®))

teR
m(t . At
y {fm?t()m%a»ﬂ(m(m(mfteﬂ% i — )~ 0m() 1] }

Y(m(t) + pa(m(t)) + 0(m(t))

in K (t)pa(t) %ﬁ(t)(inft@@ % —€) —¥(t) -
> teu{é { n(t) [ Y(t) + pa(t) +6(2) 1] }

> 0.

By the continuity and boundedness of the coefficient functions in (1), we can select

a subsequence, still denoted by {t; 1‘3‘;1, such that
Jim S(,), lim K(2), lmoy(6) 4 (t,) +6(8,), i ps (),
pler;o a(t;), pler;o ﬂ(t;), and plingoﬂ(t;) exist for all i = 3,4, 5. (16)

From (1), (3), (12), and (16) we get
Py a8y S8y — 9(id)
(tp) _ Km0 P2 P
I3 = n(t3)
(%) L+ 2@ (1)

Letting p — oo in (16) and (17) implies that

= (&) + m(8) +0(t).  AD

K(m(8) [m’gé’fj(w(t%sa%) o) |

liminf I(¢) = lim I(t}) > li P ( , [
RO = I L) > e = ) ) o

p
(t) - A(t)
> inf {K(t)l‘?(t) {K(?)Mz(t)ﬁ(t) inf;er OGN 9(t) B 1] }
e () + pa (t) + 6(2)

=1'>0.
Similarly,
0= R (ty) =~(ty)I(t)) +

p p

> (ty)1(ty) — pa(ty) R(ts),
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which yields

liminf R(t) = liminf R(¢) > inf 7 (¢) lim inf 7(t) > 0.

t—o00 p—r00 teER ,u,l(t) t—o00

Similarly, we also have

lim inf B(t)
t—o0
t
= liminf B(t)) > inf n(t) lim inf I(t)
p—o0 teR 2 t) t—o0
n(t) ; A(t)
> inf{ () ;e KBpa() {K(t)uz(t)ﬂ(t) infrer mrmepm — ) 1} }
otk | po(t) tek (1) V() + pa(t) +0(t)
=L'>0.
The proof of Lemma 2 is now completed. O

Lemma 3. Assume that

K(t)p(t)L®
{0 G o <O 1w
S
igﬂg{ [(v(t) + pa () + 6(1))] + B(t) + m} <0, (19)
ilelﬂg{n(t) — ()} <0 (20)

and the assumptions of Lemma 2 hold. Let
(S(). 1(t), R(t), B(1)),  (S(t),1(1). R(t), B(t))

be the solutions of system (1) with initial conditions (2). Then there exist ty > to and
positive constants ¢ and k such that, for all t > £,

|S(t) = S(t)| < ke ', |I(t)—I(t)| < ke <, |B(t)— B(t)| <ke <. (1)
Moreover;, there exist constants tp > to and kg such that
|R(t) — R(t)| < kre™<" forallt > tg. (22)
Proof. Let, for all t € [tg, 00).
w(t) = (w1 (8), 22(8), 24(1)) = (S() = (1), 1(t) — [(1), B(t) - B(t)).
Then (1) gives

. 0B® 1,
1 ==1mO- 75550 "Y T o1 80)E© 1 BO)

Nonlinear Anal. Model. Control, 23(5):619-641
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o o) )

wo(t) = — | y(t) + pa(t) +6(t) + 1T oI T o)D) 2(t)

B(t)B(t) K(t)B(t)S(t)
TRmrBO T (K(t) + BO)(K(t) + B(D)) za(t),
() = n(t)z2(t) — pa(t)za(t),
which implies
w1(t) = e oo [m(e)*%]df)xl(%)

[ et gm0 K@BES@e) ],

+ T ) + B KW@ + Bwp) @Y

to
e 9o V
2o (t) = e SV OFTmEOHO+ rrmen ammen | Y, (4

t
¢ 9(6)
—i—/e_ S @)+ O)+6O)+ rmmren are@ren | 4¢
to

B(v)B(v)x1(v) K(U)B(v)g(v)x4(v) y
< m * wo B E B
and
xo(t) =e Ji “2(9)dex4(tv0) + /ef I3 n2(0) 4On(v)za(v) dv (25)

to
for all t > £y. Let e < min{L?, L®} be a positive constant such that

K(O)B(E)(LS + o)
<K@+Lhwv}<“

sup{—ulu)+
teR

K()B(1)LS
<K@+L1ev}<“

sup {n(t) — p2(t)} <o0.

SUP{— [(v() + (1) +6(1))] + B(1) +

teR

This can be achieved because of (18), (19), and (20). Consequently, we can choose
positive constants ¢ and 7 such that

mew@5+a}<_ﬂ 06

SUP{C—Ml(tH‘ (K(t) + LI —6)2

teR
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S
sup { ¢ = [0+ m(®)+ 50)] + 600+ s Ao p <7 @D

teR
sup {¢ +n(t) — pa(t)} < —7. (28)
teR

From Lemma 2 we can choose £, > ¢, such that, for all ¢ > £,

S(t) < LS + e, S(t) < L +e, I(t) > 1" —e, B(t) > L' —e.

Let [lzflo = max{supe(s, io) [£1(E)], SUPtery o) [£2(E)], SUPefry i) [€4(1)]}, and
ko > 1 be a constant. It is obvious that
[2(Eo)|| < llzllo + € < ko(llz]lo + €) = Ko (||zllo + €)eToe™Fo.
In the following, we will show
()] < ko([|z]lo + €)eSToeSt  forall t > f. (29)
Otherwise, one of the following three cases must occur:
Case 1. There exists #; > 0 such that
[|21(61)[] = Ko (||z]lo + €)eSToe=", (30)
()] < ko(l|zllo + €)estoe¢t  forall t € [Fy, 61). 31)

If Case 1 holds, then in view of (23), (26), (30), and (31), we have

0 B(0)B(8)
o~ Jio MO~ x@rEE ] 40

|z1(61)| = 1 (to)

01 -
[tz { K (0)B(2)3(v)a(v)
(5

to
o Tm@an, o 7 250 dekw()f((g)(it Al
Lo
O (2 4 ¢)
01
e I
to
= ko(ll=llo + 6)6606{91
. [16 [ -0 +7 im0 KBNS 1o
o J (B (w) + LT~ o
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< ko ||$H0+6) (toe €

01
|]j _f;;l (11(0)—¢) do + /e_ fvgl (h1(0)=C) o (Ml(v) - <> dU]
0

to
= ko(|lzlo + e)ecf“e*a’1 {1 — <1 — 1>e Sy m®)=0) de}
ko
< k0(||33”0 4 G)QCEOG_Cel,

which contradicts (30) and proves (29).
Case 2. There exists 65 > 0 such that

[22(8)] = ko ([lz]lo + €)esToe, (32)
()] < ko([|zllo + €)estoe¢t forall t € [f, fa). (33)
If Case 2 holds, then in view of (24), (27), (32), and (33), we have

9(0) .
e = [, O+ O+ O+ mmrren aram ey | 49 x2(fo)

|22 (62)] =

t
t 9(6)
+/e_fv["’(9)+“1(‘9)+5(9)+<1+a<e>1<e>><1+a<e>1’<e>>]de

B(v) B(v)z1 (v) K (0)B(0)S(v)4(v)
X[mw+ *

L = } dv
B(v)  (K(v)+ B(v))(K(v) + B(v))

]
e S ()41 (0)+6(0)] d9’$2(£0)’

02
N / o= JO21(0) 4111 (0)+5(0)] 46

to

KEIE + arto]

[0 for (0] + LRI

o1
<e ffo [v(0)+11(0)+6(0)] de(”xHO + 6)

02
+ / SO+ (0)+6(0)]d
to

K(v)Bw)(L* +¢)
(K(v)+ L' =€)

1[7(9)+u1(~9)+5(0 ]d9(|

XFM+ FMMwwW%*%v

<e |zlo +e)
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02
n / o= [P [1(0) 4111 (0)+5(0)] o
o

X [y(v) + 1 (v) 4+ 8(v) — ] ko ([|x]lo + €)eTe™Y du

= ko (Jlzllo + ¢)eSToe<% [1& Ji2 (1(0)+11(0)+5(6)~C) a0
ko

02
+ /e_ 172 (r(0)+u1(6)+6(0)—¢) db (v(v) + p1(v) + 8(v) =€) dv]

to
= ko(Hx”o =+ 6)84{097492 [1 — (1 — ki))e ff? O+ (0)+3(6)=C) da}
< ko(llz]lo + €)eoe<",
which contradicts (32) and proves (29).
Case 3. There exists 8, > 0 such that
Hx4(94)” = ko(Hl"Ho—FE)edOe*w“, (34)
lz®)]| < ko(llzllo + e)ecfoe_ct forall ¢t € [to,0,). (35)

If Case 3 holds, then in view of (25), (28), (34), and (35), we have

04
6
EAGIEICE Jio “2(0)d0x4(fo) +/e_ e 124y (1) 25 (v) do
to
04
6.
< e*f{,o‘i u2(6)d0|x4(fo)| _|_/e*fv94 “2(6)d677(11)|$2(11)|d’u
to
04
6. -
e O o) 4 [ OOkl + e an
io

=ko ||:E||0+e)ea°e (s

(

1 ?

2o Sy (m2(0)=¢) do J24 (u2(0)—¢) do

[k‘o +/e n(v )dv]
fo

(

< ko (|| ||0+€)ect°e <0

04
L~ [t ua(0)—¢) a0 ;
kio (1 /e f (n2(0)— C)d@('uQ(e) _C) dv]

fo
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P 1\ —r° _
= ko(llzllo + E)GC“’(fCe4 [1 — <1 — k)e I (12(0)—) a0
0

< k0(||$||0 4 e)eCfOe*@‘l,

which contradicts (34) and proves (29).
Letting € — 07, it follows from (29) that

lz®)| < ko(llllo + e)ed"e*@ forall t > £,

which proves (21).
Now, we prove that (22) holds. Without loss of generality, we assume that

|R]|cc = sup |R(t) — R(t)’ > 0.
t>to

Let
x3(t) = R(t) — R(t) forallt € (g, 00).

Then

/ _ T 19(t)3;‘2(t) _ T

z3(t) = y(t)x2(t) + A+ a@I0)1 +a@id) pa (t)xs(t)
and

r3(t) =e Jigm® Y3 (fo)
te—ff/tl(f?)df? ) (v (V)2 (v) v
v/ O o e @ 9

to
forallt >ty > #y. Forany e > 0, since 1] — ¢ > 0, we can choose tp > o and k > ko
such that

(v +9)kol|z[|oesT (vt +07)kol|z[|oetT

= (ur =0 + (Rt oettin S (=0 + K Rcte <0 GD
Consequently,
[3(1)] < [1Rlloe + € < k3 (| Rlloo + €) = K5 ([l2llo + )eStme<tn,
Now, we will show
|lzs(t)| < k& (|lzllo + €)e'me™<" forallt > tg. (38)
Otherwise, there must exists * > ¢t such that
[3(67)]] = kg (o + €)eSre=", (39)
lzs@®)]] <k (llzllo + €)es' e <" forallt € [tg,0%). (40)
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From (36), (37), (39), and (40), we have

[a3(0°)] = e 1ia 110y 1)
y I(v)a2(v)
e v)xa(v
4 [e Lo “1(9)‘19[ v)xa(v) + = ]dv
t/ y(v)xa(v) (1+a(v)l(v))(1+oz(v)1(v))
R
o
< e*“f("**tR){lis(tR)| + /efﬂf(a*,v) (7+ +19+)|x2(v)| dv
tr
< e*ﬂf(&*,t}?) (”RHOO + 6)
o*
+ /e_“;(e*_”)('fr + 0 ko (2o + €)eToe <" dv
tr

< kS (||R||OO + e)eCtRe_Ce*

- 0* -~
9+ i

y i*e—w*—m)(u;—o+/e—<e*—m><u;—o (" + 95 kollzfloc™
k& ki (IRl + €)eStn

tr

< k(IR + 6)e<tRe*<9*

ko

L tr

_ 0*
o | Lo =t -0 4 /e*(e**tR)(/h_*C) (i — ) dyl

* 1 . _
= g (I R]loe + €)eStre<? [1 _ (1 _ k>e—<e —tr)ui —o}

*
0

< ki (IRl + e)eCtRe*CG*,

which contradicts (39). Hence, (38) holds. Letting ¢ — 0%, we deduce from (38) that
(22) holds, which ends the proof. O]

Remark 1. Lemma 3 shows that a T-periodic solution (3(t), I(t), R(t), B(t)) of (1) is
globally exponentially stable.

3 Main results

Theorem 2. Under the assumptions of Lemma 3, system (1) has exactly one positive
T-periodic solution, which is globally exponentially stable.

Proof. Let (S(t),I(t), R(t), B(t)) be a solution of (1) with initial conditions

S(tg) > 0, I(to) > 0, R(ty) >0, B(ty) > 0,

Nonlinear Anal. Model. Control, 23(5):619-641
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By Lemmas 2 and 3, the solution (S(£), I(¢), R(t), B(t)) is bounded, and

lim inf S(t) > liminf I(£) > 0, liminf R(t) > 0, liminf B(t) > 0.

t—o00 t—o0 t—o00 t—o0

By the periodicity of the coefficients of system (1), one can easily see that, for any
nonnegative integer h, (S(t + hT),1(t + hT), R(t + hT), B(t + hT)) is a solution of
system (1) with initial values

(S(to + RT), I(to + hT), R(to + hT), B(to + hT)).

In particular, (5(t), 1(t), R(t), B(t)) = (S(t + T),I(t + T),R(t + T),B(t + T)) is a
solution of (1) with initial values

(S(to), I(to), R(to), B(to)) = (S(to + T), I(to + T), R(to + T), B(to + T)).

It follows from Lemma 3 that there exist tAo > to and ¥ such that, for an nonnegative
integer h and t + 1T > to,

|§(t + (h+1)T) - S(t+ hT)| = | t+ hT) — S(t + hT)| < e C(HHAT).
’f(t+(h+1)T) I(t—i—hT)] = | (t+ hT) — I(t + hT) | < Kem¢(h) .

|R(t+ (h+1)T) — R(t + hT)| = |R(t + hT) — R(t + hT)| < Ke~ S+,

|B(t+ (h+1)T) — B(t + hT)| = |B(t + hT) — B(t + hT)| < Ke~ ¢+,

Now, we show that (S(t + hT), I(t + hT), R(t + hT), B(t + hT)), is convergent
on any compact interval as ¢ — oo. Let [a,b] C R be an arbitrary interval. Choose
a nonnegative integer qo such that ¢t + g7 > t for t € [a,b]. Then for t € [a,b] and
q > qo we have

g—1

St+qT) =St +qT)+ Y [S(t+ (h+1)T) - S(t+hT)],

LSS
=oQ
)

I(t+qT) = I(t + qT) + [I(t+ (h+1)T) — I(t + rT)],
h

S)

q

—

R(t+qT) = R(t+qT)+ > [R(t+ (h+1)T) - R(t + hT)],

2

<0
-5

B(t + qT) = B(t + qoT) + [B(t+ (h+1)T) — B(t + hT)],
h

S)

q

which, together with (41), implies that {(S(t+hT), I (t+hT), R(t+hT), B(t+hT))}q con-
verges uniformly to a continuous function, say (S*(t), I*(¢), R*(t), B*(t)), on [a, b] CR.
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Because of arbitrariness of [a,b], (S(t + ¢T),1(t + qT), R(t + qT), B(t + qT)) —
(8*(t), I*(t), R*(t), B*(t)) as ¢ — oo fort € R. Moreover, (S*(t), I*(t), R*(t), B*(t))
is bounded and

S* > liminf S(t) > I* > liminf I(t) > 0,
t—00 t—o0

R*> liminf R(t) > B* > liminf B(t) >0
t—o0 t—o0

forallt € R.
It remains to show that (S*(t), [*(t), R*(t), B*(t)) is a T-periodic solution of sys-
tem (1). The periodicity is obvious since

S*(t+T) = lim §((t+T)+qT) = +1}1300§(t+(q+1)T) = 5*(t),
I(t+T) = lim I((t +T)+qT) = 1}2100?(75 +(q+1T) =I"(t),

R*(t+T) = lim R((t+7T)+qT) =  Jim R(t+ (¢ +1)T) = R*(t),

q— 00 (
B*(t+T) = lim B((t+T)+qT) = i B(t+(q+1)T) = B*(t)

q—00

forall t € R. Now, note that (S(t + ¢T), I(t 4 qT), R(t + qT), B(t + ¢T)) is a solution
to (1), i.e.

S(t—qT) — S(to +qT) = / {A(s +qT) — pa(s + qT)S(s + ¢T)
) _ B(s+4qT)S(s+qT)B(s + qT)} ds
K(s+qT) + B(s + qT) ,

B(s + qT)§(s + qT)E(s +4qT)
K(s+qT) 4 B(s 4 qT)

Fe— 1)~ Sta-+a1) = [ |
— (v(s+qT) + p(s + qT) + 8(s + qT)) I (s + qT)

(s +qD)I(s +qT) } ds

1+ a(s+qT)I(s + qT) 7

(s + qT)I (s + ¢T)
1+ a(s+qT)I(s + qT)

ﬁ(t —qT) — g(to +4T) = / {7(8 + qT)T(s +47T) +

— pa(s + qT)R(s + qT)} ds,
B(t — qT) — S(to + qT) = / [n(s+ qT)I(s+ qT) — ps(s + qT)B(s + qT)] ds

to
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for t > ty. Letting ¢ — oo gives

S*(t) = 5% (to) =/ {A(S) — h(s)S7(s)

to

S B )]
K@+w@]“

I*(t) = I (to)

D(s)I*(s)

= (7(5) + () + 8(5)) I"(5) = 1+a(s)1(s)} -

0
t

T et ~ OS] o

B(0) = B (to) = [ o)1)~ pua(s) B"S]ds

for ¢t > to, so (S*(t), I*(t), R*(t), B*(t)) is a solution to (1) on [tg, o0).
Lastly, by Lemma 3, (S*(¢), I*(t), R*(t), B*(t)) is globally exponentially stable. [

Remark 2. Assume that all parameters are constants. Then the autonomous cholera
model (1) has exactly one endemic equilibrium, which is globally exponentially stable.

4 Simulations

In this section, we will illustrate the existence and global exponential stability of positive
periodic solutions for system (1) by simulations. Let A(t) = 20(1+0.75| sin(27t/365)|),
B(t) = 0.005(1 + 0.75| cos(27t/365)|), and other parameters are listed in Table 1.
Then system (1) satisfies all the conditions in Theorem 2. Hence, system (1) has exactly
one positive 511.4-periodic solution (S*(t), I*(t), R*(t), B*(t)). Moreover, it is globally
exponentially stable with exponential convergence rate ( =~ 0.036. This fact is confirmed
by the numerical simulations in Fig. 1. The experimental environment of numerical sim-
ulation is Matlab 2.9a.

Table 1. Estimation of parameters.

Parameters =~ Meaning Values Reference
n(t) Contribution of infected individuals ~ 0.032 cells/L-per day  [3]

to the population of V. cholera
i (t) Natural death rate of human 5.48 x 1075 /day [14]
pa(t) Rate of loss of V. cholera 0.33/day 3]
~v(t) Recovery rate 0.04/day [7.8]
4(t) Disease-induced death rate 0.015/day [71
K(t) Concentration of V. cholera in water 4000 cells/L Assumed
9(t) Maximum recovery rate 0.05 Assumed
a(t) 50% saturation 120 Assumed
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Figure 1. Numerical solutions of (1) for (S5(0),

1(0), R(0), B(0)) = (4000, 500, 37400, 50).

Remark 3. To the best of our knowledge, there is no result on the global exponential
stability of positive periodic solutions for the cholera model with periodic incidence rate
and saturated treatment function. We also mention that the results in (see [1, 5,9, 13])
can not be applied to the global exponential stability of positive periodic solutions for
system (1). Here we employ a novel proof to establish some criteria, which guarantee the
existence and global exponential stability of positive periodic solutions for the cholera
model.

5 Discussion

In this paper, we considered a non-autonomous cholera epidemic model, which involves
almost periodic incidence rate and saturated treatment function. By using the differential
inequality technique and Lyapunov functional method, we obtained the existence and
global exponential stability of almost periodic solutions for the addressed SIR model,
which improve and supplement existing ones. Also, an example and its numerical simu-
lations are given to demonstrate our theoretical results.

As we all known, spatial diffusion plays an important role in epidemic spread [11, 18,
19,24]. We will study the cholera models with spatial diffusion in the future.

Nonlinear Anal. Model. Control, 23(5):619-641
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