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Abstract. In this paper, we constructed a traveling wave solutions expressed by three types of
functions: hyperbolic, trigonometric, and rational. We used a fractional subequation method for
some space-time fractional nonlinear partial differential equations (FNPDE), which are considered
as models for different phenomena in natural and social sciences fields like engineering, physics,
geology, etc. This method is very effective and easy to investigate exact traveling wave solutions to
FNPDE with the aid of the modified Riemann–Liouville derivative.
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1 Introduction

Over the last decades, the field of fractional calculus has thrived in pure mathematics as
well as in scientific applications, and its utility has become more and more conspicuous.
Rating the fractional calculus as a young science would be completely wrong. In fact,
the ancestry of fractional calculus can be outputted from Leibniz’s letter to l’Hôpital,
see [25] in which the meaning of fractional derivatives, especially the case of the one-half
order, was first discussed with some remarks about its possibility. The last reference of
fractional calculus during the lifetime of Leibniz can be found in [26]. With the death
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of Leibniz in 1716, the topic of fractional derivatives did not end, and many famous
mathematicians have worked on this topic and related questions. A list of mathematicians,
who have provided important contributions up to the middle of last century, includes
Laplace, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Lévy, Marchaud, and
Riesz [21, 22].

The fractional differential equation may be considered as a straightforward develop-
ment of the classical differential equation. Thus, the studies related to them have received
considerable attention in more recently years. Fractional differential equations [2] have
been considered as powerful mathematical tools for factual and more accurate description
of different phenomena. They appear in various areas, including mathematical chemistry
[9,18], viscoelasticity [27], biology [22], electrochemistry, physics [12], semiconductors,
seismology, scattering theory, heat conduction, fluid flow, metallurgy, population dynam-
ics, optimal control theory, mathematical economics, and chemical reaction. As the em-
ployment of fractional partial differential equations (FPDEs) is increasing in many social
and scientific fields [23, 38], the main challenge we confront is to obtain solutions for
them. Unfortunately, for most of these FPDEs, no one able to achieve analytic solutions
for such problems. There are an extraordinary number of demonstrating and fractional-
order differential equations, which have been illuminated numerically utilizing different
methods, see [1–4, 7, 8].

Moreover, several analytical techniques are presented to solve the fractional differen-
tial equation such as an iterative Laplace transform method [32, 33], adaptive observer
[39], and a new analytical technique (NAT) [35]. On the other hand, very few techniques
for the analytical solution of FNPDEs have been presented. For example, the fractional
variational iteration method [10, 37], the Adomian decomposition method [8, 28], the
homotopy perturbation method [11, 15], the finite element method [14], the (G′/G)-
expansion method [31, 36]. Fractional differential-algebraic equations is solved in [6]
using waveform relaxation method. A spectral decomposition [3] based on Fourier and
Laplace transforms is introduced to solve time-fractional diffusion equation. Analytical
soliton solutions are listed by Navickas et al. [24] for solving nonlinear fractional-order
differential equations. Time-fractional diffusion equation is solved using spectral decom-
position method with Fourier and Laplace transforms [3]. Fourier series expansion [29]
is used to construct semianalytical solutions for time-fractional telegraph equations. For
Riesz fractional advection-dispersion equation, the authors in [34] used the Laplace and
Fourier transforms to treat the time and space variables. While, nonlinear time-fractional
differential equations are solves using the three-time-splitting scheme [5].

Here, we applied a fractional subequation method [40, 41] for finding new solutions
of some FPDEs like the space-time fractional Cahn–Hilliard equation [19], the space-
time fractional fifth-order Sawda–Kotera equation [20, 30], and the space-time fractional
modified equal-width (EW) equation [13]. We use a fractional subequation method to
introduce another solutions for the mentioned problems in the sense of the modified
Riemann–Liouville derivative defined by Jumarie [16, 17], which is a fractional version
of the known (G′/G) method. This method is based on the fractional ODE

D2α
ξ G(ξ) + λDα

ξG(ξ) + µG(ξ) = 0, (1)
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where Dα
ξG(ξ) is the modified Riemann–Liouville derivative of order α for G(ξ) with

respect to ξ.
This paper is organized as follows. After this introduction, some basic properties of

Jumarie’s modified Riemann–Liouville derivative are given in Section 2. In Section 3, the
main steps of a fractional subequation method are given. In Section 4, we construct the
solutions of some FNPDEs by a fractional subequation method. Finally, In Section 5, the
conclusions are illustrated.

2 Jumarie’s modified Riemann–Liouville derivative and general
expression for (Dα

ξ G/G)

Jumarie’s modified Riemann–Liouville derivative of order α is defined by the following
expression:

Dα
t f(t) =


1

Γ(1−α)
d
dt

∫ t
0
(t− ξ)−α(f(ξ)− f(0)) dξ, 70 < α < 1,

(f (n)(t))(α−n), n 6 α < n+ 1, n > 1.

We list some important properties for the modified Riemann–Liouville derivative as fol-
lows:

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α,

Dα
t

(
f(t)g(t)

)
= g(t)Dα

t f(t) + f(t)Dα
t g(t),

Dα
t f
[
g(t)

]
= f ′g

[
g(t)

]
Dα
t g(t) = Dα

g f
[
g(t)

](
g′(t)

)α
. (2)

The general solution of Eq. (2) is given as

H ′(η)

H(η)
=


−λ2 +

√
∆
2

C1 sinh
√
∆
2 η+C2 cosh

√
∆
2 η

C1 cosh
√
∆
2 η+C2 sinh

√
∆
2 η

, ∆ > 0,

−λ2 +
√
−∆
2

−C1 sin
√
−∆
2 η+C2 cos

√
−∆
2 η

C1 cos
√
−∆
2 η+C2 sin

√
−∆
2 η

, ∆ < 0,

−λ2 + C2

C1+C2η
, ∆ = 0,

where ∆ = λ2 − 4µ, C1, C2 are arbitrary constants. Since Dα
ξG(ξ) = Dα

ξH(η) =
H ′(η)Dα

ξ η = H ′(η), we obtain

Dα
ξG(ξ)

G(ξ)
=


−λ2 +

√
∆
2

C1 sinh
√
∆

2Γ(1+α)
ξα+C2 cosh

√
∆

2Γ(1+α)
ξα

C1 cosh
√
∆

2Γ(1+α)
ξα+C2 sinh

√
∆

2Γ(1+α)
ξα
, ∆ > 0,

−λ2 +
√
−∆

2Γ(1+α)

−C1 sin
√
−∆

2Γ(1+α)
ξα+C2 cos

√
−∆

2Γ(1+α)
ξα

C1 cos
√
−∆

2Γ(1+α)
η+C2 sin

√
−∆

2Γ(1+α)
ξα

, ∆ < 0,

−λ2 + C2Γ(1+α)
C12Γ(1+α)+C2ξα

, ∆ = 0.

(3)
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3 Description of a fractional subequation method

In this section, we list the main steps of the fractional subequation method for finding
the exact solutions of FNPDEs. Suppose that a FNPDE, say in the independent variables
t, x1, x2, . . . , xn, is given by

P
(
u1, . . . , uk, D

α
t u1, . . . , D

α
t uk, D

α
x1
u1, . . . , D

α
x1
uk, D

α
xnu1, . . . ,

D2
xnαuk, D

2α
t u1, . . . , D

2α
t uk, D

2α
x1
u1, . . .

)
= 0, (4)

where ui = ui(t, x1, x2, . . . , xn), i = 1, . . . , k, are unknown functions, P is a polynomial
in ui, and their various partial derivatives include fractional derivatives.

Step 1. Suppose that Ui(ξ) = ui(t, x1, x2, . . . , xn), ξ = ct + k1x1 + k2x2 + · · · +
knxn+ ξ0. Use the previous transformation, then Eq. (4) can be turned into the following
fractional ordinary differential equation with respect to the variable ξ:

Q
(
U1, . . . , Uk, c

αDα
t U1, . . . , c

αDα
t Uk, k

α
1D

α
ξ U1, . . . , k

α
1D

α
ξ Uk, k

α
nD

α
ξ U1, . . . ,

kαnD
2
ξαUk, c

2αD2α
ξ U1, . . . , c

2αD2α
ξ Uk, k

2α
1 D2α

ξ U1, . . .
)

= 0. (5)

Step 2. Suppose that the solution of Eq. (5) can be expressed by a polynomial in
Dα
ξG(ξ)/G(ξ) as follows:

Ui(ξ) =

mj∑
i=0

aj,i

(
Dα
ξG(ξ)

G(ξ)

)i
, j = 1, 2, . . . , k, (6)

whereG = G(ξ) satisfies Eq. (1), and aj,i, i = 0, 1, . . . ,m, j = 1, 2, . . . , k, are constants
to be determined later with aj,m 6= 0. The positive integer m can be determined by con-
sidering the homogeneous balance between the highest-order derivatives and nonlinear
terms appearing in Eq. (5).

Step 3. Substituting Eq. (6) into Eq. (5) and using Eq. (1), collecting all terms with
the same order of Dα

ξG(ξ)/G(ξ) together, the left-hand side of Eq. (5) is converted into
another polynomial in Dα

ξG(ξ)/G(ξ). Equating each coefficient of this polynomial to
zero yields a set of algebraic equations for aj,i, i = 0, 1, . . . ,m, j = 1, 2, . . . , k. Solving
the equation system in Step 3 and using Eq. (3), we can construct a variety of exact
solutions for Eq. (4).

4 Applications

In this section, we will construct solutions for some nonlinear FNPDEs, namely the space-
time fractional Cahn–Hilliard equation, the space-time fractional fifth-order Sawda–
Kotera equation, and the space-time fractional modified equal-width equation by applying
the fractional subequation method in which FNPDEs are very important in mathematical
physics and have been paid attention by many researchers.
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4.1 The space-time fractional Cahn–Hilliard equation

Consider the space-time fractional Cahn–Hilliard equation of the form

Dα
t u− γDα

xu− 6u
(
Dα
x

)2 − (3u2 − 1
)
D2α
x u+D4α

x u = 0, (7)

where 0 < α 6 1, γ is a real constant that represent the different diffusion power, and
u is a function of (x, t). For the case corresponding to α = 1, this equation is related
with a number of interesting physical phenomena like the spinodal decomposition, phase
separation, and phase ordering dynamics. On the other hand, it becomes important in
material sciences. However, we notice that this equation is very difficult to be solved and
several articles investigated it [19]. Now we will apply the described method above to
Eq. (7). Let

u(x, t) = Ui(ξ), ξ = ct+ kx+ ξ0,

where c, k, ξ0 are all constants with k 6= 0. Then using the second equality in Eq. (2),
Eq. (7) can be turned into the following fractional ordinary differential equation with
respect to the variable ξ:

cαDα
ξ U − γkαDα

ξ U − 6U
(
kαDα

ξ

)2 − k2α
(
3U2 − 1

)
D2α
ξ U + k4αD4α

ξ U = 0. (8)

Suppose that the solution of Eq. (8) can be expressed by

Ui(ξ) =

mj∑
i=0

aj,i

(
Dα
ξG(ξ)

G(ξ)

)i
, j = 1, 2, . . . , k, (9)

where G = G(ξ) satisfies Eq. (1). By balancing the order between the highest-order
derivative term and nonlinear term in Eq. (8) we can obtain m = 1. So, we have

U(ξ) = a0 + a1

Dα
ξG(ξ)

G(ξ)
. (10)

Substituting Eq. (10) into Eq. (8) and collecting all the terms with the same power of
Dα
ξG(ξ)/G(ξ) together, equating each coefficient to zero, yield a set of algebraic equa-

tions. Solving these equations by mathematica programm yields

Case 1. a0 = 0, a1 = −
√

2 kα, c =

(
k−α

γ

)−1/α

;

Case 2. a0 = 0, a1 =
√

2 kα, c =

(
k−α

γ

)−1/α

.

Substituting the result above into Eq. (9) and combining with Eq. (3), we can obtain the
following solutions to Eq. (7).

When ∆ > 0,

u1(x, t) = ∓
√

2 kα
(
−λ

2
+

√
∆

2

C1 sinh
√
∆

2Γ(1+α)ξ
α + C2 cosh

√
∆

2Γ(1+α)ξ
α

C1 cosh
√
∆

2Γ(1+α)ξ
α + C2 sinh

√
∆

2Γ(1+α)ξ
α

)
. (11)
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u(x,t)

t

x

Figure 1. The variation of the solitary wave profile u1 defined by (11) of Eq. (7) corresponding to the values
λ = 2, α = 0.7, γ = 0.02, µ = 0.2.

u(x,t)

x

t

u

Figure 2. The solitary wave solution u2 defined by (12) of Eq. (7) for the parameters λ = 0.5, α = 0.7,
γ = 0.02, µ = 0.2.

When ∆ < 0,

u2(x, t) = ∓
√

2 kα
(
−λ

2
+

√
−∆

2Γ(1 + α)

×
−C1 sin

√
−∆

2Γ(1+α)ξ
α + C2 cos

√
−∆

2Γ(1+α)ξ
α

C1 cos
√
−∆

2Γ(1+α)η + C2 sin
√
−∆

2Γ(1+α)ξ
α

)
. (12)

When ∆ = 0,

u3(x, t) = ∓
√

2 kα
(
−λ

2
+

C2Γ(1 + α)

C12Γ(1 + α) + C2ξα

)
,

where ξ = ct+ kx+ ξ0.

These solutions were represented graphically in Figs. 1, 2.

Nonlinear Anal. Model. Control, 23(5):710–723



716 M.A. Abdelkawy et al.

4.2 The space-time fractional fifth-order Sawda–Kotera equation

Consider the space-time fractional fifth-order Sawda–Kotera equation [20,30] of the form

Dα
t u+D5α

x u+ 45u2 Dα
x + 15Dα

xD
2α
x u+ 15uD3α

x u = 0, (13)

where 0 < α 6 1, and u are the functions of (x, t). As example (1), we will apply the
above described method to Eq. (13). Let

u(x, t) = Ui(ξ), ξ = ct+ kx+ ξ0,

where c, k, ξ0 are all constants with k 6= 0. Then by means of the second equality in
Eq. (2), Eq. (13) can be turned into the following fractional ordinary differential equation
with respect to the variable ξ:

cαDα
ξ U + k5αD5α

ξ U + 45kα U2Dα
ξ U

+ 15k3αDα
ξD

2α
ξ U + 15k3αUD3α

ξ U = 0. (14)

Suppose that the solution of Eq. (14) can be expressed by

Ui(ξ) =

mj∑
i=0

aj,i

(
Dα
ξG(ξ)

G(ξ)

)i
, j = 1, 2, . . . , k,

where G = G(ξ) satisfies Eq. (1). By balancing the order between the highest-order
derivative term and nonlinear term in Eq. (14) we can obtain m = 2. So, we have

U(ξ) = a0 + a1

Dα
ξG(ξ)

G(ξ)
+ a2

(
Dα
ξG(ξ)

G(ξ)

)2

. (15)

Substituting Eq. (15) into Eq. (14) and collecting all the terms with the same power
of Dα

ξG(ξ)/G(ξ) together, equating each coefficient to zero, yield a set of algebraic
equations. Solving these equations by mathematica programm yields

a0 = ± 1

30λ2

√
±20cαλ9/2 +

5k6αλ5∆2

k2αλ
− 1

6
k2α
(
λ2 + 8µ

)
,

a1 = −2k2αλ, a2 = −2 k2α.

Substituting the result above into Eq. (15) and combining with Eq. (3), we can obtain the
following solutions to Eq. (13).

When ∆ > 0,

u1(x, t) = ± 1

30λ2

√
±20cαλ9/2 +

5k6αλ5∆2

k2αλ
− 1

6
k2α
(
λ2 + 8µ

)
https://www.mii.vu.lt/NA
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− 2k2αλ

(
−λ

2
+

√
∆

2

C1 sinh
√
∆

2Γ(1+α)ξ
α + C2 cosh

√
∆

2Γ(1+α)ξ
α

C1 cosh
√
∆

2Γ(1+α)ξ
α + C2 sinh

√
∆

2Γ(1+α)ξ
α

)

− 2k2α

(
−λ

2
+

√
∆

2

C1 sinh
√
∆

2Γ(1+α)ξ
α + C2 cosh

√
∆

2Γ(1+α)ξ
α

C1 cosh
√
∆

2Γ(1+α)ξ
α + C2 sinh

√
∆

2Γ(1+α)ξ
α

)2

. (16)

When ∆ < 0,

u2(x, t)

= ± 1

30λ2

√
±20cαλ9/2 +

5k6αλ5∆2

k2αλ
− 1

6
k2α
(
λ2 + 8µ

)
− 2k2αλ

(
−λ

2
+

√
−∆

2Γ(1 + α)

−C1 sin
√
−∆

2Γ(1+α)ξ
α + C2 cos

√
−∆

2Γ(1+α)ξ
α

C1 cos
√
−∆

2Γ(1+α)η + C2 sin
√
−∆

2Γ(1+α)ξ
α

)

− 2k2α

(
−λ

2
+

√
−∆

2Γ(1 + α)

−C1 sin
√
−∆

2Γ(1+α)ξ
α + C2 cos

√
−∆

2Γ(1+α)ξ
α

C1 cos
√
−∆

2Γ(1+α)η + C2 sin
√
−∆

2Γ(1+α)ξ
α

)2

. (17)

When ∆ = 0,

u3(x, t) = ± 1

30λ2

√
±20cαλ9/2 +

5k6αλ5∆2

k2αλ
− 1

6
k2α
(
λ2 + 8µ

)
− 2k2αλ

(
−λ

2
+

C2Γ(1 + α)

C12Γ(1 + α) + C2ξα

)
− 2k2α

(
−λ

2
+

C2Γ(1 + α)

C12Γ(1 + α) + C2ξα

)2

, (18)

where ξ = ct+ kx+ ξ0.
These solutions were represented by the graphs, which shown in Figs. 3–5.

u(x,t)

x

t

u

Figure 3. The solitary wave solution u1 defined by (16) of Eq. (13) with singularity corresponding to the values
λ = 2, α = 1, µ = 0.2.

Nonlinear Anal. Model. Control, 23(5):710–723
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u(x,t)

x

t

u

Figure 4. The solitary wave solution u2 defined by (17) of Eq. (13) with singularity corresponding to the values
λ = 1.5, α = 1, µ = 0.3.

u(x,t)

x

t

u

Figure 5. The periodic travelling wave solution u3 defined by (18) of Eq. (13) for a set of parameters λ = 1.2,
α = 1, µ = 0.8.

4.3 The space-time fractional modified equal-width (EW) equation

Consider the space-time fractional modified EW equation [13] of the form

Dα
t u+ εDα

xu
3 − δD3α

xxtu = 0, (19)

where 0 < α 6 1, t > 0, and u is a function of (x, t). For the case corresponding to
α = 1, this equation becomes the modified equal-width wave equation based upon the
equal-width wave equation, which was suggested by Morrison et al. and used as a model
partial differential equation for the simulation of one-dimensional wave propagation in
nonlinear media with dispersion processes. This equation is related to the modified regu-
larized long wave MRLW equation and modified Korteweg–de Vries (MKdV) equation to
govern a large number of important physical phenomena such as the nonlinear transverse
waves in shallow water, ion-acoustic and magnetohydrodynamic waves in plasma, and
phonon packets in nonlinear crystals. Now, also we will apply the above described method

https://www.mii.vu.lt/NA
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to Eq. (19). Let
u(x, t) = Ui(ξ), ξ = ct+ kx+ ξ0,

where c, k, ξ0 are all constants with k 6= 0. Then by use of the second equality in Eq. (2),
Eq. (19) can be turned into the following fractional ordinary differential equation with
respect to the variable ξ:

cαDα
ξ U + 3εkαU2Dα

ξ U +−δcαk2αUD3α
ξ U = 0. (20)

Suppose that the solution of Eq. (20) can be expressed by

Ui(ξ) =

mj∑
i=0

aj,i

(
Dα
ξG(ξ)

G(ξ)

)i
, j = 1, 2, . . . , k,

where G = G(ξ) satisfies Eq. (1). By balancing the order between the highest-order
derivative term and nonlinear term in Eq. (20), we can obtain m = 1. So, we have

U(ξ) = a0 + a1

Dα
ξG(ξ)

G(ξ)
. (21)

Substituting Eq. (21) into Eq. (20) and collecting all the terms with the same power
of Dα

ξG(ξ)/G(ξ) together, equating each coefficient to zero, yield a set of algebraic
equations. Solving these equations by mathematica programm yields.

Case 1. a0 = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
, a1 = ± (−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4
,

k = 21/2α

(
iε

ε
√
δ∆

)1/α

;

Case 2. a0 = ± (−1)3/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
, a1 = ± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4
,

k = 21/2α

(
−iε

ε
√
δ∆

)1/α

.

Substituting the result above into Eq. (20) and combining with Eq. (3), we can obtain the
following solutions to Eq. (19):

Case 1. When ∆ > 0,

u1(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

√
∆

2

C1 sinh
√
∆

2Γ(1+α)ξ
α + C2 cosh

√
∆

2Γ(1+α)ξ
α

C1 cosh
√
∆

2Γ(1+α)ξ
α + C2 sinh

√
∆

2Γ(1+α)ξ
α

)
. (22)
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u(x,t)

x

t

Figure 6. The periodic travelling wave solution u1
defined by (22) of Eq. (19) for a different set of
parameters λ = 1.2, α = 1, µ = 0.8.

u(x,t)

x

t

Figure 7. The travelling wave solution u2 defined
by (23) of Eq. (19) for a different set of parameters
λ = 0.8, α = 1, γ = 0.2, µ = 0.1.

When ∆ < 0,

u2(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

√
−∆

2Γ(1 + α)

−C1 sin
√
−∆

2Γ(1+α)ξ
α + C2 cos

√
−∆

2Γ(1+α)ξ
α

C1 cos
√
−∆

2Γ(1+α)η + C2 sin
√
−∆

2Γ(1+α)ξ
α

)
. (23)

When ∆ = 0,

u3(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

C2Γ(1 + α)

C12Γ(1 + α) + C2ξα

)
,

where ξ = c t+ kx+ ξ0, and k = 21/2α(iε/(ε
√
δ∆))1/α.

Solutions u1, u2 were represented by the graphs, which shown in Figs. 6, 7.

Case 2. When ∆ > 0, we have

u4(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

√
∆

2

C1 sinh
√
∆

2Γ(1+α)ξ
α + C2 cosh

√
∆

2Γ(1+α)ξ
α

C1 cosh
√
∆

2Γ(1+α)ξ
α + C2 sinh

√
∆

2Γ(1+α)ξ
α

)
. (24)

When ∆ < 0,

u5(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

√
−∆

2Γ(1 + α)

−C1 sin
√
−∆

2Γ(1+α)ξ
α + C2 cos

√
−∆

2Γ(1+α)ξ
α

C1 cos
√
−∆

2Γ(1+α)η + C2 sin
√
−∆

2Γ(1+α)ξ
α

)
. (25)
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u(x,t)

x

t

Figure 8. The solitary wave solution u4 defined
by (24) of Eq. (19) for a different set of parameters
λ = 1.2, α = 1, µ = 0.8.

u(x,t)

x

t

Figure 9. The periodic travelling wave solution u5
defined by (25) of Eq. (19) for a different set of
parameters λ = 0.8, α = 1, γ = 0.2, µ = 0.1.

When ∆ = 0,

u6(x, t) = ± (−1)1/4
√

3cα/2δ1/4λ

(2)3/4(ε2∆)1/4
± i(−2)1/4

√
3cα/2δ1/4

(ε2∆)1/4

×
(
−λ

2
+

C2Γ(1 + α)

C12Γ(1 + α) + C2ξα

)
,

where ξ = c t+ kx+ ξ0, and k = 21/2α(−iε/(ε
√
δ∆))1/α.

Solutions u4, u5 were represented by the graphs, which shown in Figs. 8, 9.

5 Conclusion

In this paper, we have focused on some of the most important space-time FPDEs by
a fractional subequation method, we used it to construct new solutions to the space-time
fractional Cahn–Hilliard equation, the space-time fractional fifth-order Sawda–Kotera
equation, and the space-time fractional modified equal-width equation. After applying this
method we notice that it is reliable and effective method since, it introduce several new
solutions. We think that this method can also be applied to other generalized FNPDEs.
In our future studies, we are going to solve FNPDEs by this approach and develop it to
introduce new and different solutions for FNPDEs.

References

1. M.A. Abdelkawy, M.A. Zaky, A.H. Bhrawy, D. Baleanu, Numerical simulation of time variable
fractional order mobile-immobile advection–dispersion model, Rom. Rep. Phys., 67(3):773–
791, 2015.

2. A. Atangana, E. Alabaraoye, Solving a system of fractional partial differential equations
arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–
Segel equations, Adv. Differ. Equ., 2013:94, 2013.

Nonlinear Anal. Model. Control, 23(5):710–723



722 M.A. Abdelkawy et al.

3. C. Atkinson, A. Osseiran, Rational solutions for the time-fractional diffusion equation, SIAM
J. Appl. Math., 71(1):92–106, 2011.

4. A. Bhrawy, M. Zaky, A fractional-order Jacobi tau method for a class of time-fractional PDEs
with variable coefficients, Math. Meth. Appl. Sci., 39(7):1765–1779, 2016.

5. W. Cao, Z. Zhang, G.E. Karniadakis, Time-splitting schemes for fractional differential
equations. I: Smooth solutions, SIAM J. Sci. Comput., 37(4):1752–1776, 2015.

6. X.-L. Ding, Y.-L. Jiang, Waveform relaxation method for fractional differential-algebraic
equations, Fract. Calc. Appl. Anal., 17(3):585–604, 2014.

7. E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving
multi-term fractional orders differential equations, Appl. Math. Modelling, 35(12):5662–5672,
2011.

8. A.M.A. El-Sayed, S.H. Behiry, W.E. Raslan, Adomian’s decomposition method for solving
an intermediate fractional advection–dispersion equation, Comput. Math. Appl., 59(5):1759–
1765, 2010.

9. M. Giona, H.E. Roman, Fractional diffusion equation for transport phenomena in random
media, Phys. A, 185(1–4):87–97, 1992.

10. S. Guo, L. Mei, The fractional variational iteration method using He’s polynomials, Phys.
Lett. A, 375(3):309–313, 2011.

11. S. Guo, L. Mei, Y. Li, Fractional variational homotopy perturbation iteration method and its
application to a fractional diffusion equation, Appl. Math. Comput., 219(11):5909–5917, 2013.

12. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, Word Scientific, Singapore,
2000.

13. K. Hosseini, Z. Ayati, Exact solutions of space-time fractional EW and modified EW equations
using Kudryashov method, Nonlinear Sci. Lett. A, 7(2):58–66, 2016.

14. Q. Huang, G. Zhan, A finite element solution for the fractional advection–dispersion equation,
Adv. Water Resour., 31(12):1578–1589, 2008.

15. H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using
homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14(5):1962–1969, 2009.

16. G. Jumarie, Modified Riemann–Liouville derivative and fractional Taylor series of nondif-
ferentiable functions. Further results, Comput. Math. Appl., 51(9–10):1367–1376, 2006.

17. G. Jumarie, Table of some basic fractional calculus formulae derived from a modified
Riemann–Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22(3):378–
385, 2009.

18. J.W. Kirchner, X. Feng, C. Neal, Fractal stream chemistry and its implications for containant
transport in catchments, Nature, 403:524–527, 2000.

19. W. Li, H. Yang, B. He, Exact solutions of fractional Burgers and Cahn–Hilliard equations using
extended fractional Riccati expansion method, Math. Probl. Eng., 2014:104069, 2014.

20. C. Liu, Z. Dai, Exact soliton solutions for the fifth-order Sawada–Kotera equation, Appl. Math.
Comput., 206(1):272–275, 2008.

21. J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus, Fract. Calc. Appl.
Anal., 20(2):307–336, 2017.

22. R.L. Magin, Fractional Calculus in Bioengineering, Begell House, Redding, CT, 2006.

https://www.mii.vu.lt/NA



Application of fractional subequation method to nonlinear evolution equations 723

23. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-
fractional partial differential equations, Appl. Numer. Math., 56(1):80–90, 2006.

24. Z. Navickas, T. Telksnys, R. Marcinkevicius, Operator-based approach for the construction of
analytical soliton solutions to nonlinear fractional-order differential equations, Chaos Solitons
Fractals, 104:625–634, 2017.

25. G.H. Pertz, C.J. Gerhardt, Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem
Marquis de l’Hospital, Band II, A. Asher & Co., 1849, pp. 301–302.

26. G.H. Pertz, C.J. Gerhardt, Briefwechsel Zwischen Leibniz, in Briefwechsel zwischen Leibniz,
Wallis, Varignon, Guido Grandi, Zendrini, Hermann und Freiherrn von Tschirnhaus, A. Asher
& Co., 1859, p. 25.

27. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of Their Solution and Some of Their Applica-
tions, Math. Sci. Eng., Vol. 189, Elsevier, Amsterdam, 1999.

28. S.S. Ray, A new approach for the application of Adomian decomposition method for the
solution of fractional space diffusion equation with insulated ends, Appl. Math. Comput.,
202(2):544–549, 2008.

29. S.Yu. Reutskiy, A new semi-analytical collocation method for solving multi-term fractional
partial differential equations with time variable coefficients, Appl. Math. Modelling, 45:238–
254, 2017.

30. S.S. Rray, S. Sahoo, A novel analytical method with fractional complex transform for new exact
solutions of time fractional fifth-order Sawada–Kotera equation, Rep. Math. Phys., 75(1):63–
72, 2015.

31. N. Shang, B. Zheng, Exact solutions for three fractional partial differential equations by the
(G′/G)-expansion method, IAENG, Int. J. Appl. Math., 43(3):04, 2013.

32. S. Sharma, R. Bairwa, A reliable treatment of iterative Laplace transform method for fractional
telegraph equations, Ann. Pure Appl. Math., 9(1):81–89, 2015.

33. S.C. Sharma, R.K. Bairwa, Iterative laplace transform method for solving fractional heat and
wavelike equations, Res. J. Math. Stat. Sci., 3(2):4–9, 2015.

34. S. Shen, F. Liu, V. Anh, I. Turner, The fundamental solution and numerical solution of the
Riesz fractional advection–dispersion equation, IMA J. Appl. Math., 73(6):850–872, 2008.

35. H. Thabet, S. Kendr, D. Chalishajar, New analytical technique for solving a system of nonlinear
fractional partial differential equations, Mathematics, 5(4):47, 2017.

36. M. Wang, X. Li, J. Zhang, The (G′/G)-expansion method and travelling wave solutions of
nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372(4):417–423, 2008.

37. G.-C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett.
A, 374(25):2506–2509, 2010.

38. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, A unified Petrov–Galerkin spectral method
for fractional PDEs, Comput. Methods Appl. Mech. Eng., 283(1):1545–1569, 2015.

39. R. Zhang, J. Gong, Synchronization of the fractional-order chaotic system via adaptive
observer, Syst. Sci. Control Eng., 2(1):751–754, 2014.

40. S. Zhang, H.-Q. Zhang, Fractional sub-equation method and its applications to nonlinear
fractional PDEs, Phys. Lett. A, 375(7):1069–1073, 2011.

41. B. Zhengz, C. Wen, Exact solutions for fractional partial differential equations by a new
fractional sub-equation method, Adv. Difference Equ., 2013:199, 2013.

Nonlinear Anal. Model. Control, 23(5):710–723


	Introduction
	Jumarie's modified Riemann–Liouville derivative and general expression for (DG/G)
	Description of a fractional subequation method
	Applications
	The space-time fractional Cahn–Hilliard equation
	The space-time fractional fifth-order Sawda–Kotera equation
	The space-time fractional modified equal-width (EW) equation

	Conclusion
	References

