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Abstract. In this paper, we introduce the notion of ultra distance function. Based on the notion of
ultra distance function, we introduce the definitions of (k, ψ, L)-quasi contractions of type (I) and
type (II) in the frame of quasi metric spaces. We employ our new definitions to construct and prove
many fixed and common fixed point results in the frame of quasi metric spaces. Our results extend
and improve many exciting results in the literatures. Also, we introduce some examples and some
applications in order to support the usability of our work.
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1 Introduction and preliminary

A point u is called a fixed point of a function f if fu = u. The fixed point iteration
is used to prove that an equation of the form gu = 0 has a solution. Moreover, fixed
point theorems are used to prove the existence and uniqueness of such equations in partial
differential equations, integral equations, and ordinary differential equations. The most
popular tool for solving some problems in nonlinear analysis is the Banach fixed point
theorem [9]. Many authors extended the Banach fixed point theorem to many directions,
for example, see [4, 5, 20, 21, 23, 24, 26, 28, 31, 34, 35] and all references cited their.
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In 1931, Wilson [36] introduced the notion of quasi metric spaces as follows:

Definition 1. (See [36].) Let X be a nonempty set and d : X ×X → [0,∞) be a given
function, which satisfies:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a quasi metric on X , and the pair (X, d) is called a quasi metric space.

Note that every metric space is a quasi metric space. The converse is not true in
general. For this instance, see the following example:

Example 1. (See [18].) Let X = N ∪ {0} and define the function d on X as follows:
d(0, n) = 1/n for all n ∈ N, d(n, x) = n for n 6= x; n ∈ N, and d(x, x) = 0 for all
x ∈ X . Then (X, d) is a quasi metric space, which is not a metric space.

A quasi metric d induces a metric q as follows:

q(x, y) = max
{
d(x, y), d(y, x)

}
.

The notions of convergence and completeness on quasi metric spaces are given as
follows:

Definition 2. (See [7, 22].) Let (X, d) be a quasi metric space, (xn) be a sequence in X ,
and x ∈ X . Then the sequence (xn) converges to x if and only if limn→∞ d(xn, x) =
limn→∞ d(x, xn) = 0.

Definition 3. (See [7, 22].) Let (X, d) be a quasi metric space and (xn) be a sequence in
X . We say that the sequence (xn) is left-Cauchy if and if for every ε > 0, there is positive
integer N = N(ε) such that d(xn, xm) < ε for all n > m > N .

Definition 4. (See [7, 22].) Let (X, d) be a quasi metric space and (xn) be a sequence
in X . We say that the sequence (xn) is right-Cauchy if and if for every ε > 0, there is
a positive integer N = N(ε) such that d(xn, xm) < ε for all m > n > N .

Definition 5. (See [7, 22].) Let (X, d) be a quasi metric space and (xn) be a sequence in
X . We say that the sequence (xn) is Cauchy if and if for every ε > 0, there is positive
integer N = N(ε) such that d(xn, xm) < ε for all m,n > N .

Definition 6. (See [7, 22].) Let (X, d) be a quasi metric space. We say that

(i) (X, d) is left-complete if and only if every left-Cauchy sequence in X is conver-
gent;

(ii) (X, d) is right-complete if and only if every right-Cauchy sequence in X is con-
vergent;

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.
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It is clear that a sequence (xn) in quasi metric space (X, d) is Cauchy if and only if
(xn) is left- and right-Cauchy. For some fixed point theorems in quasi metric space, we
refer the reader to [2, 3, 6, 15, 17, 30, 32, 33].

The notion of altering distance function plays an important role to improve and ex-
tend the Banach contraction theorem to many directions. The notion of altering distance
function introduced by Khan [25] as follows:

Definition 7. (See [25].) A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is nondecreasing and continuous;
(ii) ψ(t) = 0 if and only if t = 0.

Abodayeh et al. [1] introduced the notion of almost perfect function as a generalization
of the notion of altering distance function and studied some fixed and common fixed point
theorems of Ω-distance under various contractive conditions.

Berinde [10, 11] introduced the concept of weak contraction mappings, the concept
of almost contraction mappings and studied some nice fixed point theorems. Moreover,
many authors introduced and studied many fixed and common fixed point theorems in
complete metric spaces for weak and almost contraction mappings in sense of Berinde,
see [8, 12–14, 16, 19, 27, 29, 31].

In this paper, we introduce the notion of ultra distance function as a generalization
of the notion of the almost perfect function. We utilized the notion of almost contraction
mapping and the notion of ultra distance function to introduce the notions of (k, ψ, L)-
quasi contractions of type (I) and type (II) in the frame of quasi metric spaces. Then after,
we construct many fixed and common fixed point results in the frame of quasi metric
spaces.

2 Main result

We start our work by introducing the following definition:

Definition 8. The function ψ : [0,∞)→ [0,∞) is called an ultra distance function if the
following properties are satisfied:

(i) ψ(t) = 0 iff t = 0.
(ii) If (xn) is a sequence in [0,+∞) such that limn→+∞ ψ(xn) = 0, then

limn→+∞ xn = 0.

Here are some examples on ultra distance functions.

Example 2. Define the function ψ : [0,+∞)→ [0,∞) by ψ(t) = sin(t) if 0 6 t 6 3π/4
and ψ(t) = 1 if 3π/4 < t <∞. Then it is clear that ψ is an ultra distance function.

Example 3. Define the function ψ : [0,+∞)→ [0,∞) by ψ(t) = 1− cos(t) if 0 6 t 6
π/2 and ψ(t) = 1/2 if π/2 < t <∞. Then it is clear that ψ is an ultra distance function.

The following lemma will be very helpful in proving our main results.
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Lemma 1. Let (X, d) be a quasi metric space. Let (xn) be a sequence in X such that

lim
n→+∞

d(xn, xn+1) = lim
n→+∞

d(xn+1, xn) = 0.

For m,n ∈ N, where n is odd, m is even, and m > n, we have

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

Then (xn) is Cauchy.

Proof. Given n,m ∈ N with m > n. Now we study the following cases:
Case 1: n is even, and m is odd. By triangle inequality, we have:

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)

and
d(xm, xn) 6 d(xm, xm+1) + d(xm+1, xn+1) + d(xn+1, xn).

Letting n,m→ +∞ in above inequalities, we get that

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

Case 2: n, m are both even. Apply the triangle inequality to get

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xm)

and
d(xm, xn) 6 d(xm, xn+1) + d(xn+1, xn).

On letting n,m→ +∞ in above inequalities, we have

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

Case 3: n, m are both odd. Triangle inequality implies that

d(xn, xm) 6 d(xn, xm+1) + d(xm+1, xm)

and
d(xm, xn) 6 d(xm, xm+1) + d(xm+1, xn).

By letting n and m tend to infinity in above inequalities, we obtain

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

By collecting all cases together, we conclude that (xn) is a Cauchy sequence.

Before proving our first main result, we introduce the following definition.
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Definition 9. Let (X, d) be a quasi metric space and f, g : X → X be two mappings. The
pair (f, g) is called (k, ψ, L)-quasi contraction of type (I) if there exist an ultra distance
function ψ, k ∈ [0, 1) and L > 0 such that for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 kmax

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
and

ψ
(
d(gx, fy)

)
6 kmax

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Now, we prove our first result:

Theorem 1. Let (X, d) be a complete quasi metric space and f, g : X → X be two
mappings such that the pair (f, g) is (k, ψ, L)-quasi contraction of type (I). If f or g is
continuous, then f and g have a unique common fixed point in X .

Proof. By starting with x0 ∈ X , we define a sequence (xn) inX inductively via x2n+1 =
fx2n and x2n+2 = gx2n+1 for all n > 0. Note that if there exists r ∈ N such that x2r =
x2r+1, then x2r is a fixed point of f . Since the pair (f, g) is (k, ψ, L)-quasi contraction
of type (I), we have

ψ
(
d(x2r+1, x2r+2)

)
= ψ

(
d(fx2r, gx2r+1)

)
6 kmax

{
ψ
(
d(x2r, fx2r)

)
, ψ
(
d(x2r+1, gx2r+1)

)}
+ Lmin

{
q(x2r, gx2r+1), q(x2r+1, fx2r), q(x2r, fx2r)

}
= kmax

{
ψ
(
d(x2r, x2r+1)

)
, ψ
(
d(x2r+1, x2r+2)

)}
+ Lmin

{
q(x2r, x2r+2), q(x2r+1, x2r+1), q(x2r, x2r+1)

}
= kψ

(
d(x2r+1, x2r+2)

)
.

The last equality is true only if ψ(d(x2r+1, x2r+2)) = 0. So, we conclude that d(x2r+1,
x2r+2) = 0. Hence, x2r = x2r+1 = x2r+2. Therefore, x2r is a common fixed point of f
and g.

Now, suppose that xn 6= xn+1 for all n ∈ N.
Since the pair (f, g) is (k, ψ, L)-quasi contraction of type (I), we have

ψ
(
d(x2n+1, x2n+2)

)
= ψ

(
d(fx2n, gx2n+1)

)
6 kmax

{
ψ
(
d(x2n, fx2n)

)
, ψ
(
d(x2n+1, gx2n+1)

)}
+ Lmin

{
q(x2n, gx2n+1), q(x2n+1, fx2n), q(x2n, fx2n)

}
= kmax

{
ψ
(
d(x2n, x2n+1)

)
, ψ
(
d(x2n+1, x2n+2)

)}
+ Lmin

{
q(x2n, x2n+2), q(x2n+1, x2n+1), q(x2n, x2n+1)

}
= kmax

{
ψ(d(x2n, x2n+1)), ψ(d(x2n+1, x2n+2))

}
. (1)
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If
max

{
ψ
(
d(x2n, x2n+1)

)
, ψ
(
d(x2n+1, x2n+2)

)}
= ψ

(
d(x2n+1, x2n+2)

)
,

then by (1) we conclude that

ψ
(
d(x2n+1, x2n+2)

)
6 kψ

(
d(x2n+1, x2n+2)

)
,

a contradiction. So,

max
{
ψ
(
d(x2n, x2n+1)

)
, ψ
(
d(x2n+1, x2n+2)

)}
= ψ

(
d(x2n, x2n+1)

)
.

Therefore, (1) becomes

ψ
(
d(x2n+1, x2n+2)

)
6 kψ

(
d(x2n, x2n+1)

)
. (2)

Also, we can show that

ψ
(
d(x2n, x2n+1)

)
6 kψ

(
d(x2n−1, x2n)

)
. (3)

Combining (2) and (3), we conclude that

ψ
(
d(xn, xn+1)

)
6 kψ

(
d(xn−1, xn)

)
(4)

holds for all n ∈ N.
Repeating the same arguments as above, we conclude that

ψ
(
d(xn+1, xn)

)
6 kψ

(
d(xn, xn−1)

)
(5)

holds for all n ∈ N. From (4) and (5) we have

max
{
ψ
(
d(xn, xn+1)

)
, ψ
(
d(xn+1, xn)

)}
6 kmax

{
ψ
(
d(xn−1, xn)

)
, ψ
(
d(xn, xn−1)

)}
(6)

holds for all n ∈ N.
Repeating (6) n times, we get

max
{
ψ
(
d(xn, xn+1)

)
, ψ
(
d(xn+1, xn)

)}
6 kmax

{
ψ
(
d(xn−1, xn)

)
, ψ
(
d(xn, xn−1)

)}
6 k2 max

{
ψ
(
d(xn−2, xn−1)

)
, ψ
(
d(xn−1, xn−2)

)}
6 k3 max

{
ψ
(
d(xn−3, xn−2)

)
, ψ
(
d(xn−2, xn−3)

)}
6 · · ·
6 knmax

{
ψ
(
d(x0, x1)

)
, ψ
(
d(x1, x0)

)}
. (7)

Letting n→ +∞ in (7), we get

lim
n→+∞

ψ
(
d(xn, xn+1)

)
= 0
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and
lim

n→+∞
ψ
(
d(xn+1, xn)

)
= 0.

Since ψ is an ultra distance function, we conclude that

lim
n→+∞

d(xn, xn+1) = 0 (8)

and
lim

n→+∞
d(xn+1, xn) = 0. (9)

From (8), (9) and the definition of q we have

lim
n→+∞

q(xn+1, xn) = lim
n→+∞

q(xn+1, xn) = 0. (10)

Now, we show that (xn) is a Cauchy sequence.
Let n,m ∈ N be such that n is odd, m is even, and m > n. Since the pair (f, g) is

(k, ψ, L)-quasi contraction of type (I), we have

ψ
(
d(xn, xm)

)
= ψ

(
d(fxn−1, gxm−1)

)
6 kmax

{
ψ
(
d(xn−1, fxn−1)

)
, ψ
(
d(xm−1, gxm−1)

)}
+ Lmin

{
q(xn−1, gxm−1), q(xm−1, fxn−1), q(xn−1, fxn−1)

}
= kmax

{
ψ(d

(
xn−1, xn)

)
, ψ
(
d(xm−1, xm)

)}
+ Lmin

{
q(xn−1, xm), q(xm−1, xn), q(xn−1, xn)

}
6 kmax

{
ψ
(
d(xn−1, xn)

)
, ψ
(
d(xm−1, xm)

)}
+ Lq(xn−1, xn)

6 kψ
(
d(xn−1, xn)

)
+ Lq(xn−1, xn)

6 knψ
(
d(x0, x1)

)
+ Lq(xn−1, xn). (11)

Letting n,m→ +∞ in (11). Then using (10) to get

lim
n,m→+∞

ψ
(
d(xn, xm)

)
= 0.

From the definition of the function ψ we conclude that

lim
n,m→+∞

d(xn, xm) = 0.

Again, since the pair (f, g) is (k, ψ, L)-quasi contraction of type (I), we have

ψ
(
d(xm, xn)

)
= ψ

(
d(gxm−1, fxn−1)

)
6 kmax

{
ψ
(
d(xm−1, gxm−1)

)
, ψ
(
d(xn−1, fxn−1)

)}
+ Lmin

{
q(xm−1, fxn−1), q(xn−1, gxm−1), q(xm−1, gxm−1)

}
6 kmax

{
ψ
(
d(xm−1, xm)

)
, ψ
(
d(xn−1, xn)

)}
+ Lmin

{
q(xm−1, xn), q(xn−1, xm), q(xm−1, xm)

}
6 kψ

(
d(xn−1, xn)

)
+ Lq(xm−1, xm)

6 knψ
(
d(x0, x1)

)
+ Lq(xm−1, xm). (12)
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On letting n,m→ +∞ in (12), we get

lim
n,m→+∞

ψ
(
d(xm, xn)

)
= 0.

Since ψ is an ultra distance function, we have

lim
n,m→+∞

d(xm, xn) = 0.

By Lemma 1, we conclude that (xn) is Cauchy. By completeness of the quasi metric
space (X, d), there exists u ∈ X such that

lim
n→+∞

d(xn, u) = lim
n→+∞

d(u, xn) = 0.

Hence,
lim

n→+∞
q(xn, u) = lim

n→+∞
q(u, xn) = 0.

Without loss of generality, we may assume that f is continuous. So,

lim
n→+∞

d(fx2n, fu) = lim
n→+∞

d(fu, fx2n) = 0.

Now, we show that u = fu. By triangle inequality, we have

d(u, fu) 6 d(u, x2n+1) + d(x2n+1, fu).

Letting n→ +∞ and using the fact that x2n+1 = fx2n, we conclude that u = fu. Since
the pair (f, g) is (k, ψ, L)-quasi contraction of type (I), we conclude that

ψ
(
d(u, gu)

)
= ψ

(
d(fu, gu)

)
6 kmax

{
ψ
(
d(u, fu)

)
, ψ
(
d(u, gu)

)}
+ Lmin

{
q(u, gu), q(u, fu), q(u, fu)

}
= kψ

(
d(u, gu)

)
.

Since k ∈ [0, 1), we conclude that ψ(d(u, gu)) = 0. Hence, gu = u. Thus, u is
a common fixed point of f and g. To prove the uniqueness of the common fixed point of
f and g, we assume that u and v are common fixed points of f and g. Then fu = gu = u
and fv = gv = v. By the first contractive condition, we have

ψ
(
d(u, v)

)
= ψ

(
d(fu, gv)

)
6 kmax

{
ψ
(
d(u, fu)

)
, ψ
(
d(v, gv)

)}
+ Lmin

{
q(u, gv), q(v, fu), q(u, fu)

}
= 0.

So, ψ(d(u, v)) = 0 and hence d(u, v) = 0. Thus, u = v. So, f and g have a unique
common fixed point.

By taking L = 0 in Theorem 1, we get the following result:

Nonlinear Anal. Model. Control, 23(5):724–748
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Corollary 1. Let (X, d) be a complete quasi metric space and f, g : X → X be two
mappings. Assume the following hypotheses:

(i) There exist an ultra distance function ψ and a real number k with k ∈ [0, 1) such
that for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 kmax

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
and

ψ
(
d(gx, fy)

)
6 kmax

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
.

(ii) f or g is continuous.

Then f and g have a unique common fixed point in X .

Taking g = f in Theorem 1, we have the following result:

Corollary 2. Let (X, d) be a complete quasi metric space and f : X → X be a mapping.
Suppose the following hypotheses:

(i) There exist an ultra distance function ψ, k ∈ [0, 1) and L > 0 such that for all
x, y ∈ X , we have

ψ
(
d(fx, fy)

)
6 kmax

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, fx), q(x, fx)

}
.

(ii) f is continuous.

Then f has a unique fixed point in X .

Corollary 3. Let (X, d) be a complete quasi metric space and f, g : X → X be two
mappings. Assume the following hypotheses:

(i) There exist an ultra distance function ψ, two positive real numbers a and b with
a+ b < 1 and L > 0 such that for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 aψ

(
d(x, fx)

)
+ bψ

(
d(y, gy)

)
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
and

ψ
(
d(gx, fy)

)
6 aψ

(
d(x, gx)

)
+ bψ

(
d(y, fy)

)
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

(ii) f or g is continuous.

Then f and g have a unique common fixed point in X .

Proof. Follows from Theorem 1 by noting that for any x, y ∈ X , we have

aψ
(
d(x, gx)

)
+ bψ

(
d(y, fy)

)
6 (a+ b)max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
.
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Fixed and common fixed point theorems in frame of quasi metric spaces 733

Before, we present our next main result, we introduce the following definitions:

Definition 10. Let ψ : [0,+∞) → [0,+∞) be a function and (X, d) be a quasi metric
space. We say that (X, d) is bounded with respect to ψ if the exists M > 0 such that
ψ(d(x, y)) 6M for all x, y ∈ X .

Definition 11. Let (X, d) be a bounded quasi metric space and f, g : X → X be two
mappings. The pair (f, g) is called (k, ψ, L)-quasi contraction of type (II) if there exist
an ultra distance function ψ, k ∈ [0, 1) and L > 0 such that for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 kψ

(
d(x, y)

)
+ Lmin

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
and

ψ
(
d(gx, fy)

)
6 kψ

(
d(x, y)

)
+ Lmin

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Theorem 2. Let (X, d) be a complete quasi metric space and f, g : X → X be two
mappings satisfying the following conditions:

(i) f or g is continuous.
(ii) The pair (f, g) is (k, ψ, L)-quasi contraction of type (II).

(iii) (X, d) is bounded with respect to ψ.

Then f and g have a unique common fixed point in X .

Proof. As in proof of Theorem 1, we construct a sequence (xn) in X such that x2n+1 =
fx2n and x2n+2 = gx2n+1. Assume there exists r ∈ N such that x2r = x2r+1. Since the
pair (f, g) is (k, ψ, L)-quasi contraction of type (II), we have

d(x2r+1, x2r+2)

= d(fx2r, gx2r+1)

6 kψ
(
d(x2r, x2r+1)

)
+ Lmin

{
ψ
(
d(fx2r, x2r+1)

)
, ψ
(
d(x2r, gx2r+1)

)
, ψ
(
d(x2r, fx2r)

)}
= kψ

(
d(x2r, x2r+1)

)
+ Lmin

{
ψ
(
d(x2r+1, x2r+1)

)
, ψ
(
d(x2r, x2r+2)

)
, ψ
(
d(x2r, x2r+1)

)}
= 0.

So, we conclude that d(x2r+1, x2r+2) = 0. Hence, x2r = x2r+1 = x2r+2. Therefore,
x2r is a common fixed point of f and g.

Now, assume that xn 6= xn+1 for all n ∈ N. Since (f, g) is (k, ψ, L)-quasi contraction
of type (II), we have

ψ
(
d(x2n+1, x2n+2)

)
= ψ

(
d(fx2n, gx2n+1)

)
6 kψ

(
d(x2n, x2n+1)

)
+min

{
ψ
(
d(fx2n, x2n+1)

)
, ψ
(
d(x2n, gx2n+1)

)
, ψ
(
d(x2n, fx2n)

)}
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6 kψ
(
d(x2n, x2n+1)

)
+min

{
0, ψ

(
d(x2n, x2n+2)

)
, ψ
(
d(x2n, x2n+1)

)}
= kψ

(
d(x2n, x2n+1)

)
. (13)

On other hand, we have

ψ
(
d(x2n, x2n+1)

)
= ψ

(
d(gx2n−1, fx2n)

)
6 kψ

(
d(x2n−1, x2n)

)
+ Lmin

{
ψ
(
d(gx2n−1, x2n)

)
, ψ
(
d(x2n−1, fx2n)

)
, ψ
(
d(x2n−1, gx2n−1)

)}
= kψ

(
d(x2n−1, x2n)

)
+ Lmin

{
0, ψ

(
d(x2n−1, x2n+1)

)
, ψ
(
d(x2n−1, x2n)

)}
= kψ

(
d(x2n−1, x2n)

)
. (14)

Inequalities (13) and (14) imply that

ψ
(
d(xn, xn+1)

)
6 kψ

(
d(xn−1, xn)

)
, n ∈ N. (15)

Repeating (15) n times, we obtain

ψ
(
d(xn, xn+1)

)
6 knψ

(
d(x0, x1)

)
, n ∈ N. (16)

Moreover, one can use the same arguments to prove that

ψ
(
d(xn+1, xn)

)
6 knψ

(
d(x1, x0)

)
, n ∈ N.

Now, we prove that (xn) is a Cauchy sequence in X . Let n,m ∈ N be such that n is odd,
m is even, and m > n. By using (16), we have

ψ
(
d(xn, xm)

)
= ψ

(
d(fxn−1, gxm−1)

)
6 kψ

(
d(xn−1, xm−1)

)
+ Lmin

{
ψ
(
d(fxn−1, xm−1)

)
, ψ
(
d(xn−1, gxm−1)

)
, ψ
(
d(xn−1, fxn−1)

)}
= kψ

(
d(xn−1, xm−1)

)
+ Lmin

{
ψ
(
d(xn, xm−1)

)
, ψ
(
d(xn−1, xm)

)
, ψ
(
d(xn−1, xn)

)}
6 kψ

(
d(xn−1, xm−1)

)
+ Lψ

(
d(xn−1, xn)

)
6 kψ

(
d(xn−1, xm−1)

)
+ Lkn−1ψ

(
d(x0, x1)

)
. (17)

On other hand, we have

ψ
(
d(xn−1, xm−1)

)
= ψ

(
d(gxn−2, fxm−2)

)
6 kψ

(
d(xn−2, xm−2)

)
+ Lmin

{
ψ
(
d(gxn−2, xm−2)

)
, ψ
(
d(xn−2, fxm−2)

)
, ψ
(
d(xn−2, gxn−2)

)}
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= kψ
(
d(xn−2, xm−2)

)
+ Lmin

{
ψ
(
d(xn−1, xm−2)

)
, ψ
(
d(xn−2, xm−1)

)
, ψ
(
d(xn−2, xn−1)

)}
6 kψ

(
d(xn−2, xm−2)

)
+ Lψ

(
d(xn−2, xn−1)

)
6 kψ

(
d(xn−2, xm−2)

)
+ Lkn−2ψ

(
d(x0, x1)

)
. (18)

Repeating (17) and (18) n times and using the assumption that of (X, d) is bounded with
respect to ψ, we have

ψ
(
d(xn, xm)

)
6 kψ

(
d(xn−1, xm−1)

)
+ Lkn−1ψ

(
d(x0, x1)

)
6 k2ψ

(
d(xn−2, xm−2)

)
+ 2Lkn−1ψ

(
d(x0, x1)

)
6 k3ψ

(
d(xn−3, xm−3)

)
+ 3Lkn−1ψ

(
d(x0, x1)

)
6 · · ·
6 knψ

(
d(x0, xm−n

)
+ Lnkn−1ψ

(
d(x0, x1)

)
6 knM + Lnkn−1M. (19)

By letting n,m→ +∞ in (19), we deduce that

lim
n,m→+∞

ψ
(
d(xn, xm)

)
= 0.

Similarly, we can show that

lim
n,m→+∞

ψ
(
d(xm, xn)

)
= 0.

Since ψ is an ultra distance function, we conclude that

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

By Lemma (1), we conclude that (xn) is a Cauchy sequence in (X, d). So, there exists
u ∈ X such that

lim
n→+∞

d(xn, u) = lim
n→+∞

d(u, xn) = 0.

Without loss of generality, we may assume that f is continuous. So,

lim
n→+∞

d(fx2n, fu) = lim
n→+∞

d(fu, fx2n) = 0.

Hence,
lim

n→+∞
d(x2n+1, fu) = lim

n→+∞
d(fu, x2n+1) = 0.

So, we can conclude that fu = u. To show that gu = u, we use the triangle inequality,

ψ
(
d(u, gu)

)
= ψ

(
d(fu, gu)

)
6 k(0) + Lmin

{
0, ψ

(
d(u, gu)

)}
= 0.
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Hence, ψ(d(u, gu)) = 0. Therefore, d(u, gu) = 0 and hence gu = u. So, u is a common
fixed point of f and g. Now, let u and v be two common fixed points of f and g; that is,
fu = gu = u and fv = gv = v. Since the pair (f, g) is (k, ψ, L)-quasi contraction of
type (II), we have

ψ
(
d(u, v)

)
= ψ

(
d(fu, gv)

)
6 kψ

(
d(u, v)

)
+ Lmin

{
ψ
(
d(fu, v)

)
, ψ
(
d(u, gv)

)
, ψ
(
d(u, fu)

)}
= kψ

(
d(u, v)

)
.

Since k ∈ [0, 1), we conclude that ψ(d(u, v)) = 0. Hence, d(u, v) = 0. So, u = v.
Therefore, the common fixed point of f and g is unique.

By taking L = 0 in Theorem 2, we get the following result:

Corollary 4. Let (X, d) be a complete quasi metric space and f, g : X → X be two
mappings satisfying the following conditions:

(i) There exist an ultra distance function ψ and a real number k ∈ [0, 1) such that
for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 kψ

(
d(x, y)

)
and ψ

(
d(gx, fy)

)
6 kψ

(
d(x, y)

)
.

(ii) f or g is continuous.
(iii) (X, d) is bounded with respect to ψ.

Then f and g have a unique common fixed point in X .

Taking g = f in Theorem 2, we deduce the following result:

Corollary 5. Let (X, d) be a complete quasi metric space and f : X → X be a mapping.
Assume the following hypotheses:

(i) There exist an ultra distance function ψ, k ∈ [0, 1) and L > 0 such that for all
x, y ∈ X , we have

ψ
(
d(fx, fy)

)
6 kψ

(
d(x, y)

)
+Lmin

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, fx)

)}
.

(ii) f is continuous.
(iii) (X, d) is bounded with respect to ψ.

Then f has a unique fixed point in X .

3 Examples and applications

In this section, we introduce some examples and some application in order to support the
useability of our results.
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Example 4. Let X = {0, 1, 2, 3, . . . }. Define d : X ×X → X by

d(m,n) =


m if n = 0,m 6= 0,

1 if m = 0, n 6= 0,

0 if m = n,

m if m 6= n

and the mappings f, g : X → X by

fx =

{
0 if x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8},
1 if x ∈ {9, 10, 11, . . .}

and

gx =

{
0 if x ∈ {0, 1, 2, 3, 4},
1 if x ∈ {5, 6, 7, . . .}.

Also, define ψ : [0,+∞)→ [0,+∞) by

ψ(t) =

{
et − 1 if t ∈ [0, 1],

et − 2 if t ∈ (1,+∞).

Then:

(i) ψ is an ultra distance function.
(ii) (X, d) is a complete quasi metric space.

(iii) f is continuous.
(iv) For all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6

1

2
max

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
and

ψ
(
d(gx, fy)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Proof. The proof of (i) is clear. Also, it is an easy matter to figure out that d is quasi
metric. To show that d is complete, we let (xn) be a Cauchy sequence in X . Then

lim
n→+∞

d(xn, xm) = lim
n→+∞

d(xm, xn) = 0.

So, we deduce that xn = xm for all n,m ∈ {0, 1, 2, 3, . . .} but possibly at finitely many.
So, (xn) is a convergent sequence in X . Thus, we conclude that (X, d) is a complete
quasi metric space.
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To prove (iii), let (xn) be a sequence in X such that xn → x ∈ X . So,

lim
n→+∞

d(xn, x) = lim
n→+∞

d(x, xn) = 0.

Thus, we conclude that xn = x for all n ∈ N but possible at finitely many. Thus, f(xn) =
f(x) for all but possible at finitely many. So, f(xn)→ fx. Thus, f is continuous.

To prove (iv), given x, y ∈ X . We divide the proof into the following cases:
Case 1: x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} and y ∈ {0, 1, 2, 3, 4}. Then

ψ
(
d(fx, gy)

)
= 0

6
1

2
max

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
.

Now, if x ∈ {0, 1, 2, 3, 4}, then we have

ψ
(
d(gx, fy)

)
= 0

6
1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

While, if x ∈ {5, 6, 7, 8}, we have

ψ
(
d(gx, fy)

)
= ψ

(
d(1, 0)

)
= ψ(1) = e− 1 6

1

2

(
e5 − 2) 6

1

2
(ex − 2)

=
1

2
ψ(x) =

1

2
ψ
(
d(x, 1)

)
=

1

2
ψ
(
d(x, gx)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Case 2: x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} and y ∈ {5, 6, 7, . . .}. So,

ψ
(
d(fx, gy)

)
= ψ(1) = e− 1 6

1

2

(
e5 − 2

)
6 12

(
ey − 2

)1
2
ψ(y) =

1

2
ψ
(
d(y, gy)

)
6

1

2
max

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
.

Now, if x ∈ {0, 1, 2, 3, 4} and y ∈ {5, 6, 7, 8}, then

ψ
(
d(gx, fy)

)
= 0

6
1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.
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If x ∈ {0, 1, 2, 3, 4} and y ∈ {9, 10, 11, . . .}, then

ψ
(
d(gx, fy)

)
= ψ

(
d(0, 1)

)
= ψ(1) = e− 1 6

1

2

(
e9 − 2

)
6

1

2

(
ey − 2

)
=

1

2
ψ(y) =

1

2
ψ
(
d(y, 1)

)
=

1

2
ψ
(
d(y, fy)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

If x ∈ {5, 6, 7, 8} and y ∈ {5, 6, 7, 8}, then

ψ
(
d(gx, fy)

)
= ψ(1) = e− 1 6

1

2

(
e5 − 2

)
6

1

2

(
ey − 2

)
=

1

2
ψ(y) =

1

2
ψ
(
d(y, 1)

)
=

1

2
ψ
(
d(y, fy)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

If x ∈ {5, 6, 7, 8} and y ∈ {9, 10, 11, . . .}, then

ψ
(
d(gx, fy)

)
= ψ

(
d(1, 1)

)
= 0

6
1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Case 3: x ∈ {9, 10, 11, . . .} and y ∈ {0, 1, 2, 3, 4}. Then

ψ
(
d(fx, gy)

)
= ψ

(
d(fx, gy)

)
= ψ(1) = e− 1

6
1

2

(
e9 − 1

)
6

1

2

(
ex − 2

)
=

1

2
ψ(x) =6

1

2
ψ
(
d(x, fx)

)
6

1

2
max

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
.

Similarly, one can show that

ψ
(
gx, fy)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Case 4: x ∈ {9, 10, 11, . . .} and y ∈ {5, 6, 7, . . .}. Then

ψ
(
d(fx, gy)

)
= 0 6

1

2
max

{
ψ
(
d(x, fx)

)
, ψ
(
d(y, gy)

)}
+ Lmin

{
q(x, gy), q(y, fx), q(x, fx)

}
.
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Also, if x ∈ {9, 10, 11, . . .} and y ∈ {5, 6, 7, 8}, then

ψ(gx, fy) = ψ
(
d(1, 0)

)
= ψ(1) = e− 1 6

1

2

(
e9 − 2

)
6

1

2

(
ex − 2

)
=

1

2
ψ(x) =

1

2
ψ
(
d(x, gx)

)
6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

If x ∈ {9, 10, 11, . . .} and y ∈ {9, 10, 11, . . .}, then

ψ(gx, fy) = ψ
(
d(1, 1)

)
= 0 6

1

2
max

{
ψ
(
d(x, gx)

)
, ψ
(
d(y, fy)

)}
+ Lmin

{
q(x, fy), q(y, gx), q(x, gx)

}
.

Note that f and g satisfy all the conditions of Theorem 1. So, f and g have a unique
common fixed point. Here 0 is the unique common fixed point of f and g.

Example 5. Let X = [0, 1/2]. Define d : X ×X → [0,+∞) by

d(x, y) =

{
0 if x = y,

x+ y if x 6= y

and the mappings f, g : X → X by fx = x2/2 and gx = x2/4. Also, define ψ :
[0,+∞)→ [0,+∞) by

ψ(t) =

{
t2 if t ∈ [0, 2],
t

1+t if t ∈ (2,+∞).

Then:

(i) ψ is an ultra distance function.
(ii) (X, d) is a complete quasi metric space.

(iii) (X, d) is bounded with respect to ψ.
(iv) f is continuous.
(v) The pair (f, g) is (k, ψ, L)-quasi contraction of type (II).

Proof. To show that d is complete, we let (xn) be a Cauchy sequence in X . Then

lim
n,m→+∞

d(xn, xm) = lim
n,m→+∞

d(xm, xn) = 0.

Given ε > 0, then there exists k ∈ N such that d(xn, xm) < ε for all m > n > k. So, we
have two cases:

Case 1: xn = xm = x for all but finitely many. In this case, we have xn → x.

https://www.mii.vu.lt/NA



Fixed and common fixed point theorems in frame of quasi metric spaces 741

Case 2: xn 6= xm for all but finitely many. In this case, we have xn + xm < ε for all
m > n > k. So, xn < ε for all n > k. So, xn → 0. From both cases, we conclude that
X is complete.

To prove that (X, d) is bounded with respect to ψ, Given x, y ∈ X . If x = y, then
d(x, y) = 0 and hence ψ(d(x, y)) = 0 < 1. If x 6= y, then d(x, y) = x + y < 1.
So, ψ(d(x, y)) = (x + y)2 < 1. So, (X, d) is bounded with respect to ψ. To prove the
continuity of f , let (xn) be a sequence in X such that xn → x ∈ X . So,

lim
n→+∞

d(xn, x) = lim
n→+∞

d(x, xn) = 0.

If xn = x for all but finitely many, then fxn = fx for all but finitely many. So, fxn →
fx. If xn 6= x for all but finitely many. Here we conclude that x = 0. So, f(x) = 0.
Hence, d(fxn, fx) = d(fx, fxn) = x2n/2 → 0. So, fxn → fx. So, we conclude that
f is continuous.

To prove that the pair (f, g) is (k, ψ, L)-quasi contraction of type (II), given x, y ∈ X .
Then fx = x2/2 and gy = y2/4.

Case 1: y2 = 2x2. Here we have

ψ
(
d(fx, gy)

)
= 0

6
1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
.

Also,

ψ
(
d(gx, fy)

)
= ψ

(
d

(
1

4
x2,

1

2
y2
))

=

(
1

4
x2 + x2

)2

=
25

16
x4 6

25

64
x2 6

1

4
(1 +

√
2)2x2

=
1

4

(
d(x,
√
2x)
)2

=
1

4
ψ
(
d(x, y)

)
6

1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Case 2: y2 6= 2x2. We divide this case into the following subcases:

Subcase 1: y2 6= 2x2 and x 6= y. Here we have

ψ
(
d(fx, gy)

)
= ψ

(
d

(
1

2
x2,

1

4
y2
))

= ψ

(
1

2
x2 +

1

4
y2
)

=

(
1

2
x2 +

1

4
y2
)2

6
1

4
(x+ y)2 =

1

4
ψ
(
d(x, y)

)
6

1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
.
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Subcase 2: y2 6= 2x2 and x = y. Here we have

ψ
(
d(fx, gy)

)
= ψ

(
d

(
1

2
x2,

1

4
y2
))

=

(
1

2
x2 +

1

4
y2
)2

=

(
3

4
x2
)2

,

ψ
(
d(fx, y)

)
= ψ

(
d

(
1

2
x2, y

))
=

(
1

2
x2 + y

)2

=

(
1

2
x2 + x

)2

,

ψ
(
d(x, gy)

)
= ψ

(
d

(
x,

1

4
y2
))

=

(
x+

1

4
y2
)2

=

(
x+

1

4
x2
)2

,

and

ψ
(
d(x, fx)

)
= ψ

(
d

(
x,

1

2
x2
))

=

(
x+

1

2
x2
)2

.

So, we have

ψ
(
d(fx, gy)

)
6 min

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
.

Therefore,

ψ
(
d(fx, gy)

)
6

1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
.

Subcase 3: y2 6= 2x2 and x2 = 2y2. Here,

ψ
(
d(gx, fy)

)
= ψ

(
d

(
1

2
y2,

1

2
y2
))

= 0

6
1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Subcase 4: y2 6= 2x2, x2 6= 2y2, and x 6= y. Here we have

ψ
(
d(gx, fy)

)
= ψ

(
d

(
1

4
x2,

1

2
y2
))

= ψ

(
1

4
x2 +

1

2
y2
)

=

(
1

4
x2 +

1

2
y2
)2

6
1

4
(x+ y)2 =

1

4
ψ
(
d(x, y)

)
6

1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Subcase 5: y2 6= 2x2, x2 6= 2y2, and x = y. Here we have

ψ
(
d(gx, fy)

)
= ψ

(
d

(
1

4
x2,

1

2
y2
))

=

(
1

4
x2 +

1

2
y2
)2

=

(
3

4
x2
)2

,

ψ
(
d(gx, y)

)
= ψ

(
d

(
1

4
x2, y

))
=

(
1

4
x2 + y

)2

=

(
1

4
x2 + x

)2

,

ψ
(
d(x, fy)

)
= ψ

(
d

(
x,

1

2
y2
))

=

(
x+

1

2
y2
)2

=

(
x+

1

2
x2
)2

,
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and

ψ
(
d(x, gx)

)
= ψ

(
d

(
x,

1

4
x2
))

=

(
x+

1

4
x2
)2

.

So, we have

ψ
(
d(gx, fy)

)
6 min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Therefore,

ψ
(
d(gx, fy)

)
6

1

4
ψ
(
d(x, y)

)
+min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

By combining all cases together, we conclude that for all x, y ∈ X , we have

ψ
(
d(fx, gy)

)
6 ψ

(
d(x, y)

)
+min

{
ψ
(
d(fx, y)

)
, ψ
(
d(x, gy)

)
, ψ
(
d(x, fx)

)}
and

ψ
(
d(gx, fy)

)
6 ψ

(
d(x, y)

)
+min

{
ψ
(
d(gx, y)

)
, ψ
(
d(x, fy)

)
, ψ
(
d(x, gx)

)}
.

Thus, the pair (f, g) is (1/4, ψ, 1)-quasi contraction of type (II).
So, all conditions of Theorem 2 are satisfied. Therefore, f and g have a unique

common fixed point, here 0 is the common fixed point of f and g.

Now, we will introduce an example to show that our results can be used to prove the
existence and uniqueness of solution of such nontrivial equations.

Example 6. The equation
x2 + 2 = 4x3 + 16x (20)

has a unique real solution.

Proof. Let X = [0, 1]. Define d : X × X → [0,+∞) by d(x, y) = |x − y|. Then
(X, d) is a complete quasi metric space. Also, define the mapping f : X → X by fx =
(x2+2)/(4x2+16). Note that f is continuous. Moreover, define ψ : [0,+∞)→ [0,+∞)
by

ψ(t) =

{
t2 if t ∈ [0, 1],

t− 1
2 if t ∈ (1,+∞).

Note that ψ is an ultra distance function and (X, d) is bounded with respect to ψ. Now,
we will prove that the pair (f, f) is (1/16, ψ, 0)-quasi contraction of type (II). Given
x, y ∈ X . Then

ψ
(
d(fx, fy)

)
=

∣∣∣∣ x2 + 2

4x2 + 16
− y2 + 2

4y2 + 16

∣∣∣∣2 =
(8|x2 − y2|)2

(4x2 + 16)2(4y2 + 16)2

6
(16|x− y|)2

(4x2 + 16)2(4y2 + 16)2
6

1

16
ψ
(
d(x, y)

)
.

Thus, f satisfies all conditions of Theorem 2. Therefore, f has a unique fixed point. Note
that the unique fixed point of f is the unique solution of equation (20).

Nonlinear Anal. Model. Control, 23(5):724–748
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As an application of our results, we construct some fixed point theorems of integral
types.

Let Γ denoted to the set of functions λ : R+→R+ satisfying the following conditions:

(i) λ is Lebesgue-integrable on each compact of R+.
(ii) For each ε > 0, we have

ε∫
0

λ(z) dz > 0.

Theorem 3. Let (X, d) be a complete quasi metric space and f , g be two self mappings
on X . Assume that f and g satisfy the following hypothesis:

(i) There exist λ ∈ Γ , L > 0, and two positive numbers a and b, a+ b < 1, such that

d(fx,gy)∫
0

λ(z) dz 6 a

d(x,fx)∫
0

λ(z) dz + b

d(y,gy)∫
0

λ(z) dz + L

d1∫
0

dz,

where d1 = min{q(x, gy), q(y, fx), q(x, fx)}, and

d(gx,fy)∫
0

λ(z) dz 6 a

d(x,gx)∫
0

λ(z) dz + b

d(y,fy)∫
0

λ(z) dz + L

d2∫
0

dz,

where d2 = min{q(x, fy), q(y, gx), q(x, gx)}.
(ii) f or g is continuous.

Then f and T have a unique common fixed point.

Proof. Define the function ψ : R+ → R+ via ψ(t) =
∫ t
0
λ(z) dz. Note that ψ is an ultra

distance function. The result follows from Corollary 3 by noting that the two functions f
and g satisfy all the conditions of Corollary 3.

Theorem 4. Let (X, d) be a complete quasi metric space and f, g be two self mappings
on X . Assume the following hypothesis:

(i) There exist λ ∈ Γ , L > 0, and k ∈ [0, 1) such that

d(fx,gy)∫
0

λ(z) dz 6 k

d(x,y)∫
0

λ(z) dz + L

d3∫
0

dz,

where d3 = min{ψ(d(x, gy)), ψ(d(y, fx)), ψ(d(x, fx))}, and

d(gx,fy)∫
0

λ(z) dz 6 k

d(x,y)∫
0

λ(z) dz + L

d4∫
0

dz,

where d4 = min{ψ(d(x, fy)), ψ(d(y, gx)), ψ(d(x, gx))}.
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(ii) There exists M > 0 such that for all x, y ∈ X , we have
∫ d(x,y)
0

λ(z) dz 6M .
(iii) f or g is continuous.

Then f and T have a unique common fixed point.

Proof. Define ψ : R+ → R+ by ψ(t) =
∫ t
0
λ(z) dz. Note that ψ is an ultra distance

function. From condition (ii), we deduce that (X, d) is bounded with respect to ψ. Also,
from condition (i), we conclude that pair (f, g) is (k, ψ, L)-quasi contraction of type (II).
Thus, the functions f and g satisfy all the conditions of Theorem 2. Thus, f and g have
a unique common fixed point.

Now, we furnish an application to show that our work can be used to prove the
existence and uniqueness solution of some integral equations.

Let X = C([0, 1],R) be the set of all continuous functions defined on [0, 1]. Define
d : X ×X → [0,+∞) by

d(x, y) = ‖x− y‖∞ =: sup
{∣∣x(t)− y(t)∣∣: t ∈ [0, 1]

}
.

Note that (X, d) is a complete quasi metric space. Consider the following integral equa-
tion:

x(t) =

1∫
0

s(t, u)f
(
u, x(u)

)
du, (21)

where f : [0, 1] ×X → R is a continuous function, and s : [0, 1] × [0, 1] → [0,+∞) is
a function such that s(t, .) is integrable for all t ∈ [0, 1].

Now, we introduce and prove the following theorem, which ensure that the integral
equation (21) has a unique solution.

Theorem 5. Suppose the following conditions are satisfied:

(i) There exists an ultra distance function ψ such that for all u ∈ [0, 1] and x, y ∈ X ,
we have ∣∣f(u, x(u))− f(u, y(u))∣∣ 6 ψ

(∣∣x(u)− y(u)∣∣).
(ii) There exist M1,M2 > 0 such that for any x ∈ X and t ∈ [0, 1], we have

ψ
(∣∣x(t)∣∣) 6M1ψ

(
‖x‖∞

)
6M2‖x‖∞.

(iii) There exists k∈ [0, 1/M2) such that for any t∈ [0, 1], we have
∫ 1

0
s(t, u) du<k.

(iv) There exists M > 0 such that for any x, y ∈ X , we have ψ(d(x, y)) 6M .

Then the integral equation (21) has a unique solution.

Proof. Define an operator T : X ×X → [0,+∞) by

Tx(t) =

1∫
0

s(t, u)f
(
u, x(u)

)
du.

Note that any fixed point of T is a solution for the integral equation (21). So, we shall
show that T has a unique fixed point. Note that T is continuous. Now, given x, y ∈ X .

Nonlinear Anal. Model. Control, 23(5):724–748
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Then for any t ∈ [0, 1], we have

∣∣Tx(t)− Ty(t)∣∣ = ∣∣∣∣∣
1∫

0

s(t, u)f
(
u, x(u)

)
− s(t, u)f

(
u, y(u)

)
du

∣∣∣∣∣
6

1∫
0

s(t, u)
∣∣f(u, x(u))− f(u, y(u))∣∣ du

6

1∫
0

s(t, u)ψ
(∣∣x(u)− y(u)∣∣)du

6

1∫
0

M1s(t, u)ψ
(
‖x− y‖∞

)
du 6 kM1ψ

(
‖x− y‖∞

)
.

Thus, ‖Tx− Ty‖∞ 6 kM1ψ(‖x− y‖∞). From condition (ii) we have

ψ
(
d(Tx, Ty)

)
= ψ

(
‖Tx− Ty‖∞

)
6
M2

M1
‖Tx− Ty‖∞

6 kM2ψ
(
‖x− y‖∞

)
= kM2ψ

(
d(x, y)

)
.

So, the pair (T, T ) is (kM2, ψ, 0)-quasi contraction of type (II). From condition (iv) we
conclude that (X, d) is bounded with respect to ψ. Thus, all conditions of Theorem 2 are
satisfied. So, T has a unique solution. Therefore, the integral equation (21) has a unique
solution.

We introduce the following example to illustrate Theorem 5.

Example 7. The following integral equation:

x(t) =

1∫
0

u|x(u)| cosu
(2 + t)(1 + |x(u)|)

du (22)

has a unique solution in C([0, 1],R).

Proof. Let X = C([0, 1],R) be the set of all continuous function on [0, 1]. Define f :
[0, 1]×X → R and s : [0, 1]× [0, 1]→ [0,+∞) by

f
(
t, y(t)

)
=

cos t|y(t)|
1 + |y(t)|

,

and s(t, u) = u/(2 + t). Moreover, define ψ : [0,+∞)→ [0,+∞) by

ψ(t) =

{
t

1+t if t ∈ [0, 1],

1 if t ∈ (1,+∞).

Then f , s, and ψ satisfy all conditions of Theorem 5 with M1 = M2 = 1 and k = 1/2.
Thus, the integral equation (22) has a unique solution in X .
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