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Abstract. This paper deals with an arbitrary-order autocatalysis model with delayed feedback
subject to Neumann boundary conditions. We perform a detailed analysis about the effect of
the delayed feedback on the stability of the positive equilibrium of the system. By analyzing
the distribution of eigenvalues, the existence of Hopf bifurcation is obtained. Then we derive an
algorithm for determining the direction and stability of the bifurcation by computing the normal
form on the center manifold. Moreover, some numerical simulations are given to illustrate the
analytical results. Our studies show that the delayed feedback not only breaks the stability of the
positive equilibrium of the system and results in the occurrence of Hopf bifurcation, but also breaks
the stability of the spatial inhomogeneous periodic solutions. In addition, the delayed feedback also
makes the unstable equilibrium become stable under certain conditions.

Keywords: autocatalysis model, delayed feedback control, diffusion, stability switch, Hopf
bifurcation.

1 Introduction

Autocatalysis is the process whereby a chemical is involved in its own production. In
recent years, the diffusive autocatalysis reaction models, which attracts much attention,
have been extensively used in the studies of Turing instability or Turing pattern. For
example, see [8, 21, 29] for the Brusselator model, see [4, 20, 23] for the Sel’kov model,
see [14, 15, 27] for the Lengyel–Epstein model, see [17, 26] for the Schnakenberg model.

When the reaction rates are the same and the reactor is assumed to be closed, we
obtain an arbitrary-order autocatalysis model with Neumann boundary conditions, which
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takes the following form:

∂u

∂t
− d1∆u = a− uvp, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = uvp − v, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ ∂Ω.

(1)

Here u and v describe the dimensionless concentrations of the reactant and autocatalyst,
respectively, and Ω is an open bounded domain in RN (N > 1) with a smooth boundary
∂Ω, ν is the outward unit normal vector on ∂Ω. Moreover, a denotes the initial concen-
tration of the reaction precursor, p is the order of the reaction with respect to autocatalytic
species, and d1, d2 are the diffusion coefficients of reactant and autocatalyst, respectively.
The parameters a, p, d1 and d2 are assumed to be positive constants. The derivation of the
model and more details can be found in [6,18]. In [11], Guo et al. proved the existence of
Hopf bifurcation and steady state bifurcation of system (1) by taking a as a parameter. In
addition, the authors also derived the conditions for the occurrence of Turing instability.
In [10], Guo et al. supplemented and improved the results in [11] and further established
the Turing instability region determined by diffusion coefficients. In addition, the authors
discussed the effect of diffusion coefficients on the existence of Hopf bifurcation.

It is well known that time delay is universal in ecological and chemical systems, and
its influence on the dynamics of systems is crucial and instrumental. In [19], Ott et
al. first proposed delay to control system by utilizing the input signals adjusted to the
temporal states of the system, and then delayed feedback and its modifications are widely
applied to control chaos and to stabilize unstable oscillations. Motivated by the idea of
Ott and Grebogi, many investigators have studied the effect of time delay in ecological
and chemical models (see [1, 2, 7, 9, 13, 16, 24, 28, 30]). Although many researches have
been devoted to the experiments about the suppression of the delayed feedback on the
chemical turbulent, there is few analysis of the effect of delayed feedback on the dynamics
of chemical reaction models theoretically. Based on the previous work, we consider the
following autocatalysis model with delayed feedback:

∂u(x, t)

∂t
− d1∆u(x, t) = a− u(x, t)vp(x, t) + g

(
u(x, t− τ)− u(x, t)

)
,

x ∈ Ω, t > 0,

∂v(x, t)

∂t
− d2∆v(x, t) = u(x, t)vp(x, t)− v(x, t), x ∈ Ω, t > 0,

∂u(x, t)

∂x
=
∂v(x, t)

∂x
= 0, t > 0, x ∈ ∂Ω,

u(x, t) = u0(x, t) > 0 (6≡ 0), v(x, t) = v0(x, t) > 0 (6≡ 0),

x ∈ Ω, t ∈ [−τ, 0],

(2)
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where the last term in the first equation g(u(x, t− τ)−u(x, t)) denotes the local delayed
feedback control, g denotes the feedback intensity, and τ the time delay.

In this paper, we perform a detailed analysis of delayed feedback on the dynamics of
system (2). The rest of the paper is organized as follows. In Section 2, by analyzing the
distribution of the roots of the associated characteristic equation, we study the stability of
the positive equilibrium E∗. As time delay varies, we study its effect on the stability of
the positive equilibrium E∗ and prove the existence of Hopf bifurcation. In Section 3, by
applying the normal form theory and center manifold reduction for partial differential
systems, the explicit formulas, which determine the stability and the direction of the
bifurcating periodic solutions, are given. In Section 4, some simulations are given to
illustrate our theoretical results. The simulations show that the delayed feedback not only
breaks the stability of E∗ and results in the occurrence of the Hopf bifurcation, but also
effects the stability of the spatial inhomogeneous periodic solutions.

2 Stability analysis

It is easy to see that system (2) has a unique positive equilibriumE∗(u∗, v∗) = (a1−p, a).
In this paper, we consider system (2) on the domain Ω = (0, lπ), l ∈ R+. Now, we
devote our attention to the study of the effect of delayed feedback on the stability of E∗.

Denote X = L2([0, lπ],R2). Setting u1(t) = u(x, t), u2(t) = v(x, t) and U(t) =
(u1(t), u2(t))T, then system (2) can be written as an abstract differential equation in the
phase space C = C([−τ, 0], X) as follows:

dU(t)

dt
= D∆U(t) +G(Ut), (3)

where D = diag(d1, d2), Ut(·) = U(t+ ·) and G : C → X is given by

G(Ut) =

(
a− u1(t)up2(t) + g(u1(t− τ)− u1(t))

u1(t)up2(t)− u2(t)

)
.

Linearizing system (3) at the positive equilibrium E∗, we have

dU(t)

dt
= D∆U(t) + L(Ut), (4)

where L : C → X is given by

L(φt) = L1φ(0) + L2φ(−τ)

and

L1 =

(
−ap − g −p
ap p− 1

)
, L2 =

(
g 0
0 0

)
,

φ(t) =
(
φ1(t), φ2(t)

)T
, φt(·) =

(
φ1(t+ ·), φ2(t+ ·)

)
.
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From Wu [25] the corresponding characteristic equation of (4) can be written as

λy −D∆y − L
(
eλ·y

)
= 0, (5)

where y ∈ dom(∆) \ {0}, dom(∆) ⊂ X , and(
eλ·y

)
(θ) = eλθy for θ ∈ [−τ, 0].

It is well known that the following eigenvalue problem

−∆ϕ = µϕ, x ∈ (0, lπ), ϕx|x=0, lπ = 0

has eigenvalues µn = n2/l2 (n ∈ N0 = N
⋃
{0}) with corresponding eigenfunctions

ϕn = cos(n/l)x, n ∈ N0. Substituting the Fourier expansion

y =

∞∑
n=0

(
an
bn

)
cos

n

l
x, an, bn ∈ C,

into the characteristic equation (5), we have

det

(
λ+ d1n

2

l2 + ap + g − ge−λτ p

−ap λ+ d2n
2

l2 − p+ 1

)
= 0, n ∈ N0.

Therefore, the characteristic equation (5) is equivalent to

λ2 +Anλ+Bn + (Cnλ+Dn)e−λτ = 0, n ∈ N0, (6)

where

An =
(d1 + d2)n2

l2
+ ap + 1− p+ g,

Bn =
d1d2n

4

l4
+

[(1− p)d1 + (ap + g)d2]n2

l2
+ ap + (1− p)g,

Cn = −g, Dn = −g
(
d2n

2

l2
+ 1− p

)
.

When τ = 0, equation (6) becomes

λ2 + Pnλ+Qn = 0, n ∈ N0,

where

Pn = An + Cn =
(d1 + d2)n2

l2
+ ap + 1− p,

Qn = Bn +Dn =
d1d2n

4

l4
+

[(1− p)d1 + apd2]n2

l2
+ ap.

(7)

From Theorem 2.1 in [11] and Theorem 3.1 in [10] we obtain the following results on
system (2) without delayed feedback (τ = 0).
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Lemma 1.
(i) If 0 < p 6 1, then the equilibrium E∗ of system (2) is locally asymptotically

stable.
(ii) Assume that p > 1 and a > (p− 1)1/p.

(a) If 0 < d1/d2 < ap/(
√
p− 1)2, then the equilibrium E∗ of system (2) is

locally asymptotically stable.
(b) If d1/d2 > ap/(

√
p− 1)2, then the positive equilibrium E∗ of system (2) in

the absence of diffusion is locally asymptotically stable, and unstable when-
ever the diffusion is present.

Now, we investigate the effect of time delay on the stability of E∗ when p > 1. From
Lemma (1) we can see that E∗(u∗, v∗) of (2) is locally asymptotically stable under the
assumption:

(H1) p > 1, a > (p− 1)1/p and 0 < d1/d2 < ap/(
√
p− 1)2

when τ = 0. In fact, if a < (p− 1)1/p, then (H1) is false. In this case, we can still use the
following techniques to analyze the effect of time delay on the stability of E∗. According
to Corollary 2.4 in Ruan and Wei [22], we have that the stability of the equilibrium E∗ of
system (2) changes only if the characteristic equation (6) has a root appears on or crosses
the imaginary axis. It can be verified that 0 is not a root of the characteristic equation (6)
for any n ∈ N0. Therefore, we only need to check whether the characteristic equation (6)
has purely imaginary roots. Let ±iω (ω > 0) be the roots of (6), then we have

−ω2 +Aniω +Bn + (Cniω +Dn)e−iωτ = 0.

Separating the real and imaginary parts, it yields to

ω2 −Bn = Dn cosωτ + Cnω sinωτ,

Anω = Dn sinωτ − Cnω cosωτ.
(8)

It follows that ω should satisfy

ω4 +
(
A2
n − C2

n − 2Bn
)
ω2 +B2

n −D2
n = 0, (9)

with

A2
n − C2

n − 2Bn =
(
d21 + d22

)n4
l4

+ 2
[(
ap + g

)
d1 + (1− p)d2

]n2
l2

+ 2ap(g − p) + a2p + (1− p)2,

B2
n −D2

n = Qn

{
d1d2

n4

l4
+
[
(1− p)d1 +

(
ap + 2g

)
d2
]n2
l2

+ ap + 2g(1− p)
}
,

(10)

where Qn is defined as in (7).
Denote z = ω2, then we can rewrite equation (9) as follows:

z2 +
(
A2
n − C2

n − 2Bn
)
z +B2

n −D2
n = 0. (11)
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From the first equation of (10) we know that the graph of A2
n − C2

n − 2Bn is a parabola.
Therefore, A2

n − C2
n − 2Bn > 0 holds for any (n/l)2 ∈ R+ just as[(

ap + g
)
d1 + (1− p)d2

]2 − (d21 + d22
)[

2ap(g − p) + a2p + (1− p)2
]
< 0,

or
apd1 + (1− p)d2 > 0 and A2

0 − C2
0 − 2B0 > 0.

SinceA2
0−C2

0−2B0 = 2ap(g−p)+a2p+(1−p)2 > 0 when g > (2app−a2p−(1−p)2)/
(2ap), so, the sufficient conditions for A2

n − C2
n − 2Bn > 0 can be given by

d1
d2

>
p− 1

ap
, g > max

{
0,

2app− a2p − (1− p)2

2ap

}
, (12)

or [(
ap + g

)
d1 + (1− p)d2

]2 − (d21 + d22
)[

2ap(g − p) + a2p + (1− p)2
]
< 0. (13)

Note that Qn > 0 for any n ∈ N0 when (H1) holds. We know that the sign of B2
n −D2

n

is determined by the sign of the following variable:

Tn
def
=

d1d2n
4

l4
+

[(1− p)d1 + (ap + 2g)d2]n2

l2
+ ap + 2g(1− p)

when (H1) holds. Similar to the above analysis, we obtain that the sufficient condition for
B2
n −D2

n > 0 can be given by

0 <
d1
d2

<
ap

p− 1
, g <

ap

2(p− 1)
, (14)

or [
(1− p)d1 +

(
ap + 2g

)
d2
]2 − 4d1d2

[
ap + 2g(1− p)

]
< 0. (15)

Hence, we have that

A2
n − C2

n − 2Bn > 0 and B2
n − C2

n > 0 for any n ∈ N0

if (12) and (14), or (12) and (15), or (13) and (14), or (13) and (15) hold. Recall that
z = ω2, we deduce that characteristic equation (6) does not have purely imaginary roots
if equation (11) does not have positive roots. We know that z+n and z−n are negative when
either of the following assumptions holds:

(H2) A2
n − C2

n − 2Bn > 0 and B2
n −D2

n > 0,
(H3) (A2

n − C2
n − 2Bn)2 − 4(B2

n −D2
n) < 0.

Hence, we can summarize the above discission as follows:

Lemma 2. Suppose that (H1) holds. If (12) and (14), or (12) and (15), or (13) and (14),
or (13) and (15), or (H3) holds, then all the roots of the characteristic equation (6) have
negative real parts.
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From the above analysis we know that if equation (11) has a positive root, then the
characteristic equation (6) has a pair of simply imaginary roots. It implies that there exists
a n ∈ N0 such that B2

n − D2
n < 0. Since B2

n − D2
n → ∞ as n → ∞ and B2

0 − D2
0 =

ap[ap+2g(1−p)] < 0 when g > ap/(2(p− 1)), there exists a minimal integer N0 ∈ N0

such that B2
n −D2

n < 0 at most for 0 6 n 6 N0, and B2
n −D2

n > 0 for n > N0. This
means that equation (11) has a positive root zn satisfying

z+n =
−(A2

n − C2
n − 2Bn) +

√
(A2

n − C2
n − 2Bn)2 − 4(B2

n −D2
n)

2

for 0 6 n 6 N0. Let ω+
n =

√
z+n . Then equation (6) has a pair of simply imaginary roots

±iω+
n as long as τ = τ+n,j for 0 6 n 6 N0, where

τ+n,j =


1
ω+

n
[arccos

ω+
n

2
(Dn−AnCn)−BnDn

C2
nω

+
n

2
+D2

n

+ 2jπ], sinω+
n τ > 0,

1
ω+

n
[2π − arccos

ω+
n

2
(Dn−AnCn)−BnDn

C2
nω

+
n

2
+D2

n

+ 2jπ], sinω+
n τ < 0,

(16)

for j ∈ N0, 0 6 n 6 N0.
Summarizing the above discussion, we have the following result.

Lemma 3. Suppose that (H1) holds. If g > ap/(2(p− 1)), then there exists a minimal
integer N0 ∈ N0 such that for 0 6 n 6 N0, the characteristic equation (6) has a pair of
imaginary roots ±iω+

n as long as τ = τ+n,j , and all the other roots of equation (6), except
±iω+, have negative roots.

Assume that g > ap/(2(p− 1)). For n > N0, we further assume that

A2
n − 2Bn − C2

n < 0 and
(
A2
n − C2

n − 2Bn
)2 − 4

(
B2
n −D2

n

)
> 0,

then equation (11) has two positive roots, which can be given by

z±n =
−(A2

n − 2Bn − C2
n)±

√
(A2

n − 2Bn − C2
n)2 − 4(B2

n −D2
n)

2
.

From the first formula of (10) we obtain that A2
n − C2

n − 2Bn →∞ as n→∞, so there
are at most infinite terms in A2

n−C2
n− 2Bn less than zero, that is, there exists a minimal

integer N ∈ N0 such that A2
n − C2

n − 2Bn < 0. Let ω±n =
√
z±n . By equation (8), we

have

τ±n,j =


1
ω±

n
[arccos

ω±
n

2
(Dn−AnCn)−BnDn

C2
nω

±
n

2
+D2

n

+ 2jπ], sinω±n τ > 0,

1
ω±

n
[2π − arccos

ω±
n

2
(Dn−AnCn)−BnDn

C2
nω

±
n

2
+D2

n

+ 2jπ], sinω±n τ < 0,
(17)

for j ∈ N0, N0 < n 6 N .
From the above analysis and according to Lemma 3, we have the following results.
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Proposition 1. Suppose that (H1) holds.

(i) Assume further (p− 1)/ap 6 d1/d2 6 ap/(p− 1). If

g > max

{
2app− a2p − (1− p)2

2ap
,

ap

2(p− 1)

}
and

d1d2 +
[
(1− p)d1 +

(
ap + 2g

)
d2
]
l2 +

[
ap + 2g(1− p)

]
l4 > 0

hold, then (6) only has a pair of simply imaginary roots just for n = 0.
(ii) Assume that T1 < 0 is satisfied. Then there must exist an integer n ∈ N such that

(6) has a pair of simply imaginary roots.
(iii) If

(H4)


d1
d2
< p−1

ap ,

0 < g < min
{

ap

2(p−1) ,
(p−1)d2−apd1

d1
, 2app−a2p−(p−1)2

2ap

}
,(

A2
1 − C2

1 − 2B1

)2 − 4(B2
1 −D2

1) > 0

holds, then the characteristic equation (6) has two pairs of simply imaginary
roots.

Remark 1. Assume that a < (p − 1)1/p and p > 1. If (H4) holds, conclusion (iii) in
Proposition 1 is still true.

Lemma 4. Suppose that (H1) holds.

(i) If B2
n −D2

n < 0 holds for some n ∈ N0, then Reλ′(τ+n,j) > 0 for j ∈ N0.
(ii) IfA2

n−C2
n−2Bn < 0 andB2

n−D2
n > 0 hold for some n ∈ N0, then for j ∈ N0:

(a) Reλ′(τ±n,j) = 0 as (A2
n − C2

n − 2Bn)2 − 4(B2
n −D2

n) = 0;
(b) Reλ′(τ+n,j) > 0, Reλ′(τ−n,j) < 0 as (A2

n−C2
n− 2Bn)2− 4(B2

n−D2
n) > 0.

Proof. Differentiating the two sides of equation (6) with respect to τ , it follows that

(
2λ+An + Cne−λτ

)dλ

dτ
− (Cnλ+Dn)

(
λ+ τ

dλ

dτ

)
e−λτ = 0.

Thus, (
dλ

dτ

)−1
=

2λ+An + Cne−λτ

λ(Cnλ+Dn)e−λτ
− τ

λ
.

From (6) we obtain that

e−λτ = −λ
2 +Anλ+Bn
Cnλ+Dn

.
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Then

Re

(
dλ

dτ

)−1∣∣∣∣
τ=τ±

n,j

= Re

[
Cn

λ(Cnλ+Dn)
− 2λ+An
λ(λ2 +Anλ+Bn)

− τ

λ

]
τ=τ±

n,j

= Re

[
Cn

λ(Cnλ+Dn)

]
λ=iω±

n

− Re

[
2λ+An

λ(λ2 +Anλ+Bn)

]
λ=iω±

n

= − C2
n

C2
nω
±
n

2
+D2

n

+
A2
n + 2ω±n

2 − 2Bn

A2
nω
±
n

2
+ (Bn − ω±n

2
)2
.

According to (8) and (9), then we have

Re

(
dλ

dτ

)−1∣∣∣∣
τ=τ±

n,j

=
A2
n − 2Bn − C2

n + 2ω±n
2

C2
nω
±
n

2
+D2

n

∣∣∣∣
λ=iω±

n

= ±
√

(A2
n − C2

n − 2Bn)2 − 4(B2
n −D2

n)

C2
nω
±
n

2
+D2

n

.

Since

sign

{
Re

(
dλ

dτ

)∣∣∣∣
τ=τ±

n,j

}
= sign

{
Re

(
dλ

dτ

)−1∣∣∣∣
τ=τ±

n,j

}
,

then the conclusion is claimed.

Denote

D1 =
{
n ∈ N0: B2

n −D2
n < 0

}
and

D2 =
{
n ∈ N0: B2

n −D2
n > 0, A2

n − C2
n − 2Bn < 0

and
(
A2
n − C2

n − 2Bn
)2
> 4
(
B2
n −D2

n

)}
.

It is obvious from (17) that {τ±n,j}|∞j=0 is increasing on j for the fixed n ∈ D2, so, for
the fixed n, τ±n,0 = minj∈N0

{τ±n,j}. Recall that E∗ is locally asymptotically stable when
τ = 0 under the assumption (H1), then necessarily τ+n,0 6 τ−n,0 (n ∈ N0) when (H1)
holds. Hence, for all n ∈ D1 ∪ D2, we can define the smallest critical value such that the
stability of E∗(u∗, v∗) will change, which is given by

τ∗
def
= τ+n0,0

= min
{
τ+n,0

}
, if n ∈ D1 ∪ D2.

From Lemmas (2)–(4) and Proposition (1) we obtain the following conclusion.

Theorem 1. Assume that (H1) holds.

(i) If (12) and (14), or (12) and (15), or (13) and (14), or (13) and (15), or (H3)
holds, then the equilibrium E∗ of system (2) is locally asymptotically stable for
any τ > 0.
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(ii) If g > ap/(2(p− 1)) or T1 < 0, then there exists a minimal integer N0 ∈ N0

such that, for 0 6 n 6 N0:

(a) the equilibrium E∗ is locally asymptotically stable for τ ∈ [0, τ∗), unstable
for τ > τ∗;

(b) system (2) undergoes a Hopf bifurcation at the equilibrium E∗ as τ = τ+n,j
for j ∈ N0.

(iii) If (H4) or

(H5)

{
g > ap

2(p−1) ,

A2
n − C2

n − 2Bn < 0 and
(
A2
n − C2

n − 2Bn
)2 − 4(B2

n −D2
n) > 0

holds for some N ∈ N, then the stability switch may exist. Moreover, system (2)
undergoes Hopf bifurcation at the equilibrium E∗ as τ = τ±n,j for j ∈ N0,
0 6 n 6 N .

Remark 2. Assume that a < (p−1)1/p and other conditions in (H1) still hold. According
to the discussion in [3], we have that the conclusion in Theorem 1 is still true just as (H4)
or (H5) holds. In this case, the stability switches may occur.

3 Stability and direction of Hopf bifurcation

In the previous section, we have verified that system (2) undergoes Hopf bifurcation at
the positive equilibrium E∗(u∗, v∗) = (a1−p, a) as τ = τ+n,j(τ

−
n,j). In this section, we

will investigate the direction and stability of period solutions bifurcating from the positive
equilibrium E∗ by applying the center manifold theorem and normal form theory for the
partial differential equations presented in Faria [5] and Wu [25].

Setting u1(x, t) = u(x, tτ)−a1−p, u2(x, t) = v(x, tτ)−a,U(t) = (u1(x, t), u2(x, t)),
then system (2) can be written in the following form:

dU(t)

dt
= τD∆U(t) + L(τ)(Ut) + f(Ut, τ)

in the space C = C([−1, 0], X), where D = diag(d1, d2), L(τ)(·) : C → X and f :
C × R→ X are given, respectively, by

L(τ)(ϕ) = τL1ϕ(0) + τL2ϕ(−1), f(ϕ, τ) = τ
(
f1(ϕ, τ), f2(ϕ, τ)

)T
,

where

f1(ϕ, τ) = a1ϕ1(0)ϕ2(0) + a2ϕ
2
2(0) + a3ϕ1(0)ϕ2

2(0) + a4ϕ
3
2(0) +O(4),

f2(ϕ, τ) = −a1ϕ1(0)ϕ2(0)− a2ϕ2
2(0)− a3ϕ1(0)ϕ2

2(0)− a4ϕ3
2(0) +O(4),

with

a1 = −pap−1, a2 = −p(p−1)

2a
, a3 = −p(p−1)ap−2

2
, a4 = −p(p−1)(p−2)

6a2
,

for ϕ = (ϕ1, ϕ2)T ∈ C.
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Setting τ = τ∗ + α, then system (2) can be rewritten in an abstract form in the space
C = C([−1, 0], X) as

dU(t)

dt
= τ∗D∆U(t) + L(τ∗)(Ut) + F (Ut, α), (18)

where
F (ϕ, α) = αD∆ϕ(0) + L(α)(ϕ) + f(ϕ, τ∗ + α),

for ϕ ∈ C. From the previous section it is easy to see that system (18) undergoes Hopf
bifurcation at the equilibrium (0, 0) when α = 0. We also know that ±iω∗τ∗ are the
simply purely imaginary characteristic values of linearised system of (18) at (0, 0)

dU(t)

dt
= (τ∗ + α)D∆U(t) + L(τ∗ + α)(Ut) (19)

as α = 0 and all the other characteristic values have negative real parts as α = 0.
From previous analysis we have that the characteristic values of τD∆ on X are

−τd1n2/l2 and −τd2n2/l2, n ∈ N0, with corresponding eigenfunctions β1
n(x) =

(bn(x), 0)T and β2
n(x) = (0, bn(x))T, where

bn(x) =
cos nxl√∫ lπ

0
cos2 nxl dx

.

Denote Mn = span{〈ϕ, βin〉βin: ϕ ∈ C, i = 1, 2}, n ∈ N0, where the inner product is
given by

〈u, v〉 =

lπ∫
0

uTv dx for u, v ∈ X.

So, on Mn, (19) is equivalent to the following equation on R2:

dU(t)

dt
= −(τ∗ + α)

n2

l2
DU(t) + L(τ∗ + α)(Ut). (20)

Using the Riesz representation theorem, we know that there exists a bounded variation
ηn(α, θ)(θ ∈ [−1, 0]) such that

− (τ∗ + α)
n2

l2
Dϕ(0) + L(τ∗ + α)(ϕ) =

0∫
−1

dηn(α, θ)ϕ(θ) (21)

for ϕ ∈ C([−1, 0],R2). In fact, we can choose

ηn(α, θ) =


−(τ∗ + α)L2, θ = −1,

0, θ ∈ (−1, 0),

(τ∗ + α)(L1 − n2

l2 D), θ = 0.
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Let A denote the infinitesimal generator of the semigroup defined by (20) with α = 0
and n = n0, and A∗ denote the formal adjoint of A under the bilinear form

(ψn, ϕn)n = ψn(0)ϕn(0)−
0∫
−1

θ∫
0

ψn(ξ − θ) dηn(µ, θ)ϕn(ξ) dξ

for ϕn ∈ C([−1, 0],R2), ψn ∈ C([0, 1],R2T). According to the above discussion, we
see that ±iω∗τ∗ are simply imaginary eigenvalues of A and A∗. In the following, we let
n = n0. Let

q(θ) = q(0)eiω
∗τ∗θ, θ ∈ [−1, 0], q∗(s) = q∗(0)e−iω

∗τ∗s, s ∈ [0, 1],

be the eigenvectors of A and A∗ corresponding to the eigenvalue iω∗τ∗. By calculation,
we get

q(0) = (1, q1)T, q∗(0) = (1, q2),

where
q1 =

ap

(iω∗ +
d2n2

0

l2 + 1− p)
, q2 =

−p
(iω∗ +

d2n2
0

l2 + 1− p)
.

Let Φ = (Φ1, Φ2) = (Re q, Im q) and Ψ∗ = (Ψ∗1 , Ψ
∗
2 )T = (Re q∗, Im q∗)T. By direct

calculation with use of (21), we can obtain

(Ψ∗, Φ)n0 =

(
(Ψ∗1 , Φ1)n0

(Ψ∗1 , Φ2)n0

(Ψ∗2 , Φ1)n0 (Ψ∗2 , Φ2)n0

)
,

where

(Ψ∗1 , Φ1)n0 = 1 + Re q1 Re q2 −
τ∗g

2

(
cosω∗τ∗ +

sinω∗τ∗

ω∗τ∗

)
,

(Ψ∗1 , Φ2)n0
= Re q2 Im q1 +

τ∗g

2
sinω∗τ∗ = (Ψ∗2 , Φ1)n0

,

(Ψ∗2 , Φ2)n0
= Im q1 Im q2 +

τ∗g

2

(
cosω∗τ∗ − sinω∗τ∗

ω∗τ∗

)
.

We choose Ψ = (Ψ1, Ψ2)T = (Ψ∗, Φ)−1n0
Ψ∗ such that (Ψ, Φ)n0 = I2, where I2 is a 2 × 2

identity matrix. Then the center subspace of the linear equation (19) with α = 0 is given
by PCNC, where

PCNϕ = ϕ
(
Ψ, 〈ϕ, βn0

〉
)
· βn0

for ϕ ∈ C, here βn = (β1
n, β

2
n) and c · βn = c1β

1
n + c2β

2
n for any c = (c1, c2)T ∈ C.

Let PSC be the stable subspace of the linear equation (19) with α = 0, then C =
PCNC

⊕
PSC. From Wu [25] we know that the flow of system (18) with α = 0 in

the center manifold is given by the following formula:(
x1(t), x2(t)

)T
=
(
Ψ, 〈Ut, βn0

〉
)
n0
,

Ut = Φ
(
x1(t), x2(t)

)T · βn0
+ h(x1, x2, 0), (22)
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(
ẋ1(t)
ẋ2(t)

)
=

(
0 ω∗τ∗

−ω∗τ∗ 0

)(
x1(t)
x2(t)

)
+ Ψ(0)

〈
F (Ut, 0), βn0

〉
(23)

with h(0, 0, 0) = 0 and Dh(0, 0, 0) = 0. Let z = x1 − ix2 and Ψ(0) = (Ψ1(0), Ψ2(0))T.
Notice that q = Φ1 + iΦ2, then (22) can be transformed into

Ut =
1

2
(qz + qz) · βn0 +W (z, z̄), (24)

where

W (z, z̄) = h

(
z + z̄

2
,

i(z − z̄)
2

, 0

)
.

According to (23) and (24), we know that z should satisfy

ż = iω∗τ∗z + g(z, z̄), (25)

where
g(z, z̄) =

(
Ψ1(0)− iΨ2(0)

)〈
F (Ut, 0), βn0

〉
=
(
Ψ1(0)− iΨ2(0)

)〈
f(Ut, τ

∗), βn0

〉
.

Let

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · ,

W (z, z) = W20
z2

2
+W11zz +W02

z2

2
+ · · · .

(26)

Denote (ψ1, ψ2) = Ψ1(0)− iΨ2(0). From (22), (24) and (25) we have

g20 =
τ∗

2

lπ∫
0

b3n0
dx
[(
a1q1 + a2q

2
1

)
ψ1 −

(
a1q1 + a2q

2
1

)
ψ2

]
= g02,

g11 =
τ∗

4

lπ∫
0

b3n0
dx
[
(a1(q1 + q1) + 2a2q1q1)ψ1 −

(
a1(q1 + q1) + 2a2q1q1

)
ψ2

]
and

g21 =
τ∗

4

lπ∫
0

b4n0
dx
[(
a3q1(q1+2q1) + 3a4q

2
1q1
)
ψ1 −

(
a3q1(q1+2q1) + 3a4q

2
1q1
)
ψ2

]
+
τ∗

2

〈[
a3
(
W

(1)
20 (0)q1 +W

(2)
20 (0) + 2W 2

11(0) + 2W 1
11(0)q1

)
+ 2a2

(
2W 2

11(0)q1 +W 2
20(0)q1

)]
bn0 , bn0

〉
ψ1

− τ∗

2

〈[
a3
(
W

(1)
20 (0)q1 +W

(2)
20 (0) + 2W 2

11(0) + 2W 1
11(0)q1

)
+ 2a2

(
2W 2

11(0)q1 +W 2
20(0)q1

)]
bn0 , bn0

〉
ψ2.
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To obtain g21, we need to calculate W20(θ) and W11(θ)(θ ∈ [−1, 0]). Following the
notation presented in Wu [25], we also let AU denote the generator of the semigroup
generated by the linear system (19) with α = 0. Combining (24) with (25) and following
the idea of Wu [25] and Zhao [28], we know that W (z, z̄) satisfies

Ẇ = U̇t −
1

2
(qż + qż) · βn0

=


AUW − 1

2 (q(θ)g(z, z) + q(θ)g(z, z)) · βn0 , θ ∈ [−1, 0),

AUW − 1
2 (q(θ)g(z, z) + q(θ)g(z, z)) · βn0

+f( 1
2 (qz + qz) · βn0 +W, τ∗), θ = 0,

= AUW +H(z, z, θ), (27)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Denote

f

(
1

2
(qz + qz) · βn0

+W, τ∗
)

= fz2
z2

2
+ fzzzz + fz2

z2

2
+ · · · .

Thus, it is easy to see that

H20(θ) =

{
− 1

2 (q(θ)g20 + q(θ)g02) · βn0 , θ ∈ [−1, 0),

− 1
2 (q(θ)g20 + q(θ)g02) · βn0

+ fz2 , θ = 0,

H11(θ) =

{
− 1

2 (q(θ)g11 + q(θ)g11) · βn0 , θ ∈ [−1, 0),

− 1
2 (q(θ)g11 + q(θ)g11) · βn0 + fzz, θ = 0.

(28)

Note that

Ẇ =
∂W (z, z)

∂z
ż +

∂W (z, z)

∂z
ż,

we obtain from (26) and (27) that

H20 = (2iω∗τ∗ −AU )W20, H11 = −AUW11. (29)

Since 2iω∗τ∗ and 0 are not eigenvalues of (19), (29) has unique solutions W20 and W11

in PSC, which are given by

W20 = (2iω∗τ∗ −AU )−1H20, W11 = −A−1U H11.

Combining the first equation of (28) with (29) and using the definition of AU , we have

Ẇ20 = 2iω∗τ∗W20(θ) +
1

2

(
q(θ)g20 + q(θ)g02

)
· βn0 for θ ∈ [−1, 0].
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Since q(θ) = q(0)eiω
∗τ∗θ for θ ∈ [−1, 0], we obtain

W20(θ) =
1

2

[
ig20
ω∗τ∗

q(θ) +
ig02

3ω∗τ∗
q(θ)

]
· βn0

+ Ee2iω
∗τ∗θ,

where E is 2-dimensional vectors inX . With βin (i = 1, 2) and q(θ) (θ ∈ [−1, 0]) defined
as above, we obtain that

τ∗D∆q(0) · βn0
+ L(τ∗)

(
q(θ) · βn0

)
= iω∗q(0) · βn0

,

τ∗D∆q(0) · βn0
+ L(τ∗)

(
q(θ) · βn0

)
= −iω∗q(0) · βn0

.

From (29) we have that

2iω∗τ∗E − τ∗D∆E − L(τ∗)
(
Ee2iω

∗τ∗θ
)

= fz2 . (30)

Representation E and fz2 by series: E =
∑∞
n=0En · βn =

∑∞
n=0Enbn (En ∈ R2) and

fz2 =
∑∞
n=0〈fz2 , βn〉 · βn =

∑∞
n=0〈fz2 , βn〉bn. Then we get from (30) that

2iω∗τ∗En + τ∗
n2

l2
DEn − L(τ∗)

(
Ene2iω

∗τ∗·) =
〈
fz2 , βn

〉
, n ∈ N0.

Thus, by calculation, En can be expressed as

En = Ẽ−1n
〈
fz2 , βn

〉
,

where

Ẽn = τ∗

(
2iω∗ + d1n

2

l2 + ap + g − ge−2iω
∗τ∗

p

−ap 2iω∗ + d2n
2

l2 − p+ 1

)
,

〈
fz2 , βn

〉
=


1√
lπ
f̃z2 , n0 6= 0, n = 0,

1√
2lπ
f̃z2 , n0 6= 0, n = 2n0,

1√
lπ
f̃z2 , n0 = 0, n = 0,

0, other,

with

f̃z2 =
τ∗

2

(
a1q1 + a2q

2
1

−a1q1 − a2q21

)
.

Similarly, from the second equation of (28) and (29) we have

W11(θ) =
1

2

[
−ig11
ω∗τ∗

q(θ) +
ig11
ω∗τ∗

q(θ)

]
· βn0

+ F,

F =

∞∑
n=0

Fnbn, Fn ∈ R2, Fn = F̃−1n 〈fzz, βn〉,
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where

F̃n = τ∗

(
d1n

2

l2 + ap p

−ap d2n
2

l2 − p+ 1

)
,

〈fzz, βn〉 =



1√
lπ
f̃zz, n0 6= 0, n = 0,

1√
2lπ
f̃zz, n0 6= 0, n = 2n0,

1√
lπ
f̃zz, n0 = 0, n = 0,

0, other,

with

f̃zz =
τ∗

4

(
a1(q1 + q1) + 2a2q1q1
−a1(q1 + q1)− 2a2q1q1

)
.

Then g21 can be determined. Consequently, we can compute the following quantities:

c1(0) =
i

2ω∗τ∗

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

1

2
g21,

µ2 = − Re(c1(0))

Re(λ′(τ∗))
, β2 = 2 Re(c1(0)),

T2 = − 1

ω∗τ∗
(

Im(c1(0)
)

+ µ2 Im
(
λ′(τ∗)

))
.

According to the general theory in Hassard [12], we know that µ2 determines the direction
of the Hopf bifurcation: the direction of the Hopf bifurcation is forward(backward) when
µ2 > 0 (< 0), that is, the bifurcating periodic solutions exist for τ > τ∗ (τ < τ∗);
β2 determines the stability of the bifurcating periodic solutions: the bifurcating periodic
solutions are orbitally asymptotically stable(unstable) when β2 < 0 (> 0); and T2
determines the period of the bifurcating periodic solutions: the period of the bifurcating
periodic solutions increases(decreases) when T2 > 0 (< 0).

4 Numerical simulations

In this section, we present some numerical simulations to illustrate the above theoretical
results.

Example 1. We choose

(D1) a = 0.85, p = 1.5, d1 = 2, d2 = 1.5, g = 1.1, l = 1.

Clearly, (H1) holds for the data (D1). Then we have thatE∗(1.0847, 0.8500) is the unique
positive equilibrium of system (2), and E∗ is asymptotically stable when τ = 0. For
this set of parameter values, we also observe that conditions (i) in Proposition 1 are
satisfied, so we have that equation (6) has a pair of simply imaginary roots only for n = 0.
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Figure 1. Numerical simulations of system (2) under the data (D1), where τ = 0.5 < τ∗ ≈ 0.7834. The
positive equilibrium E∗ = (1.0847, 0.8500) of system (2) is asymptotically stable.

Figure 2. Numerical simulations of system (2) under the data (D1), where τ = 1 > τ∗ ≈ 0.7834. The positive
equilibrium E∗(1.0847, 0.8500) of system (2) becomes unstable, and the bifurcating periodic solutions from
E∗ is stable.

From (16) we have
τ+0,j ≈ 0.7834 + 10.0194j for j ∈ N0.

So, τ∗ = τ+0,0 ≈ 0.7834. According to Theorem 1, we have that the equilibrium E∗ is
locally asymptotically stable for τ ∈ [0, τ∗) (see Fig. 1) and unstable for τ > τ∗. Then
we can say that system (2) undergoes Hopf bifurcation at the positive equilibrium E∗

when τ = τ+0,j , j ∈ N0. Using the formula derived in the previous section, we have
c1(0) ≈ −0.4675 − 5.6956i. Note that Re c1(0) < 0, and applying Lemma 4, we know
that there exist orbitally stable periodic solutions when τ > τ∗ ≈ 0.7834 (see Fig. 2).
In the simulations for the Figs. 1–2, the initial values are u(x, t) = a1−p + 0.4 cos 2x,
v(x, t) = a− 0.4 cos 2x, (x, t) ∈ [0, π]× [−τ, 0].

Example 2. Let

(D2) a = 0.91, p = 2, d1 = 0.01, d2 = 0.03, g = 0.1, l = 1.

For this set of parameter values, the equilibrium E∗(1.0989, 0.9100) is unstable when
τ = 0, but the assumption (H4) is satisfied. When τ = 0, we can verify that the
characteristic equation (6) has three pairs of roots with positive real parts, and all the
other roots of (6) have negative real parts. By calculation, we find that (6) has a pair of
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Figure 3. Numerical simulations of system (2) under the data (D2). The positive equilibrium E∗(1.0989,
0.9100) becomes stable when τ ∈ (τ−0,0, τ

+
0,0). Here τ = 4.5.

Figure 4. Numerical simulations of spatially homogeneous periodic solutions to system (2) under the data (D2),
where τ = 3.6 < τ−0,0 ≈ 3.7467.

simply imaginary roots only for n = 0, 1, 2, and

τ+0,j ≈ 5.4670 + 6.8279j, τ−0,j ≈ 3.7467 + 8.0170j, j ∈ N0,

τ+1,j ≈ 5.6482 + 6.7064j, τ−1,j ≈ 3.3695 + 7.9554j, j ∈ N0,

τ+2,j ≈ 6.4845 + 6.6118j, τ−2,j ≈ 2.0496 + 7.4693j, j ∈ N0.

Combining Lemma 4 with Corollary 2.4 in Ruan and Wei [22], we know that (6) has
a pair of roots with positive real parts crosses the imaginary axis into the left half-plane at
each value τ = τ−j,0(j = 0, 1, 2). Consequently, the total multiplicity of roots of (6) in the
right half-plane is zero when τ ∈ (τ−0,0, τ

+
0,0), that is, the equilibrium E∗(1.0989, 0.9100)

is unstable when τ ∈ [0, τ−0,0), and becomes stable when τ ∈ (τ−0,0, τ
+
0,0) (see Fig. 3).

This means that the stability switches occur. This also implies that delayed feedback
control plays a critical role in stabilizing the unstable equilibrium E∗(1.0989, 0.9100).
Observing the values of τ±i,j (j ∈ N0, i = 0, 1, 2), we find that the total multiplicity
of roots of (6) in the right half-plane increases from zero to three as delay crosses the
critical value τ+0,0, and then it begins to decrease and becomes zero when τ ∈ (τ−0,1, τ

+
0,1).

Moreover, (6) has at least a pair of roots with positive real part when τ > τ+0,1. By
calculation, we have Re c1(0) ≈ −0.0606 < 0 when τ−0,0 ≈ 3.7467, and Re c1(0) ≈
−0.0134 < 0 when τ+0,0 ≈ 5.4670. So, we have that when τ < τ−0,0 ≈ 3.7467, there exist
stable spatial homogeneous periodic solutions (see Fig. 4).
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Figure 5. Numerical simulations of spatially homogeneous periodic solutions to system (2) under the data (D2),
where τ = 5.6 > τ+0,0 ≈ 5.4670.

Figure 6. Numerical simulations of spatially inhomogeneous periodic solutions to system (2) under the data
(D2), where τ = 1.8 < τ−2,0 ≈ 2.0496.

Figure 7. Numerical simulations of spatially inhomogeneous periodic solutions to system (2) under the data
(D2), where τ = 8 > τ+2,0 ≈ 6.4845.

Similarly, there exist orbitally stable periodic solutions when τ > τ+0,0 ≈ 5.4670
(see Fig. 5). Particularly, there also exist spatial inhomogeneous periodic solutions (see
Figs. 6–7). In addition, we find that the feedback intensity g would affect the stability of
spatial inhomogeneous periodic solutions, that is, when g increases and passes through
some critical value (i.e. g > g∗ ≈ 0.134) the spatial inhomogeneous periodic solutions
become unstable (see Fig. 8). In the simulations for Figs. 3–8, the initial values are
u(x, t) = a1−p + 0.2 cos 2x, v(x, t) = a− 0.2 cos 2x, (x, t) ∈ [0, π]× [−τ, 0].
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(a) g = 0.05 (b) g = 0.05

(c) g = 0.135 (d) g = 0.135

Figure 8. Numerical simulations of spatially inhomogeneous periodic solutions to system (2) for a = 0.91,
p = 2, d1 = 0.01, d2 = 0.03, τ = 0.5.

5 Conclusion

We have studied the effect of delayed feedback on the dynamics of an arbitrary-order au-
tocatalysis model. By selecting the appropriate ratio of diffusion coefficients, the delayed
feedback can be used to control the stability of the positive equilibrium. When time delay
increases and crosses through some critical values, we found that the positive equilibrium
E∗ becomes unstable and induces the occurrence of spatial homogeneous periodic solu-
tions. By computing the normal form on the center manifold, we analyzed the direction
and stability of the periodic solutions. In addition, feedback intensity affected the stability
of the spatial inhomogeneous periodic solutions, that is, as the feedback intensity reaches
and exceeds some critical values, the spatial inhomogeneous periodic solutions become
unstable. Our study also shows that delayed feedback control can stabilize the unstable
equilibrium E∗ under certain conditions.
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