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Abstract. We investigate the existence and nonexistence of positive solutions for a system of
nonlinear Riemann-Liouville fractional differential equations with parameters and p-Laplacian
operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof
of our main existence results is based on the Guo—Krasnosel’skii fixed-point theorem.
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1 Introduction

We consider the system of nonlinear ordinary fractional differential equations with
rq1-Laplacian and ro-Laplacian operators

DG (ry (Dghu(®)) + Af (tu(t), v(t) =0, t€ (0,1 )
DG (¢, (Dg2o(t))) + pg(t u(t),0(t)) =0, ¢ € (0,1),
with the multi-point boundary conditions
N
u?(0)=0, j=0,...,n—2 Diu(0) =0, Du(l)=> a;DLu(&),
i=1 (BC)

M
v(0)=0, j=0,....,m—2; Dgv(0)=0, DEv(1) = bDEv(n,),
=1

where ay, az € (0,1], f1 € (n —1,n], B2 € (m —1,m], n,m € N, n,m > 3,
P1,02:q1,02 € R,pr € [1,n = 2], pp € [1,m —2], q1 € [0,p1], 2 € [0,p2], &, a; € R
foralli=1,.... N(NeN),0< & <~ <énv<1l,m, b eRforalli =1,...,M
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MeN)L,0<m < <nu<Lr,rg>10.,(s) =|s|"2s, <pr_il = Qo /1 +
1/oi=1,i=1,2,\u>0,f g€ C([0,1] x [0, 00) x [0,00), [0, 00)), and D, denotes
the Riemann-Liouville derivative of order k (for k = a1, 1, as, B2, P1,q1, P2, ¢2)-

Under some assumptions on the functions f and g, we give intervals for the pa-
rameters A and p such that positive solutions of (S)—(BC) exist. A positive solution of
problem (S)~(BC) is a pair of functions (u,v) € (C([0,1],[0,00)))? satisfying (S) and
(BC) with u(t) > 0 forall t € (0,1], or v(t) > 0 for all ¢ € (0, 1]. The nonexistence of
positive solutions for the above problem is also studied.

Systems with fractional differential equations without p-Laplacian operator subject to
various multi-point or Riemann—Stieltjes integral boundary conditions were studied in the
last years in [6-13, 15, 16,20,21,23,24]. Fractional differential equations describe many
phenomena in various fields of engineering and scientific disciplines such as physics,
biophysics, chemistry, biology, economics, control theory, signal and image processing,
aerodynamics, viscoelasticity, electromagnetics, and so on (see [1-3,5, 14,17-19,22]).

The paper is organized as follows. In Section 2, we investigate two nonlocal boundary
value problems for fractional differential equations with p-Laplacian, and we present
some properties of the associated Green functions. Section 3 contains the main existence
theorems for the positive solutions with respect to a cone for our problem (S)—(BC)
based on the Guo—Krasnosel’skii fixed-point theorem (see [4]). In Section 4, we study
the nonexistence of positive solutions of (S)—(BC), and in Section 5, an example is given
to support our results. In Appendix we prove a relation between the supremum limits of
two functions, which is used in the proof of the second existence result.

2 Auxiliary results
First, we consider the nonlinear fractional differential equation
Dyt (#r, (Dghu(t))) +h(t) =0, € (0,1), (1)

with the boundary conditions
‘ N
u(0)=0, j=0,...,n—2; DJtu(0) =0, DPiu(l) =) aDiu(), (2
i=1

where iy € (0,1], 81 € (n—1,n],neN,n>3,p1,q1 €ER,p1 € [1,n—2],¢1 € [0,p1],
&,a; € Rforalli=1,... N(NeN),0< & <--- <&y <1l,and h € C[0, 1].

If we denote by aph(Dgiu(t)) = z(t), then problem (1)—(2) is equivalent to the
following two boundary value problems:

Dgtx(t)+h(t) =0, 0<t<l, 3)

with the boundary condition

z(0) =0, “)
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and
Dlu(t) = ppx(t), 0<t<l1, (5)

with the boundary conditions
_ N
u?(0)=0, j=0,...,n—2 Dhu(l)=> aDfu(&). 6)
i=1

For the first problem (3)—(4), the function

t

1 — ) (s) ds
>/<t ) Th(s)ds, te0,1] )

#(t) = ~I5h(0) =~

is solution of (3)—(4).
For the second problem (5)—(6), if Ay = T'(81)/T(81 —p1) — T'(B1)/T(B1 — 1) X
Zil\il aifl@l*ql*l # 0, then by [7, Lemma 2.2] we deduce that the function

1

u(t) = — | Gi(t, s)pp x(s)ds, t€][0,1], (3)
/

is solution of (5)—(6). Here the Green functions G1, g1, g2 are given by

th1—1 N
Gi(t,s) = qi(t,s) + A Z aig2(&i, ), ©)
i=1
1 tﬁl_l(l_s)ﬁl_Pl_l_(t_s)ﬁl_17 0<s<t<l,
q1(t,s) = (10)
L(B1) | thr—1(1 — s)Pr—pr—1, 0<t<s<,

tﬁl*‘]l*l(l _g)Pi—pi—1 _ (t _ S)ﬁl*@h*l,
0<s<t«, (11
tﬁl*thfl(lfs ,31*?1*1’ 0<t<s<1.

gg(t7s) - F(ﬁllf (I1)

Therefore, by (7) and (8) we obtain the following lemma.

Lemma 1. If Ay # 0, then the function u € C|0, 1] given by
1
u(t) = /Gl(t, $)o, (Igth(s)) ds, te[0,1], (12)
0
is solution of problem (1)—(2).
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Next, we consider the nonlinear fractional differential equation
D32 (ery (Dt (1)) + k(1) =0, t€(0,1), (13)

with the boundary conditions
M

v(0)=0, j=0,....m—=2 DPv(0)=0, Div(l)=> bDEuv(n), (14)
i=1

where g € (0,1], fo € (m — 1,m],m € N, m > 3, p2,q2 € R, po € [1,m — 2],
g2 € [0,p2], i, b; € Rforalli =1,.... M (M € N),0 <n < --- <ny <1, and
ke C0,1].

We denote by Ay = T'(52)/T(B2 — p2) — T(82)/T(B2 — 42) o2, bin* ™" and
by G2, g3, g4 the following Green functions:

tB2—1 M
GQ(tas) = 93(t78) + Zbig4(77i78)7 (15)
i=1
(t ) 1 tﬁgil(lis)ﬁ27p271 7(tis)ﬁ2717 O<S<t< 17 (16)
yS) =
% L(B2) | tP2=1(1 — s)P2—P2—1, 0<t<s<1,
t[b—qz—l(l _ S)ﬁz—pz—l _ (t _ S)ﬁz—qz—1’
£ s) 1 0<s<t<], 1)
94( 8= F(ﬁg — qg) tﬁ2*¢12*1(1 _ 5)52*?2*1’ (
0<t<s<l.
In a similar manner as above, we obtain the following result.
Lemma 2. If Ay # 0, then the function v € C|[0, 1] given by
1
o) = [ Gatt.s)ou Igzh(s)) ds. ¢ [0.1), as)
0

is solution of problem (13)—(14).

For some properties of the functions g;, ¢ = 1,...,4, given by (10), (11), (16), and
(17), we refer the reader to [7, Lemma 2.3]. We present now some properties of the Green
functions (G; and (G5 that will be used in the next sections.

Lemma 3. (See [7].) Assume that a;,b; > 0 foralli =1,...,Nandj =1,....M
and Ay, Ay > 0. Then for the functions G1, Gy given by (9) and (15), respectively, the
following hold:

(i) G1,G2:10,1] x [0,1] — [0, 00) are continuous functions;,

(i) Gi(t,s) < Ji(s)forallt,s € [0,1], where J,(s) = h1(8)+2£\;1 a;g2(&;,8) /A1,
s€[0,1), and hy(s) = (1 — s)2~P1=1(1 — (1 — 5)P)/T'(B1), s € [0,1];
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Positive solutions for a system of fractional differential equations with 775

(i) Gi(t,s) = tP1 =L (s) forallt,s € [0,1];

(iv) Gg(t s) 2(8) forallt, s € [0,1], where Jo(s) = hg(s)—i—Zﬁl biga(ni, s)/Asq,
€ [0, 1], and ha(s) = (1 — )%~ P=1(1 — (1 — )72) /T(f), s € [0, 1]

(v) Gg(t,s) > tP271 Jy(s) forall t, s € [0, 1].

>
< J

3 Existence of positive solutions

In this section, we present sufficient conditions on the functions f, g and intervals for
the parameters A, p such that positive solutions with respect to a cone for our prob-
lem (S)—(BC) exist.
We present now the assumptions that we will use in the sequel.
(H1) a1, a0 € (0,1], 81 € (n—1,n], B2 € (m — 1,m|, n,m € N, n,m
P1,P2,q1,q2 € Ryp1 € [1,n — 2], pp € [I,m —
& eRya; > 0foralli =1,...,N(N € N),0 < & <
1, € Rob; 2 0foralli =1,.... M (M € N),0 < 771 < e < My
Ap >0, A1 =T(61)/T(Br—p1)—T(B1)/T(Br1—aq1)) Z, 1 alfﬁﬁqlfl >
= D(82) /T (B — p2) = (T(B2) /T (B2 — q2)) St b~ 71 > 0,7y >
or.(s) =" 25, ot = pp 00 = 1i/(ri — 1), i = 1,2.
(H2) The functions f, g : [0,1] x [0,00) X [0,00) — [0, 00) are continuous.

For [c1,¢2] C [0,1] with0 < ¢; < ¢z < 1, we introduce the following extreme limits:
ta U, v t, u,v
f5 = limsup max f(i)p g5 = limsup max 9(7)1,
wtv—ot tEO1] (U +v) wtv—ot tEO1] (U +v)r2
u,v>0 u,v>=0
, t ; t
fo = liminf min f(iuv)p gy = liminf min g(iuv)l
utv—01 t€lcr,c2] (u + 'U)Tl utv—07T t€fcr,ca] (u + 'U)TQ
u,v20 u,v>0
ta U, v t, u,v
f5, = limsup max f(i)p g5, = limsup max 9(7)1,
u+'u—>oo te(0,1] (U + U)Tl_ utv—ro0 t€[0,1] (U + U)T2_
w,v>0 u,v2=>0
; t,u,v ; t,u, v
fi = liminf min f(t,u,0) g’ = liminf min 9(t,u,v)

u+v—00 t€ler o] (u + ’U)Tl_l ’

uU,v 2

u+v;>6>0 t€ler,ca] (u + U)TQ 1

U,V

By using Lemmas 1 and 2 (relations (12) and (18)) a solution of the nonlinear system

of integral equations
1

u(t) =\t /Gl(t,s)gag1 (Igjf(s,u(s),v(s))) ds, te]l0,1],

0

o(t) = pe /GQ(t,s)goQ2 (Igfg(s,u(s),v(s))) ds, te][0,1],

is solution of problem (S)-(BC).
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We consider the Banach space X = C]0, 1] with the supremum norm ||-|| and the
Banach space Y = X x X with the norm ||(u, v)||y = ||u|| + ||v]|. We define the cones
P ={ue X: u(t)>t"u| vt € [0,1]} C X,
Py={veX:v(t)=tP || Vte0,1]} C X,

andP=P xP,CY.
We define now the operators @Q1,Q2 : Y — X and @ : Y — Y by

1

Q1(u,v)(t) = At /G’1(75,s)<pg1 (I f (s, u(s),v(s)))ds, te[0,1],
1

QQ(U,’U)(t) = M92_1 /GQ(ta S)<p92 (I(()Xf (S’ U(S), U(S))) ds, te [O? 1]7
0

and Q(u,v) = (Q1(u,v), Q2(u,v)), (u,v) € Y. If (u, v) is a fixed point of operator @,
then (u, v) is a solution of problem (S)—(BC).

Lemma 4. [f (H1)-(H2) hold, then Q) : P — P is a completely continuous operator.

Proof. Let (u,v) € P be an arbitrary element. Because Q1 (u,v) and Q2 (u,v) satisfy
problem (1)—(2) for h(t) = Af(t,u(t),v(t)), t € [0,1] and problem (13)-(14) for k(¢t) =
ug(t,u(t),v(t)), t € [0,1], respectively, then we obtain

Qr(u,0) (1) < Aglfl/Jl(s)% (132 £ (s, u(s),v(s))) ds, te€[0,1],

o
=

QQ(U7U)(t) < NQZ?l/JQ(S)SDQQ (Igfg(svu(s)vv(s))) ds’ te [07 1]7
0

and so
1

1Q1 (u, )| < A&~ / 1180 (I (s, u(s), v(s))) ds,
0

HQg(u,v)H < ugz_l/Jg(s)gagz (1529 (s, u(s), v(s))) ds.
0

Therefore, for all ¢ € [0, 1], we conclude that

1
Q1(u,v)(t) = A0~ /tﬁrlh(S)%l (152 £ (5, us), v(s))) ds = 77| Qu (u, ),
0
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1
Qa(u,v)(t) > p& ! / 2 1o (8)p (15295, uls), 0(s)) ) ds > 12| Qa(u,0)].
0

Hence, Q(u,v) = (Q1(u,v), Q2(u,v)) € P, and then Q(P) C P. By the continuity
of the functions f, g, G1, G2 and the Ascoli—-Arzela theorem we can show that (0; and
(- are completely continuous operators (compact operators, that is they map bounded
sets into relatively compact sets, and continuous), and then () is a completely continuous
operator. O

For [c1,¢2] C [0,1] with 0 < ¢1 < ¢2 < 1, we denote by

A= fcclz(s — )@V (s) ds B= fol sor(e=1) J (s) ds
(Clax + 1))t 7 (Flon + 1))t 7
C= S (s = e)2@ D Jy(s) ds D= Jy 5222~V Jy(s) ds
(T(ag +1))e=—1 7 (Dag + 1))e==t 7

where J; and J> are defined in Lemma 3.
First, for f§, g5, fi, 9. € (0,00) and numbers o, oy > 0, &1, > 0 such that
oy +ab =1and a; + as = 1, we define the numbers Ly, Lo, L3, Ly, L}, L) by

1 / Tl—l 1 ~ Tl—l 1 / T2—1
b (YT e L (BYT L ()
fe \ A fo\ B Gho \172C

1 [\t 1 1
Ly=— (22 L= L=
* 95 <D> ’ 2 feBri—1 4 gsDr==1"

where vy; = cflfl, Yo = Cfrl, v = min{yy, 72}
Theorem 1. Assume that (H1) and (H2) hold, [c1,co] C [0,1] with0 < ¢1 < ¢3 < 1,
al,ah 20, ar,a > 0such that oy + o, =1, a3 + as = 1.

Q) If 5,95, fio, gt € (0,00), L1 < Lo, and Ly < Ly, then for each A\ € (L1, La)
and p € (Ls, Ly), there exists a positive solution (u(t),v(t)), t € [0,1], for
(S)—~BO).

Gi) If f§ =0, g5, [, g € (0,00), and Lz < L, then for each A € (L1, 00) and
w € (Ls, L)), there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)~(BC).

(i) If g5 = 0, f§, fi, s € (0,00), and Ly < L, then for each \ € (L1, LY) and
p € (L3, 00), there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)—(BC).

Q) If f§ =95 =0, fi, g% € (0,00), then for each \ € (Ly,00) and ji € (L3, 0),
there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)~(BC).

) If 5,95 € (0,00) and at least one of fi., gi_ is 0o, then for each A € (0, L2) and
w € (0, Ly), there exists a positive solution (u(t),v(t)), t € [0,1], for (S)-(BC).

i) If f§ = 0, g§ € (0,00), and at least one of f'., g is oo, then for each \ € (0, 00)
and p € (0, L})), there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)-
(BC).
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(vii) If f§ € (0,00), g5 = 0, and at least one of f',, g%, is oo, then for each \ €
(0, L}) and 1 € (0, 00), there exists a positive solution (u(t),v(t)), t € [0, 1], for
(S)—(BC).

(viii) If f§ = g§ = 0 and at least one of f.,, g’ is oo, then for each \ € (0,00) and

€ (0, 00), there exists a positive solution (u(t),v(t)), t € [0,1], for (S)-(BC).

Proof. We consider the above cone P C Y and the operators ()1, )2, and (). Because the
proofs of the above cases are similar, in what follows, we will prove some representative
cases.

(i) Wehave f§, g5, fi, gh € (0,00), L1 < La, and Lz < Ly. Let A € (L1, Ly) and
w € (L3, Ly). We consider £ > O such thate < f{, e < g, and

ri—1 ~ r1—1
1 <a/1>1 <ag ! (al>
fo —e\1mA fo+e\ B

Lo (o NPT 1 (@)™
ghe —€\772C SES g re\D '

By using (H2) and the definitions of f§ and g, we deduce that there exists 1 > 0
such that

fltu,v) < (fo +€)(u—|—v)” L g(t, u,v) < (go —|—6)(u—|—11)r2 1

forall¢t € [0,1] and u,v > 0, u + v < R;.
We define the set 1 = {(u,v) € Y: ||(u,v)||y < R1}. Now let (u,v) € P N2,

that is (u,v) € P with ||(u,v)||y = Ry, or, equivalently, ||u|| 4+ ||[v]| = Ri. Then
u(t) + v(t) < Ry forallt € [0, 1], and by Lemma 3 we obtain
Q1 (u, v)(t)
1
(s = 1)1 7 f(ru(r), o(r)) dr
< ao-1 Jo(s—7) ’ ) d
/Jl(s)sogl( F(Oél) S
0
1
(s = )TN + ) (ulr) +v(r)" L ar
< o1—1 f() (S T) 0
<A /Jl(s)gag1 ( o) ds
0
1 5 =1 1
- - —-7)° + [lvl) dr
< AGTI(f5 4 o) 1/ Jo (s =) 71 (lu]
A (f§+e) J J1(8)¢p, () ds

1
a;—1
_ yer—1(ys (s — 1) dr
AL (4 2) M+MH!A N e L

 Noi— s o1—1 L
=27 +e)" (w0 HYO/Jl(S)%l(alF(oa)) as
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1 ys 01—1 / sor(en=1)
= )\Ql (f(‘)S +E) H(’Ll,7’l))HY/J1(S)WdS
0

=20 (i 497 7 Bl o)y, <@fw o, e

Therefore, we have ||Q1(u,v)|| < aq||(w,v)||y.
In a similar manner, we conclude
Qz(%v)(t)
gﬂgz 1 (pg2< S_T OQ 19(7’,’([,(7’),1}(7’))(17’) ds
I'(az)
(s = 1) s + )(ulr) + o)L dr
<l 1 fO s —7)% (g8 )ds
M §092< F(Oég)
S as—1 ro—1
_ — 7)™ + [lvl)> " dr
< e2-1 031 Jo (s =) ([|ul| d
1% (g +5) /J2(8)9092< F(OQ) S
0
/ fi(s—7)™1d
1/ s a1 §—T1)"2 T
= g )l + ol [ (o) (2 )as
/ [(az)

1

A [ v)Hy/JQ(S)% <0l2;(042)> &
0

1

:ugrl(gé+6)92_1||(u,11)||y/']2(5) T
0

g2(e2—1)

oo+ et
= (g5 49" Dl < @0, Vi< b1

Hence, we get ||Q2(u, v)|| < as|(u,v)|y.
Therefore, for (u,v) € P N 382y, we deduce

1R, o)y = [|@1(w, o) + [| Q2w )| < |, o)y + Ea|(w, 0)]fy,

= [y (19)
Next, by the definitions of fi_ and g’ there exists Ry > 0 such that

fltu0) > (fo —e)wt+v)" 7 g(tu,) > (g5 —e) (utv)=

forall t € [c1,co] and u,v > 0, u +v > Ro.

Nonlinear Anal. Model. Control, 23(5):771-801
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We consider Ry = max{2R;, R/} and define 25 = {(u,v) € Y:||(u,v)|y < R2}.
Then for (u,v) € P N 9§25, we obtain

() +o(t) > min M ul+ min % o] = e ful| 4 ¢

Ba— 1|
te(er,ca) telcr,ca)

]l

= 1 ||u|| + y2llv] = 7” U, v HY YRy = Ry Vit € [y, ca].

Then, by Lemma 3 we conclude

Q1(u,v)(c1)

1
> Aot / I (5) g0 (192 £ (5, u(s), v(9))) ds
0

C2

>A91—1c,f1—1/J1(8)gpgl

C1

> o1l jjl(s)% (fcsl (s =) M fh —e)(u(r) +v(r)) ! d7> N

(ffl (s — T)O‘l_;J(“(():)u(T), (7)) dT) ds

[(a)

C2

1 - Jo (s = 1) (f = o) (| (w,v) y) " dr
01 10,31 1 (s c1 s
2/\ 1 /J ( )9091( F(Oll) )d

c1

_ _ . 1— fc (S_T)al ldT
= A (f o) Wnuﬂb/i oo (S )

C2

:wl%?40;—@“*wmmwu/awwm(i;gjjds

_ 1y o S_Cl yor(e1—1)
=A% (f;o_ (u,v) HY/J1 I'(a; _|_1))Ql 1 ds

e (1~ Al > o)y

Therefore, we obtain ||Q1(u, v)|| = Q1(u,v)(e1) = o (u, )]y
In a similar manner, we deduce

Qa(u, v) (1)

1
>0 [ o) 1320 ), 005) s
0

() s
S
2#92_1cf21/<]2(8)%2<f”(

C1

~ yoeg(r,u(r), o(r)) dr
(o) > as
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C2

s =) (gt — &) (ulr v(r))2~tdr
2#"210?21/JQ(5)%2(LI( )2 (950 F(Z)g()( )+ (7)) )ds

C1
Co

(s —T1)* (gl — U, v re=ldr
2M.QQ—lc,fz—l/J2(8)<pgz(fc1( ) (gmr(iigvll( My) )ds

Cc1

e s -7t ar
:ugz 10?2 1(9?)0 - )92 ’YH u, U HY/J2 90'92< 1 F(OQ) >ds

=wr%%*@;—@”*wmey]b@me*“”?)n

Cng(OéQ

s — Cl a2(92 1)

= 79212 (ghe — )| (w, ) IIY/J2 (Tl + 1)1 %

9271(9& _5)92 10” (u,v ||Y 0‘2” u,v ||Y

=720
Hence, we get [|Q2(u, v)|| = Q2(u, v)(c1) = a5 (u, v}y
Then for (u,v) € P N 0§22, we obtain

1R, v)lly = [lQu(w, V)| + [[Q2(u, v)]| > (@ + @d)[|(w, v)[ly, = [l v)]y- 20

By using Lemma 4, (19), (20), and the Guo—Krasnosel’skii fixed-point theorem we
conclude that the operator @ has a fixed point (u, v) € PN (£22\62;), sou(t) = tH171|u],
v(t) = tP27Yv| forall t € [0,1] and Ry < |ul| + ||v]| < Ra. If jul| > 0, then u(t) > 0
forall ¢ € (0,1], and if ||v|| > 0, then v(¢) > O for all ¢ € (0, 1].

(iii) We have g5 = 0, f5, fi, 9%, € (0,00), and Ly < L. Let A\ € (Ly, L)) and
w € (Ls, 00). Instead of the numbers &; and &5 used in the first case, we choose &} such
that &) € (B(Af§)¢~1,1) and a4, = 1 — &}. The choice of the & is possible because
A< 1/(f§B™~1). Thenlete > O withe < fi,e < g’ , and

/ ri—1 ~ r1—1
() )
i —e\mA fo+e\B

1 of \"7! 1/ap\">"
- Sp< | & .
ghe —€\172C e\ D

By using (H2) and the definitions of f; and ¢ we deduce that there exists B; > 0
such that

flt,u0) < (f5 +e)(w+o)" 7t g(t,u,v) <elu+o)=!

forallt € [0,1] and u,v > 0, u + v < Ry.
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We define the set 21 = {(u,v) € Y: ||(u,v)||y < R1}.In asimilar manner as in the
proof of case (i), for any (u,v) € P N d{2;, we obtain

Q1(u,v)(t) <
Q2(u, v)(t) <
and 50 [|Q(u, v)[ly < (a) + a3)l(u, v)lly = [[(w, )]y

The second part of the proof is the same as the corresponding one from case (i). For {25
defined in case (i) and for any (u,v) € P N {2, we conclude

/\Qlfl(fg —&—5)91_1B||(u, U)HY < &H‘(u,v)“Y vt € [0,1],
p2 e 71D |(u, )|, < abl[(u,v)|y,  VE€[0,1],

Qu(u,v)(c1) = AmAS (i — ) T A (u, )]y
c) 2 ‘

Q2(u,v)(e1) = yyap® (gl — €)' C|(u,v)

and then [Q(u, )y > (a4 + ), )y = l(u, )]y

Therefore, we deduce the conclusion of the theorem.

(vi) We consider here f§ = 0, g5 € (0,00), and fi, = oo. Let A € (0,00) and
w € (0,L}). Instead of the numbers & and & used in the first case, we choose &5 such
that &% € (D(ugg)2~1,1) and &} = 1 — &). The choice of the a7 is possible because
pu < 1/(gsD™~1). Then let & > 0 such that

1\ L a\™ ! 1 fap\™!
£ <A< (2 , p< =2 .
vy A e\ B g5 +e\ D

By using (H2) and the definitions of fj and gj we deduce that there exists 21 > 0
such that

Y
Y

fltu,v) <efu+v)" Y g(tu,v) < (g5 +¢e)(u+v)> !

forallt € [0,1] and u,v > 0, u + v < Rj.
We define the set 21 = {(u,v) € Y: ||(u,v)|ly < Ri1}. Inasimilar manner as in the
proof of case (i), for any (u,v) € P N 02, we obtain

Q1(u,v)(t) < A917169171B||(u, U)HY < &'1||(U,U)HY vt € [0,1],
Qa(u, 0)(t) < 1% (g5 + ) ' D|(w, )|, < @b (uw,0)||, VEe€[0,1],

and so [|Q(u, v)[ly < (@) + a5)||(u, v)lly = [[(u,v)[ly. _
For the second part of the proof, by the definition of f there exists Rs > 0 such that

ft,u,v) > —(u+v)"" 1 Vte [c1, o], u,v >0, u+v > Ry.

™ | =

We consider Ry =max{2Ry, Ry/7} and define 25 = {(u,v) € Y:||(u,v)||y < Ra}.
Then for (u,v) € PN A2, we deduce as in case (i) that u(t) + v(¢) = yRs > Rs for all
te [Cl, CQ].
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Then by Lemma 3 we have

Q1(u, v)(e1)

1
> ot / (3000 (132 5, 0(3),0(5)
0

> )\Qlflcf’1 1

Jo (s =) (r,u(r),0 (T))d7>d8

['(an)

Jey (s = 1) T (ulr) +o(r))" " dr
(1) )ds

> Agl_lcfl 1 ds

9091 (
> )\91716? 1 SDQl (
Jo (s =) 2 (yll(u, ) [ly) "t dr

(1091 F(Oél)

g (1) 7 (s —c1)™
— a1 (5 »y||(u,v)Hy J1(8)wo, T(a +1) ds
1\~ (s —cp)ler=D)
. -1.p1-1 3
eigh () ) ”Y/"l T+ a1

1 o1—1
—wv\gll(€> Al|(u,v)]y

> || (w0)ly-

So we conclude that [|Q1 (u, v)|| > Q1 (u,0)(er) > [[(u, )y and [Q(u,v)]ly >
Q1 (u, v)[| = [[(u, v)]]y

Therefore, we deduce the conclusion of the theorem.

(viii) We consider f§ = g5 = 0 and g', = co. Let A € (0,0) and p € (0, 00), and
let € > 0 such that

e Lo (NP1
X E(QB)Tlil, ’Y’YQC \,LL\

By using (H2) and the definition of fg and g§ we deduce that there exists 2; > 0 such
that

Fltuw) < s(uv)" ™ gltu,w) < s(utv)?

forallt € [0,1],u,v =2 0,u+v < Ry.
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We define the set 21 = {(u,v) € Y: ||(u,v)||y < R1}.In asimilar manner as in the
proof of case (i), for any (u,v) € P N d{2;, we obtain

Q1 (u,v)(t) < A1 B|(u,v) ||, < vt € [0,1],

1
vy

Q2(u,v)(t) < p®? e 7' D||(u, )|, < vt € [0,1],

1
Sy

and so [|Q(u, v)[ly < (1/2 4+ 1/2)[|(u, v)lly = [[(u, v)ly.
For the second part of the proof, by the definition of gi_ there exists Ry > 0 such that

1 _
g(t,u,v) > 7(u+v)r271 Yt € [e1,ca], u,v =20, u+v > Rs.
€

We consider Ry =max{2R;, Ry/7} and define 25 = {(u,v) €Y ||(u,v)|y < R2}.
Then for (u,v) € PN 3£, we deduce as in case (i) that u(t) +v(t) > YRy > Ry for all
te [Cl, CQ].

Then by Lemma 3 we have

Q2(u,v)(c1)

1
> ot / B (5) e (1520 (5,0(5),0(6)) ds
0

1

3 1 (s —T1)%2~ g(T7 u(r),v(r))dr
> pe! [32 1 8)p fcsl ST 1%(U(T) +o(r)dr ds
= 02 F(ag)
S per-1ce 1 )0 Je (s =m0l )yt
= 02 F(Oég)

1\ i (s —c1)ee
_ o oa—1 Ba—1 .
= el <€> 7||(u,v)||y/<72(5)%2 (w)ds

C1

Cc2

1 02—1 (S —c )02(92—1)
_ —1 B2—1 1
= M92 Clz <€> ’y”(u,U)HY/JQ(S)WdS

C1

1 02—1
= yy2p " (a) Cll(u, vy = [[(w,v)]y-
Then we conclude that ||Q2(u,v)|| = Q2(u,v)(c1) = ||(u,v)||y and |Q(u,v)||y >

1Q2(w, v)| = [|(u, v)[ly-

Therefore, we deduce the conclusion of the theorem. O
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In what follows, for f¢, g, £, 95 € (0,00) and numbers o}, o > 0, &y, d9 > 0
s~uch that of + oy = 1 and &y + @y = 1, we define the numbers L1, Lo, L3, L4, L}, and
L, by

g e k() ()
fe\rmA ’ 3\ B ’ g5 \12C ’

-1 fa\™t S, 1 ~, 1
M (D) B T T A AT

Theorem 2. Assume that (H1) and (H2) hold, [c1,ca] C [0,1] with0 < ¢1 < ¢a < 1,
af,ah >0, 01,0 > 0suchthat oy + b =1, 61 + @ = 1.

Q) If f&, 98, 3,95 € (0,00), Ly < Ly, and L3 < Ly, then for each \ € (Ehig)
and i € (Ls, Ly), there exists a positive solution (u(t),v(t)), t € [0,1], for
(S)-(BO). L o

() If fL, b, 5, € (0,00), g5 = 0, and Ly < L}, then for each \ € (L1, L) and
1 € (Ls, 00), there exists a positive solution (u(t), v(t)), t € [0,1], for (S)~(BC).

(i) If 2, g5, 95 € (0,00), f5 =0, and Ly < L, then for each A € (L1, 0) and
p € (Ls, L), there exists a positive solution (u(t), v(t)), t € [0, 1], for (S)~(BC).

(v) If fi, g5 € (0,00), f5, = g5, =0, then for each A € (Ly,00) and pi € (Ls, ),
there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)-(BC).

™) If £, g5 € (0,00) and at least one of fi, gi is 0o, then for each A € (0, Ly) and
1 € (0, Ly), there exists a positive solution (u(t),v(t)), t € [0,1], for (S)—(BC).

(vi) If f5, € (0,00), g5, = 0, and at least one of fi, gi is oo, then for each X € (0, L)
and 1 € (0,00), there exists a positive solution (u(t),v(t)), t € [0,1], for (S)-
(BO).

(vii) If f3, =0, g5, € (0,00), and at least one of f}, gi is oo, then for each X € (0, )
and pu € (0, L}), there exists a positive solution (u(t),v(t)), t € [0,1], for (S)-
(BO).

(viii) If f3, = g5, = 0 and at least one of f}, g} is oo, then for each \ € (0,00) and
w € (0,00), there exists a positive solution (u(t),v(t)), t € [0, 1], for (S)~(BC).

Proof. We consider the cone P C Y and the operators @)1, (2, and ) defined at the
beginning of this section. Because the proofs of the above cases are similar, in what
follows we will prove some representative cases.

(i) Wehave f¢ g, £, 95 € (0,00), Ly < Ly,and Ly < Ly. Let A € (L1, L) and
p € (L3, Ly). We consider £ > 0 such thate < f¢, e < gi, and

/ ri—1 ~ ri—1
) oern(E)
fo—e\1mA fe+e\B

1 < o) >’”21 1 (@)T“
96 —e \12C g5 +e\ D
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By using (H2) and the definitions of f§ and g} we deduce that there exists Rz > 0
such that

Fltuv) = (fi—e)lut o)™ gltuv) > (g6 — ) (u+v)>
forall t € [c1, ca], u,v = 0, u+ v < Rs.
We denote 23 = {(u,v) €Y ||(u,v)|y < Rs}. Let (u,v) € P with ||(u, v)||y = Ra,

that is ||u|| + ||v|| = Rs. Because u(t) + v(t) < ||u|| + ||v|| = Rs forall ¢ € [0, 1], then
by Lemma 3 we obtain

Q1(u,v)(c1)

1
2000 [ (132 o, ) 0(6) s
0

N AB/ Ao, <f§;<s —7)01-1f<w<7>,v<7>>d7> N

[(a)

C2 S

s— ) L fE— ) (u(r) +v(r))~tdr
2)\91—16?1—1/‘]1(5)%1<fc1( ) (fo P(E;E)( )+ (7)) )ds

Cc1

fcsl (s — T)cn—l(fé _ 6)('y||(u,v)\|y)”_l dr
< (o) >ds

o
> a1t [,
C1

C2

| i s _ alfld
_ )\Ql_lc?l_l(fé _ 6)91 17“(“,”)”1//']1(8)(‘091 (fcl(S F(Tczl) T) ds

c1

=2 (£ = ) Al 0|y > o[l 0)y-

Therefore, we conclude ||Q1(u, v)|| = Q1(u,v)(c1) = of|(u, )]y
In a similar manner, we deduce

Q2(u,v)(c1)

1
o1t [ o) g2 o, ), 005) s
0

C2

> et [ e, (f; b T)ar;’é;’)“m’ o) s

c1

fcsl (8 — T)az—l(g(i) _ E)(U(T) + U(T))TQ_l dr
I'(c) ) ds
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C2

“(s—T)2 " gh — Uy v r2=ldr
2#9210f21/J2(s)<p92(f01( )2~ (90 F(ZL()VII( )ly) >ds

C1
C2

_ -1/ 4 2— fcsl(S_T)a2_1dT
Sl R Lt AT N AR otz P

Cc1

=217 (g — ) Ol 0)|, > | (w0l

Hence, we get ||Q2(u,v)|| = Q2(u,v)(c1) = ob||(u,v)||y.
Then for (u,v) € P N 0§22, we obtain

1R, )lly = lQu(w V)| + [[Q2(w, v)]| > (@ + @d)[|(w, V)|, = [l vy @D
Now we define the functions f* g* : [0,1] x [0,00) — [0, 00) by

f,x)= max f(t,u,v) Vte[0,1], z €[0,00),

ou+tve

g (t,x) = 0§?—?§<x9<t,u?v) vVt € [0,1], z € [0, 00).

Then
fltu,v) < f*(t,2), gt u,v) < g*(t,z) Viel0,1], u,v >0, u+v <.

The functions f*(t,-), g*(t, ) are nondecreasing for every ¢ € [0, 1], and they satisfy
the conditions (see Appendix)

: f () . g*(t, )
lim sup max N lim sup max .
m—)oopte[o’l] gl foo m—>oop t€(0,1] arz—1

= 9%

Therefore, for € > 0, there exists R4 > 0 such that for all z > R, and t € [0, 1], we
have

frtx) _ . fr(t )

<limsup max ———= +¢e = f5 +¢,
PR h x—)oop t€[0,1] zri—l foo
g (tz) _ . g*(t,z)

< lim sup max +e=g3 +e¢,
xr2—1 h x%oop t€[0,1] xrz—1 Joo

and so f*(t,7) < (f5 +¢e)x™ ! and g*(t,z) < (g5, + &)z L.
We consider R4 = max{2R3, R4} and denote 2, = {(u,v) € Y: ||(u,v)|ly < R4}.
Let (u,v) € P N Jf24. By the definitions of f* and g* we conclude

[(w,0)][y) Ve €0,1],

f(tm(t),v(t)) < fF (t7 , U (22)
<g*(t[|(wv)],) vtelo1].

(8[| (u
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Then for all ¢ € [0, 1], we obtain

e =0 ) o)),

Q1 (u,v)(t) < A@l—l/lJl(s)wgl( (o)
e / s (ms - >Ff(a<) (. v)l1y) df> "y
e /J (fg +9)ll(u,v |;(a11)fo - ”“‘1d7>ds

=0 (49" Bl <@m|wol, vee b1

and so [|Q1(u, v)|| < ax|(u, v)|y-
In a similar manner, we deduce

1
. Jo (s = 1) g(r,u(r),v(r)) dr
Q2(u, v)(t) < p® J2(8) @0, ds
0/ ( ['(az) )
< pet / J2(8) @0, <f0 s )™ I‘(*cg) I, v)lly) dr )ds
0
1 w, v ro—1 _ azfl -
< pet / J2(8) o, ((goo o)l ”F(a2)f0 d >d5
0

— MQ271(9(‘§O +€)g271D||(u v ||Y OLQH U v HY Vt S [0; 1]7

and then [| @5 (u, v)[| < @a|(w, )|y
Therefore, for (u,v) € P N 942, it follows that

1R, v)lly = [lQu(w V)| + [[Q2(w, v)| < (@1 +@2)[|(w v)[ly, = [l vy 23)

By using Lemma 4, (21), (23), and the Guo—Krasnosel’skii fixed-point theorem we
conclude that () has a fixed point (u,v) € PN ({24 \ £23).

(iii) We have f3 =0, f&, g¢, 95 € (0,00), and Ls < L}. Let A € (Ly,00) and
p € (L3, L}). We choose & € (D(pg3,)?2~1,1) and &} = 1 — ab. Lete > 0 with
€ < fo. € < gp.and

r1—1 ~ r1—1
L) ey
fo—e\1mA e\ B

1 o \271 1 a2t
) e (3)
g6 — € \12C 9% te\ D
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The first part of the proof is the same as the corresponding one from case (i). For {23
defined in case (i), for (u,v) € P N 023, we obtain

and so [[Q(u, v)[ly = (] + ab)|[(u, v)[ly = [[(u,v)]]y-
For the second part, we use the same functions f* and g* from case (i), which satisfy
in this case the conditions

*(t *(t
lim max Ft.z) =0, lim sup max gt 2)
z—o00 tef0,1] 11 z—oo t€[0,1] xT271

=95

Therefore, for € > 0 there exists R4 > 0 such that for all z > Ry and t € [0,1], we
have

f(t,z)

*(t,x
= < lim maxf(’l)
- r—o00te[0,1] X1

g (t.x) _ . g*(t,z)
< limsup max ————=
xra=1 :p~>oop te[o,}f] zr2—1

+e=¢,

+e=g t+e

and so f*(t,z) < ex™ ' and g*(¢t,x) < (g5, +¢e)a™ L.

We consider Ry = max{2R3, R4} and denote 24 = {(u,v) € Y: |(u,v)|y < Ra}.
Let (u,v) € P N 9f24. By the definitions of f* and ¢g* we obtain relations (22). In
addition, in a similar manner as in the proof of case (i), we conclude

Q1(u, v)(t) <
Qa(u, v)(t) <

and so [|Q(u,v)[ly < (&4 + a3)[(u,v]ly = [|(u,v)]ly-
Therefore, we deduce the conclusion of the theorem.

a—teor = (u, v, B < af||(u,0)||, vt € [0,1],

A
pe (g + )2 | (w,v)|| D < @[ (u0) ||y V€ [0,1],
<

(vi) We consider here g5, = 0, f£, € (0,00), and g = oo. Let A € (0, L}) and
w € (0,00). We choose &) € (B(A\fs,)?*~1,1)and & = 1 — @&y, and let & > 0 such that

\ < 1 62/1 ri—1 1 ro—1 _ _ 1 62/2 ro—1
- € e )
S fs +e\ B ’ Yy C SESCAD

By (H2) and the definition of g we deduce that there exists Rz > 0 such that

M| =

g(t,u,v) > =(u4+v)?"1 Vte e, e, u,v >0, u+v < Rs.

We define (25 ={(u,v) €Y ||(u,v)|ly <Rs}.Let (u,v) € P with ||(u,v)|ly = Rs,
that is ||u|| + ||v|| = Rs. Because u(t) + v(t) < |Ju|| + ||v]| = Rs for all ¢ € [0, 1], then
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by Lemma 3 we obtain

Q2(u, v)(c1)

1
>u@—{/c%-aa@x%xaﬁg«auw»vw»>ds
0

a —1
>hg(mu(r),v(r))dr
> 02—1 B2— 1 d
1% &1 9092( F(ag) ) S
S a —-11 ro—
2#92*10?2 1 QD (fcl SiT : 1E(U(T)+,U<T)) : 1d7_>d$
02 F(Oég)
; )2 L (ll(w,v) ly)2 dr
> 021 B2— 1 fcl ’ d
S “’92< [(a2) ’

/1 02—1 2 (S—C )042(92*1)
— 9271 ﬁ2 1 - 1
Hw (o (E) 7|‘(U,U)||Y/J2(S) (F(Ozz T 1))92_1 ds

C1

1 02—1
:qu”l<€> Cll(u,v) ||y = [|(u,v)]ly-

Hence, [|Q2(u, v)|| = Q2(u,v)(c1) = [[(u, v)[ly and [|Q(u, v)[ly = |Q2(u, v)] >
[, )y
For the second part of the proof, we consider the functions f* and ¢g* from case (i),
which satisfy in this case the conditions
frtx)

*
. : g*(t )
limsup max ——= = f5,, lim max .
z—oo t€[0,1] ™17 r—00 t€[0,1] X2

=0.

Then for & > 0, there exists R4 > 0 such that for all z > R, and t € [0, 1], we have

[tz o fr(t, @)

< lims ax ~—2 L L e=f5 4¢
gri-l = lmaogptlen[o,}%] i1 + oot e
g (t,x) g (t,z)

— < lim max T
2T r—00t€[0,1] X727

and so f*(t,7) < (f3, +¢e)x™ " Land g*(t, ) < ex™ L.

We consider Ry =max{2R3, R, } and denote by 24 ={(u,v) € Y: ||(u,v)||y < R4}
Let (u,v) € P N 0f24. By the definitions of f* and g* we deduce relations (22). In
addition, in a similar manner as in the proof of case (i), we conclude

Qi) (®) <A (2, 497w 0)ly B < @ o)y Ve 0,1,
Q2(u,v)(t) < um_ls”_lﬂ(u,v)HyD < &QH(U,U)HY vt € 10, 1],

and 50 [|Q(u, v)[ly < (a7 + a3)|(w, vlly = [[(w, 0]y

+e=z¢,
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Therefore, we obtain the conclusion of the theorem.

(viii) We consider f3, = g3, = 0and f¢ = co. Let A € (0,00) and p1 € (0, 00). We
choose € > 0 such that

LY et <1
“\ym4 SN et MR @Dyt

By using (H2) and the definition of f¢& we deduce that there exists R3 > 0 such that

[

ft,u,v) = —(u+v)" 1 V€ e, e, u,v =0, utv < Rs.

™

We denote 25 ={(u,v) € Y: ||(u,v)|ly <Rs}. Let (u,v) € P with ||(u, v)|ly = Rs,
that is ||u|| + ||v|| = Rs. Because u(t) + v(t) < |Ju|| + ||v]| = Rs for all ¢ € [0, 1], then
by Lemma 3 we obtain

Q1(u,v)(c1)

1
> Aot / ()P0, (I52f (5, u(s), v(s)) ) ds
0

a —1
- ! f(T,U(T),U(T))dT

> \er—1 B1— 1
= A 1 90@1 ( F(al) ) ds

y al*ll(u(T) +o(r))1tdr
> Ao 1 <f°1 £ ) ds

1 9091 F(Oq)

(s =) Ll 0)lly) e
> )11 B1— 1 fcl 7 ’
= A €1 9091( F(Oll) ds

L /1\@ _ a1(g1 1)

= Aol 1<€) 'VH u, v) HY/J1 A oqcl—i— 1))e—1 ds
1 o1—1

771/\911(5) AH(UW)HY Z ||(u, U)HY'

Hence, [|Q1(u,v)[| = Q1(u,v)(c1) = [[(u,v)|y and |Q(u,v)[y = [[Q1(u,v)|| =
[ (, )|y

For the second part of the proof, we consider the functions f* and g* from case (i),
which satisfy in this case the conditions

*(t *(t
lim maxf(’m)zo7 lim maxg(’x)
z—o0tel0,1] w1 z—o0te(0,1] a2 71

=0.
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Then for ¢ > 0, there exists R4 > 0 such that for all z > R, and t € [0, 1], we have

(t,x (t,x (t,x *(t,x
f(’)élimmaxf(’)Jre:e, L’)glimmaXQ( )
xri—1 z—00 te[0,1] pri—1 pr2—1 z—00 t€[0,1] xr2—1

+e=¢g,

and so f*(t,z) <ex™and g*(¢t,7) < ex™ L.

We consider Ry = max{2Rj3, R,} and denote 2, = {(u,v) € Y: ||(u,v)|ly < R4}
Let (u,v) € P N 0f24. By the definitions of f* and g* we obtain relations (22). In
addition, in a similar manner as in the proof of case (i), we deduce

Qi 0)(1) < X070, ) |, B < gl o), Ve [0,1]

Qalun,0)(1) < <[, 0)|, D < Sl o)y Ve € 0,1,

and so [|Q(u, v)[ly < (1/2+1/2)[|(u,v]ly = [[(u,v)]ly-
Therefore, we obtain the conclusion of the theorem. O

4 Nonexistence of positive solutions

In this section, we present intervals for A and p for which there exist no positive solutions
of problem (S)—(BC) viewed as fixed points of operator ().

Theorem 3. Assume that (H1) and (H2) hold. If there exist positive numbers My, Mo
such that

flt,u,v) < My(ut+v) 7Y gt u,v) < Mo(utv)™2"t Yt €0,1], u,v =0, (24)
then there exist positive constants Ao and g such that for every X € (0, \g) and p €
o), the boundary value problem (S)— as no positive solution.
(0, wo), the boundary value problem (S)-(BC) h p l
Proof. We define \g = 1/(M7(2B)" 1) and g = 1/(M5(2D)™2~1), where
7 fol 5041(91*1)(]1(5) ds 7 fol 5a2(92*1)(]2(5) ds
- (Cla+ 1))t — (D(az +1))et

We will prove that for every A € (0, Ag) and u € (0, po), problem (S)-(BC) has no
positive solution.

Let A € (0,)\) and p € (0, p1p). We suppose that (S)—(BC) has a positive solution
(u(t),v(t)), t € [0,1]. Then we obtain

B

, D

u(t) = Q1 (u,v)(t) = A1 /Gl(t, 8)Por (Igjf(s,u(s),v(s))) ds
0

<Al 0/ J1(5)00, (f;<s - T)m_lrﬁiﬁum = dT)“
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<t / (5)ee (f;(s - T)m_leEZS) o =)o
0

1

<t [aen0n)en
0

Ji (s = )™=l + o) dry
T(an) )d

=B o, e 0.1

and

v(t) = Qa(u, v)(t) = pe2 ! /GZ(tvs)SDQQ (I52g(s u(s), v(s))) ds
0

Jo (s —O st oy,

(oo N(o2)

/
< et /01 ()00, (ﬁf (s =) 'Ma(u(r) + v(r))""! dT> ds
/

[(az)

Ji s =1yl + ol ary
T(a) )d

ACENITARN

= p@ ' M2 D|(u,0)), V€ [0,1].
Then we deduce

. e 1
lull < AT MET B (w v)y < AT MBIl )y = S [ 0]y

. e 1
loll < 2= M D | (s 0) |y < ™MD (s 0) |y = 510y

and so || (u, v)||y = |lul] + ||v|| < ||(u,v)||y, which is a contradiction.
Therefore, the boundary value problem (S)—(BC) has no positive solution. ]

Remark 1. In the proof of Theorem 3, we can also define \g = (a;/B)"~1/M; and
po = (aa/D)2~1 /My with a1, a2 > 0 and o + ap = 1.

Remark 2. If f§, g5, f3,, g5, < 00, then there exist positive constants M7, M, such that
relation (24) holds, and then we obtain the conclusion of Theorem 3.

Theorem 4. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co with
0< e <cg <1andmq > 0 such that

flt,u,v) = my(u+ v)”fl Yt € [c1,cal, u, v =0, (25)

then there exists a positive constant Xo such that for every A\ > Xo and | > 0, the
boundary value problem (S)-(BC) has no positive solution.

Nonlinear Anal. Model. Control, 23(5):771-801
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Proof. We define A = 1/(my (771 A)™ 1), where

C2

= ; s — )21 (e1—1) $)ds
4= (T(ay +1))er—1 /( 1) Ji(s) ds.

C1

We will show that for every A > Ao and 1 > 0, problem (S)—(BC) has no positive
solution.

Let A > Ao and ;2 > 0. We suppose that (S)~(BC) has a positive solution (u(t),v(t)),
t € [0, 1]. Then we obtain

u(er) = Qu (w,v)(er) = A / Gi(c1,5) 00 (181 £ (5, u(s), v(s))) ds
0

1
> po! / I (8) 00, (192 £ (s, u(s), v(5))) ds
0

Cco

>Agl_1cfl_1/J1(5)@gl

I (5 — 1)@ fru(r), () dr
F(ar) >ds

Cc1

C2

(
> a0t [ (
(

[2 (s = m)e tmy (u(r) + (7))~ Ldr
') >d$

c1

C2

P G RACTN

Cc1

INC —r)al-lmwﬁ-l||<u,v>|¢1dr>ds
F(Oél)
ca

=3 Lt w )l [ A

Cc1

= A T m§ T A (u,0) -

(s — C1)a1(9171) q
(D(ar + 1)yer 17

Then we conclude

lull = u(er) = 371 AGm) 27| (w,0) ||y > 7711 ARoma) 2 7| (w,0) |y

= [l(w, )]y
and so || (u, v)|ly = |lul] + ||v|l = |lul| > ||(w,v)|ly, which is a contradiction.
Therefore, the boundary value problem (S)—(BC) has no positive solution. O]

Theorem 5. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co with
0 <1 <o <1andmsg > 0such that

g(t,u,v) = ma(u+v)2"1 V€ [er,cal, u,v >0, (26)

then there exists a positive constant [ig such that for every p > g and A > 0, the
boundary value problem (S)-(BC) has no positive solution.
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Proof. We define fig = 1/(mz(y72C)™21), where

C2

_; s — e )22(e2=1) 7o) ds
<= (T(ag +1))e=1 /( 1) Ja(s) ds.

Cc1

We will show that for every p > fig and A > 0, problem (S)-(BC) has no positive
solution.

Let > fip and A > 0. We suppose that (S)—(BC) has a positive solution (u(t),v(t)),
t € [0,1]. Then we obtain

1
o(er) = Qalu, ) (1) = po! / Galer, 5)pen (1229 (s, u(s), v(s))) ds
0

1
> ot / (5 ) (1520 (5, u(5),0()) ds
0

> Qg—lc,Bz 1 fcsl $— T 042_19(7-’ U’(T)? U(T)) dT ds
zZ [ 1 (,092 ]_—‘(az)
S 02—1 P2 1 f: )2 Iy (u(r) + v(r))2 "t dr s
ZH 1 9092 F(a2)
s Oég*lm ’7T271||(u ,U)”TQ*:[ dr
2 o2—1 ﬁg 1 fcl 2 ? Y d
/’(‘ Cl @Qz( F(O[Q) S

_ 04 (02—1)
— 021 02 s 01 ?
=u Yyams® || (u, v) HY/J2 T(on + ))92 T ds

— o g )]
Then we deduce
o]l = v(er) = 772C(uma2)?~H|(u, v)||y > ¥72C (foma) || (u, v) ||,

= [ )lly

and so || (u, v) ||y = |lul] + |[v|l = ||vll > ||(u,v)|]y, which is a contradiction.
Therefore, the boundary value problem (S)—(BC) has no positive solution. O

Theorem 6. Assume that (H1) and (H2) hold. If there exist positive numbers c1, co with
0< e <cy < 1andmy,mo > 0 such that

)

ft,u,v) = my(u+v)""t V€ [er, ), u,v >0
v>0 @7

=
g(t,u,v) = ma(u+v)2"1 Yt € [er, e, u
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then there exist positive constants o and [t such that for every \ > Ao and > fip, the
boundary value problem (S)—(BC) has no positive solution.

Proof. We define Ao = 1/(my (2771 4)™ 1) and fig = 1/(m2(2y72C)"™>~1). Then for
every A > /\0 and p > jig, problem (S)—(BC) has no positive solution. Indeed, let A > /\0
and p > fig. We suppose that (S)—(BC) has a positive solution (u(t), v(t)), ¢t € [0, 1]. In

a similar manner as that used in the proofs of Theorems 4 and 5, we obtain

> u(er) = yn AQm) o (u,0)]]y,
>

v(er) = 720 (uma) | (u, v) |y

and so

[[(w, )|y = Nl + o]l
2 1 AQm ) (s 0|y, +772C (pm2) | (u,0)y
> ymA(Aom)? | (u,v) ||y + 192C (oma) 27| (w,v)|],

1 1
= Mol + ol = wol,-

which is a contradiction. Therefore, the boundary value problem (S)—(BC) has no positive
solution. O]

Remark 3.

() If for ¢1, co with 0 < ¢ < ¢ < 1, we have f¢, f2 > 0 and f(¢,u,v) > 0 for all
t € [c1,¢2) and w,v > 0 with w + v > 0, then relation (25) holds, and we obtain
the conclusion of Theorem 4.
(ii) If for c1, ca with 0 < ¢ < 2 < 1, we have g, g°, > 0 and g(t,u,v) > 0 for all
t € [e1,co] and u, v > 0 with u 4+ v > 0, then relation (26) holds, and we obtain
the conclusion of Theorem 5.
(iii) If for c1, co with 0 < ¢; < co < 1, we have f¢, fi, g8, 95, > O0and f(t,u,v) >
0, g(t,u,v) > 0forallt € [c1,co] and u,v > 0 with u + v > 0, then relation
(27) holds, and we obtain the conclusion of Theorem 6.

5 An example

Let a1 = 1/2, Qo = 1/3, n = 3, ﬂl = 7/3, m = 4, 62 = 15/4,])1 = 1, q1 = 1/3,
p2 =3/2,g0 =6/5, N =2, M =1,& = 1/4, & = 3/4, a1 = 3, aa = 1/4,
mo=1/3,by =2,71 =4, 01 = 4/3, ¢, (5) = 5%, 0, () = s/3, 19 =3, 05 = 3/2,
Pra(5) = Is]5, 0a(5) = |s|7/%s.
We consider the system of fractional differential equations
Dy (pa(DIPu(t))) + At + 1) (e“@+)” _1) =0, ¢ € (0,1),

Dy (103 (Do Mv(®))) + (2 = 1) (u(t) + 0*(1)) =0, € (0,1),
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with the multi-point boundary conditions
1 3
u(0) = u'(0) =0, DPu(0)=0, «'(1)=3D} u (4> +7 ”%(4),
, PPN Teh)
v(0) = v'(0) = v"(0) =0, DY*v(0)=0, D v(1)=2D (3)

where a, b > 0.

Here we have f(t,u,v) = (t + 1)*(e®t)° — 1), g(t,u,v) =

(2 — 1)°(u?® + v?3) for

allt € [0,1], u,v > 0. Then we obtain Ay ~ 0.21710894 > 0, Ay =~ 2.73417069 > 0,
and so assumptions (H1) and (H2) are satisfied. In addition, we deduce

(t.5) 1 t83(1 —s)V/3 — (t—s)¥3, 0<s<t <1,
yS) =
o L(7/3) | t4/3(1 — 5)1/3, 0<t<s<1,
t(1—s)/3—t+s, 0<s<t<l,
92(t75) = 1/3
t(1 —s)'/3, 0<t<s<l,
(t.5) 1 /41— 5)5/ — (t— )14 0<s<t <1,
78 = H/1E AN
9 [(15/4) | 11/4(1 — s)5/4, 0<t<s<1,
(t ) 1 t31/20(1 _ 8)5/4 _ (t _ 8)31/20, 0<s<t< 1)
yS) = THET o
o ['(51/20) | ¢31/20(1 — )5/4, 0<t<s<1,
t4/3 1 1 (3
Gi(t,s) =g1(t,s) + A1(392 <4a5> + 192 <478)>7
2t11/4 1
Galt,s) = alt,s) + 25 —n(5:5).
s(1 —s)/3 1—5)%41—(1—s)3?
I'(7/3) I'(15/4)
For the functions J; and J5, we obtain
remys(L= )P+ A5 — )P+ 42 = ], 0<s <,
Ji(s) = F(?l/s)s(l_s)l/3 L[%g(l s s -5 1<s<i,
F(71/3)S(1 N 8)1/3 + 16A (1—s) M3, % ss< L
m(l —8)%4(1 = (1—5)*?) + Wr‘(m/m))[(l —5)%/4
() —(1—=3s)*1/2] 0<s< 3,
2(s) =
m(1*5)5/4(1*(1 $)3/2) + m(lﬂ)m,
$<s< L
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Now we choose ¢; = 1/4 and ¢ = 3/4, and then we deduce y; = (1/4)%/3, v, =
(1/4)'1/4, v = ~5. In addition, we have f§ = (7/4)%, fi. = oo, g5 = 0, g}, = o0,
A~ 1.35668478, B ~ 2.51926854.

By Theorem 1(vii), for any A € (0,L%) and o € (0,00) with L}, = 1/(f$B?),
problem (So)-(BCy) has a positive solution (u(t),v(t)), t € [0, 1]. For example, if a = 2,
we obtain L}, ~ 0.0204221.

We can also use Theorem 4 because f(t,u,v) > (5/4)%(u+v)* forall t € [1/4,3/4]
and u,v > 0, thatis my = (5/4)*. If a = 2, we deduce Ao = 1/(m1(y1A)?) ~
6.0810421 x 105, and then we conclude that for every A > Ao and p > 0, the boundary
value problem (Sy)—(BCy) has no positive solution.

Appendix

In this appendix, we will prove that if

. f(t7 u7 v) S
limsup max —————"— = f2,
u+v—soo t€[0,1] (U + U)rl

u,v=>0

then
*(t,x
lim sup max Ftz) = f3,

z—o00 t€[0,1] ari—t

where f : [0,1] x [0,00) X [0,00) — [0,00) is a continuous function, f*(¢t,z) =
MaXy, v>0, ut+v<a J (&4, v) fort € [0,1], x > 0, and 7 > 1.

(I) In the case f3, € (0,00), from the characterization theorem of supremum limit
we have:

(a) For all ¢ > 0, there exists M (g) > 0 such that for all u,v > 0, u + v > M(e),

we have
f(t7 u7 U)

ax 2t < f5 e,
N ot <=t

(b) Foralle, M’ > 0, there exists (ug, vg), to,v9 = 0, ug + vo > M’, such that

f(t7 uo, UO) s
e A— > — .
tren[g}i] (UO +UO)T1—1 foo 3
Relation (b) is verified for an arbitrary (u, v) with u+v> M’ if e> f5 because f has
nonnegative values.
From (a), for £ > 0 arbitrary but fixed for the moment, there exists M; =M (¢/2) >0
such that for all u,v > 0, u + v > M;, we have

f(t’ u’ 1})

5
te0,1] (u + v)m1—1 2’

<f§<,+2

and then f(t,u,v) < (f3 +¢/2)(u+v)" ! forall t € [0,1].
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Then for £ > 0, there exists My > 0 such that for all x > M; and ¢t € [0,1], we
obtain

“(t, ) = t < t,u, t,u,
ft) 0t f(t,u,v) ogﬁ%}ézwlf( V) +M1<ngv<mf( wv)

= f*(t7M1)+ sup f(t,u,v)
M) <utv<z

N

€
max f*(t,M;)+  sup <f§o—|—>(u—|—v)“1
t€0,1] M <utv<z 2

< K]\/jl + <f;o 4+ ;)l‘h_l’
where Ky, = maxyeo,1) f* (¢, My).
Therefore, for € > 0, there exist M; > 0 and Kj;, > 0 such that

f*(tvﬁ) < KM1

pri—1 ~ pri—1

+f;‘o+% Vo> Mt e[0,1],

and so () %
* t,x My s 9
trél[gﬁ] xri—t S it T Joo 2 Ve > My

Because lim,_, o 1/3:“_1 = 0, then for ¢ > 0, there exists My > M; such that
/a1 < e/(2Kyy, ) forall z > Ms.
So we conclude that for all € > 0, there exists Mo > 0 such that

max (. 2)

te[0,1] xm 1

<%+f§o+%:f§o+s Vo > M. (28)

From relation (b) we deduce that for any ¢ > 0 and any M’ > 0, there exists ¢ =

ug + vo > 0 such that
*(t t t )
max f ( awO) > max f( 7u077}0) — max f( 7”07’00) > fs

— €.
— = —
tef0,1] xft T tefo]  ap ! te[0,1] (ug + vp)™1 1 oo

Then we obtain that for all £, M’ > 0, there exists z¢g > M’ such that

max 7f*(t’ To)

> f2 —e. 29
tef0.1] .’L'gl_l foo 9 ( )

By relations (28), (29) and the characterization theorem for supremum limit we con-
clude that lim sup,,_,, max,c(o,1) f*(¢, ) /2"~ = f5..

(D) If f3, = 0, then Himsup,,,, o0, 4 v>0 MaXee(o,1) f (¢, u,v)/(u + v)l =0
is equivalent to limy 00, u,v>0 Maxyeio,1) f (¢, u,v) /(u + v)™ 1 = 0 because f has
nonnegative values. Also limsup,_, . max;efo,1) f* (¢, 2)/ z" 1 = 0 is equivalent to
lim, o0 maxyecpo,1) f*(t, ) /2"~ = 0.
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In the same manner as used in case (I) (for the implication (a) = (28)), we can show

that relation

t
Ve >0,3dM >0: 0< maxM<€ Vu,v =20, u+v > M,
te[0,1] (u + )1t

implies the relation

—~ *(t —~
Ve >0,dIM >0: 0< maxm<s Ve > M,

tefo,1] zm—t

that is lim,_, oo max;¢(o,1) [ (t,x)/zm—t = 0.

(III) If f5 = oo, then by the characterization theorem we have

t
VM, My > 0, 3(u,v), u,v 20, u+v>M;: max M > M.
tef0,1] (u +v)m1—1

Then we deduce that for any M, My > 0, there exists x = u + v > M such that

*(t t t
max ftz) (t,2) > max 7f( 1) = max 7‘/:( % 0) > M.
te[0,1] ™1 te[0,1] L te[0,1] (u + v)T1—1

So we obtain that lim sup,,_, ., max;eqo,1 f*(t,z)/2" ! = oo.
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