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Abstract. In this paper, we establish the existence and nonexistence of radial solutions of the
Dirichlet problem for a class of general k-Hessian equations in a ball. Under some suitable local
growth conditions for nonlinearity, several new results are obtained by using the fixed point theorem.
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1 Introduction

In this paper, we consider the existence and nonexistence of radial solutions for the
following Dirichlet problem of the general k-Hessian equation:
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in Ω ⊂ RN (N > 2k),

u = 0 on ∂Ω,
(1)
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where Ω is a unit ball, f : C(Ω × R → [0,+∞)), B ∈ X is a nonlinear operator with
the following property:

X =
{
B ∈ C2

(
[0,+∞), [0,+∞)

)
: there exists a constant σ > 0

such that for any 0 < c < 1, B(cs) 6 cσB(s)
}
.

S
1/k
k (λ(D2u)) is defined as the k-Hessian operator by

Sk
(
λ
(
D2u

))
=

∑
16i1<i2<···<ik6N

λi1λi2 · · ·λik , k = 1, 2, . . . , N,

where λ1, λ2, . . . , λN are the eigenvalues of the Hessian matrix D2u, and λ(D2u) =
(λ1, λ2, . . . , λN ) is the vector of eigenvalues of D2u. Clearly, Sk(λ(D2u)) is a second-
order fully nonlinear differential operator for k > 1, which is the sum of all k×k principal
minors of the Hessian matrix of D2u. On the other hand, the k-Hessian operator can also
be written in the divergence form
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(
λ
(
D2u

))
=

1

k

N∑
i,j=1

(
Sijk ui

)
j
,

where Sijk = ∂Sk(D
2u)/∂uij , and for more details, the reader is referred to [13, 29, 30].

It is easy to see that the k-Hessian operator is a generalization of both the Monge–Ampère
operator [1, 2] when k = N and the Laplace operator [15] when k = 1. This implies that
the k-Hessian operator constructs a discrete collection of partial differential operators
including the Monge–Ampère operator and the Laplace operator as special cases.

In many existing work for the k-Hessian equation, mathematical theories are con-
structed with no background on modeling or exploration of their applications. We thus
briefly review here some potential applications in physics and applied mathematics. In
[9,11], Escudero used the k-Hessian equation to model various phenomena of condensed
matter and statistical physics. In addition, the k-Hessian equation is also regarded as an
important class of fully nonlinear operators related to an object of geometric investigation
[31, 32] and study of quasilinear parabolic problems [26].

There are many rich literatures concerning the k-Hessian equation. For example,
Caffarelli, Nirenberg, and Spruck [3] first studied the existence and a priori estimate of
the smooth solutions for the k-Hessian equation

Sk
(
λ
(
D2u

))
= f in Ω ⊂ RN ,

u = ϕ on ∂Ω.
(2)

Then the work was extended to more general equations in [21, 28], and for more recent
results, we refer the reader to [4–6, 10, 12, 17, 26, 27, 33]. In [20] and [12], the regularity
for a more general class of fully nonlinear elliptic equations was obtained under nondi-
vergence form. Recently, Covei [6] considered the existence of positive radial solutions
for a Hessian equation with weights
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)
h(u), x ∈ RN (N > 2k), (3)
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and a system of two Hessian equations
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)
f(u, v), x ∈ RN (N > 2k),

S
1/k
k

(
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D2v

))
= q
(
|x|
)
g(u, v), x ∈ RN (N > 2k).

By using a successive approximation technique, a necessary condition and a sufficient
condition for a positive radial solution to be large were established.

Inspired by the above work, in this paper, we establish the existence and nonexistence
of radial solutions for the k-Hessian equation (1) based on some fixed point theorems.
Noticing that the k-Hessian equation (1) involves a nonlinear operator B, so it includes
many interesting and important cases. In particular, if B(x) = xk−1, then the k-Hessian
equation (1) reduces to the Hessian equation (2), which has been studied by many authors
[3, 4, 14, 21, 28] via to different methods such as the variational method, the Perron’s
method, and so on. Moreover, if B(x) = const 6= 0, then the k-Hessian equation becomes
Hessian equation (3). Ji and Bao [17], Covei [6] considered the necessary and sufficient
conditions for the existence of positive radial solutions. When B(x) = |x|p−2, p > 2, the
k-Hessian equation (1) becomes

ϕp
(
S
1/k
k

(
λ
(
D2u

)))
= f

(
|x|,−u

)
in Ω ⊂ RN ,

u = 0 on ∂Ω,

which is a p-Poisson–Hessian equation, and few work were reported. Thus, the k-Hessian
equation (1) is a generalization of fully nonlinear elliptic equations involving many im-
portant cases. To the best of our knowledge, no results have been reported on the existence
and nonexistence of radial solutions for the k-Hessian equation (1), and this is the first
paper using the Leggett–Williams’ fixed point theorem and the Leray–Schauder nonlinear
alternative theorem to study the k-Hessian equation involving a nonlinear operator.

Before we give a detailed description of our main results, we first establish the fol-
lowing property of the inverse operator of the operator sB(s).

Proposition 1. If B ∈ X , let L(s) = sB(s), then L has a nonnegative increasing inverse
mapping L−1(s), and for any 0 < b < 1,

L−1(bs) > b1/(1+σ)L−1(s).

Proof. Firstly, we prove that B is an increasing operator if B ∈ X . In fact, for any B ∈ X
and s, t ∈ [0,+∞), without loss of the generality, let 0 6 s < t. If s = 0, obviously
B(s) 6 B(t) holds. If s 6= 0, let c0 = s/t, then 0 < c0 < 1. It follows from the property
of B that

B(s) = B(c0t) 6 cσ0B(t) 6 B(t),

which implies that B is an increasing operator. Thus, we have L′(s) = (sB(s))′ > 0 for
any s > 0, which implies that L is a bijection on (0,∞) and has a nonnegative increasing
inverse mapping L−1(s).
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On the other hand, for any 0 < b < 1, let c = b1/(1+σ), then 0 < c < 1. Thus, we have

L(cx) = cxB(cx) 6 c1+σxB(x) = c1+σL(x) for x > 0.

Consequently, let s = L(x), then

cL−1(s) = cx 6 L−1
(
c1+σL(x)

)
= L−1(bs),

that is
b1/(1+σ)L−1(s) 6 L−1(bs).

The proof is completed.

Remark 1. Clearly, if r > 1, then we have

L−1(rs) 6 r1/(1+σ)L−1(s). (4)

Remark 2. The operator set X includes a large class of operators and the standard type
of operators is B(s) =

∑n
i=1 s

αi , αi > 0. In fact, take σ = min{α1, . . . , αn} > 0, then
for any 0 < c < 1, one has

B(cs) 6 cσB(s).

2 Preliminary results on radial solutions

In this paper, we only focus on the classical solutions of the k-Hessian equation (1),
namely, a function u(t) of class C2[0, 1] satisfies the k-Hessian equation (1). In the rest
of this paper, t is used as an independent variable of functions, and r as radiuses of balls
in the cone.

For BR := {x ∈ RN : |x| < R} and radial function u(r) with r =
√∑N

i=1 x
2
i , we

have the following properties.

Lemma 1. (See [17].) Assume v(r) ∈ C2[0, R) is radially symmetric, and v′(0) = 0.
Then the function u(|x|) = v(r) with r = |x| < R is C2(BR), and

λ
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)
=

{
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′(r)
r , . . . , v

′(r)
r ), r ∈ (0, R),

(v′′(0), v′′(0), . . . , v′′(0)), r = 0,

Sk
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))
=

{
Ck−1N−1v

′′(r)(v
′(r)
r )k−1 + CkN−1(

v′(r)
r )k, r ∈ (0, R),

CkN (v′′(0))k, r = 0.

Notice

v′(0) = lim
r→0

v(r)− v(0)
r − 0

= lim
ξ→0

v′(ξ)

= lim
ξ→0

(
k

ξN−k

ξ∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
r,−v(s)

))]k
ds
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then we have

lim
r→0

v′(r)

r
= v′′(0).

Thus, from Lemma 1 and Proposition 1 we get the following lemma.

Lemma 2. The function u ∈ C2(B1) is a radial solution of equation (1) if and only if
v(r) is a solution of the ODE

Ck−1N−1v
′′(r)

(
v′(r)

r

)k−1
+ CkN−1

(
v′(r)

r

)k
=
[
L−1

(
f
(
r,−v(r)

))]k
, r ∈ (0, 1),

v′(0) = 0, v(1) = 0.

(5)

Now with a simple transformation ϕ = −v, (5) can be rewritten as follows:[
rN−k

k

(
−ϕ′(r)

)k]′
=
rN−1

Ck−1N−1

[
L−1

(
f
(
r, ϕ(r)

))]k
, r ∈ (0, 1),

ϕ′(0) = 0, ϕ(1) = 0.

Then u(|x|) = −ϕ(r) is a radial solution of equation (1) if and only if ϕ(r) is a solution
of the integral equation

ϕ(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt, r ∈ (0, 1).

Define the Banach space E = C[0, 1] with the usual supremum normal ‖ϕ(x)‖ =
maxx∈[0,1] |ϕ(x)|, and define a nonlinear operator F on E as follows:

(Fϕ)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt, r ∈ [0, 1].

We will establish conditions for the existence, nonexistence, and multiplicity of radial
solutions for equation (1) in Sections 3–5, respectively.

3 Existence results

Nonlinear functional analysis method plays an important role for studying nonlinear or-
dinary differential equations and partial differential equations [7,16,18,19,23–25,34–37,
40–49]. Many fixed point theorems have been developed to solve various boundary value
problems of differential equations [7, 38, 39]. In this section, our main tool to establish a
existence result of solution for k-Hessian equation (1) is the following Leray–Schauder
nonlinear alternative theorem [8].
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Lemma 3. Let E be a real Banach space, Ω be a bounded open subset of E, 0 ∈ Ω,
L : Ω → E is a completely continuous operator. Then either there exist ϕ ∈ ∂Ω and
µ > 1 such that L(ϕ) = µϕ or there exists a fixed point ϕ∗ ∈ Ω.

Theorem 1. Assume that there exist a nondecreasing function ψ : [0,+∞) → [0,+∞)
and a function a(t) ∈ C[0, 1] such that∣∣f(t, u)∣∣ 6 a(t)ψ

(
|u|
)
, t ∈ [0, 1]. (6)

Then the k-Hessian equation (1) has at least one solution if there exists a real number
m > 0 such that

‖a‖ψ(m) 6 L

(
2m

(
NCk−1N−1

k

)1/k)
. (7)

Proof. Firstly, we prove that the operator F is completely continuous. Clearly, continuity
of the operator F follows from the continuity of f .

Let D ⊂ E be any bounded set. Then there exists a constant L > 0 such that
|f(r, ϕ)| 6 L for any (r, ϕ) ∈ [0, 1]×D, thus, we have

∣∣(Fϕ)(r)∣∣ 6 1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

∣∣L−1(f(s, ϕ(s)))∣∣k ds)1/k

dt

6 L−1(L)

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
ds

)1/k

dt

6
1

2
L−1(L)

(
k

NCk−1N−1

)1/k

= const.

Therefore, F(D) is uniformly bounded.
Now we show that F(D) is equicontinuous on [0, 1]. For any (r, ϕ) ∈ [0, 1]×D, we

have ∣∣∣∣ ddr (Fϕ)(r)
∣∣∣∣ =

(
k

rN−k

r∫
0

sN−1

Ck−1N−1

∣∣L−1(f(s, ϕ(s)))∣∣k ds)1/k

6 L−1(L)

(
k

NCk−1N−1

)1/k

r 6 L−1(L)

(
k

NCk−1N−1

)1/k

,

and then, for any ϕ ∈ D and r1, r2 ∈ [0, 1], we get∣∣(Fϕ)(r1)− (Fϕ)(r2)
∣∣

=

∣∣∣∣∣
t1∫
t2

d

dr
(Fϕ)(r) dr

∣∣∣∣∣ 6 L−1(L)

(
k

NCk−1N−1

)1/k

|t1 − t2|. (8)
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It follows from (8) that F(E) is equicontinuous on [0, 1]. Thus, according to the Ascoli–
Arzela theorem, F is a completely continuous operator.

Now we consider Bm = {ϕ ∈ C[0, 1]: ‖ϕ‖ 6 m}. It follows from the Leray–
Schauder nonlinear alternative theorem that either the operator F has a fixed point or
there exists ϕ ∈ ∂Bm such that Fϕ = µϕ for some µ > 1. We assert that the latter
conclusion does not hold. Otherwise, there exist some ϕ0 ∈ ∂Bm and some µ > 1 such
that Fϕ0 = µϕ0. Thus, it follows from (6)–(7) that

µm = µ‖ϕ0‖ = ‖Fϕ0‖

6

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

∣∣L−1(f(s, ϕ0(s)
))∣∣k ds)1/k

dt

6

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

∣∣L−1(a(s)ψ(∣∣ϕ0(s)
∣∣))∣∣k ds)1/k

dt

6 L−1
(
‖a‖ψ(m)

) 1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
ds

)1/k

dt

6
1

2

(
k

NCk−1N−1

)1/k

L−1
(
‖a‖ψ(m)

)
6 m,

that is µ 6 1, which leads to a contraction with µ > 1. In consequence, the operator F
has a fixed point in C[0, 1] with ‖ϕ‖ 6 m. This further implies that problem (1) has at
least one solution on [0, 1] if (7) holds. The proof is completed.

By Theorem 1 we have the following corollary.

Corollary 1. Assume that there exists a function a(t) ∈ C[0, 1] such that∣∣f(t, u)∣∣ 6 a(t), t ∈ [0, 1].

Then the k-Hessian equation (1) has at least one solution.

4 Nonexistence results

In this section, we are interested in the nonexistence result of solutions for the k-Hessian
equation (1) with a parameter µ:

B
(
S
1/k
k

(
λ
(
D2u

)))
S
1/k
k (λ

(
D2u

))
= µf

(
|x|,−u

)
in Ω ⊂ RN ,

u = 0 on ∂Ω.
(9)

Let

f0 = lim
|ϕ|→0+

max
r∈[0,1]

f(r, ϕ)

L(|ϕ|)
, f∞ = lim

|ϕ|→+∞
min
r∈[0,1]

f(r, ϕ)

L(|ϕ|)
,

then we have the following nonexistence result of solutions.
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Theorem 2. Assume that f0 < ∞ and f∞ < ∞, then there exists µ0 > 0 such that the
k-Hessian equation (9) has no solutions for 0 < µ < µ0.

Proof. It follows from f0 <∞ and f∞ <∞ that

(i) for any ε1 > 0, there exists a constant δ > 0 such that f(r, ϕ) < (f0 + ε1)L(|ϕ|)
for 0 < ϕ < δ and r ∈ [0, 1];

(ii) for any ε2 > 0, there exists a constant M > 0 such that |f(r, ϕ)| < (f∞ + ε2)×
L(|ϕ|) for ϕ > M and r ∈ [0, 1].

Without loss of generality, take δ < M and

ε = max

{
f0 + ε1, f∞ + ε2, max

(r,ϕ)∈[0,1]×[δ,M ]

f(r, ϕ)

L(|ϕ|)

}
,

then for any (r, ϕ) ∈ [0, 1]× [0,∞), we have f(r, ϕ) 6 εL(|ϕ|).
Let µ0 = 1/ε, assume that there is a solution ϕ0 of the k-Hessian equation (9). We

will show that this leads to a contradiction for 0 < µ < µ0. Since ‖Fµϕ0‖ = ‖ϕ0‖ for
r ∈ [0, 1] and N > 2k, then for 0 < µ < µ0, we have

‖ϕ0‖ = ‖Fµϕ0‖ =
1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

∣∣L−1(µf(s, ϕ0(s)
))∣∣k ds)1/k

dt

6

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

∣∣L−1(µ0εL
(
|ϕ0|

))∣∣k ds)1/k

dt

6

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
ds

)1/k

dt‖ϕ0‖

6
1

2

(
k

NCk−1N−1

)1/k

‖ϕ0‖ < ‖ϕ0‖,

which is a contradiction. The proof is completed.

5 Results on multiple solutions

In order to obtain the multiplicity of radial solutions of (1), we need the following Leggett–
Williams fixed point theorem.

Definition 1. Let P be a cone in a real Banach space E. A mapping α is called a nonneg-
ative continuous concave functional on P if it satisfies

(i) α : P → [0,+∞) is continuous;
(ii) α(λu+ (1− λ)v) > λα(u) + (1− λ)α(v) for all u, v ∈ P and λ ∈ [0, 1].
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Suppose that α is a nonnegative continuous concave functional on P , for constants
0 < a < b and c > 0, define the following convex sets:

Pc =
{
u ∈ P : ‖u‖ 6 c

}
,

P (α, a, b) =
{
u ∈ P : a 6 α(u), ‖u‖ 6 b

}
.

Lemma 4 [Leggett–Williams fixed point theorem]. (See [22].) Let F : Pc → Pc be
a completely continuous operator, α be a nonnegative continuous concave functional
on P satisfying α(u) 6 ‖u‖ for all u ∈ Pc. Assume there exist some constants 0 < d <
a < b 6 c such that

(i) {u ∈ P (α, a, b): α(u) > a} 6= φ and α(Fu) > a for u ∈ P (α, a, b);
(ii) ‖Fu‖ < d for ‖u‖ 6 d;

(iii) α(Fu) > a for u ∈ P (α, a, c) with ‖Fu‖ > b.

Then F has at least three fixed points u1, u2, u3 satisfying

‖u1‖ < d, a < α(u2), ‖u3‖ > d with α(u3) < a.

Now let

P =
{
ϕ ∈ E: ϕ(x) > 0 and ϕ is nonincreasing on [0, 1]

}
,

then P is a cone in E. We still consider the nonlinear operator F on E:

(Fϕ)(r) =

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt, r ∈ [0, 1].

For any ϕ ∈ P , clearly, (Fϕ)(r) > 0 for all r ∈ [0, 1], (Fϕ)′(0) = (Fϕ)(1) = 0, and

(Fϕ)′(r) = −

(
k

rN−k

r∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

6 0, r ∈ [0, 1].

Thus, we have F : P → P . On the other hand, by the standard argument we know that
F is continuous and compact, also see [43]. So, from the above facts we have the following
lemma.

Lemma 5. F : P → P is continuous and compact.

Now for some µ0 ∈ (0, 1/2), define a nonnegative continuous concave functional
α : P → [0,+∞)

α(ϕ) = min
06r61−µ0

{
ϕ(r)

}
, ϕ ∈ P,

then we have α(ϕ) 6 ‖ϕ‖ for ϕ ∈ P and α(ϕ) = ϕ(1−µ0), α(Fϕ) = (Fϕ)(1−µ0) for
all ϕ ∈ P .
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In what follows, we define two constants:

λ1 =

(
NCk−1N−1

k

)(1+σ)/k

, λ2 =
2

µ0(2− µ0)

[
NCk−1N−1

k

]1/k
,

where σ is defined by B, which depends on the operator B. Clearly, it follows from
N > 2k that λ1 > 1.

Theorem 3. Assume that there exist four constants a, b, c, d such that 0 < d < a <
µ0(1− µ0)b < b 6 c, and the following conditions are satisfied:

(A1) f(r, ϕ) < λ1L(d) for all (r, ϕ) ∈ [0, 1]× [0, d];
(A2) f(r, ϕ) > L(λ2a) for all (r, ϕ) ∈ [1− µ0, 1]× [a, b];
(A3) f(r, ϕ) 6 λ1L(c) for all (r, ϕ) ∈ [0, 1]× [0, c];
(A4) min[0,1−µ0]×[a,c] f(s, r) > L(a/(µ0(1− µ0)b))max[0,1]×[0,c] f(s, r).

Then the k-Hessian equation (1) has at least three radial solutions satisfying

‖ϕ1‖ < d, min
r∈[0,1−µ0]

(ϕ2)(r) > a, ‖ϕ3‖ > d with min
r∈[0,1−µ0]

(ϕ3)(r) < a.

Proof. Firstly, from the definition of α we have α(ϕ) 6 ‖ϕ‖ for ϕ ∈ P . Now we prove
that F : P c → P c, and for any ϕ ∈ P d, there is ‖Fϕ‖ 6 d.

In fact, for any ϕ ∈ P c, we have ‖ϕ‖ 6 c, and it follows from (A3) and (4) that

‖Fϕ‖ = max
r∈[0,1]

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

=

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

6

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

(
λ
1/(1+σ)
1 c

)k
ds

)1/k

dt

= λ
1/(1+σ)
1

(
k

NCk−1N−1

)1/k

c = c,

which implies that F : P c → P c. In the same way, we have ‖Fϕ‖ < d for any ϕ ∈ P d.
Thus, condition (ii) of Lemma 4 is satisfied.

Secondly, we show that condition (i) of Lemma 4 also holds. To do this, take ϕ0 =
µ0(1 − µ0)b, we have ϕ0 = µ0(1 − µ0)b > a, and then α(ϕ0) > a. In addition, since
µ0 ∈ (0, 1/2), we have ‖ϕ0‖ = µ0(1− µ0)b 6 b. Thus,{

ϕ ∈ P (α, a, b): α(ϕ) > a
}
6= φ.
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Now for any ϕ ∈ P (α, a, b), we have α(ϕ) > a and ‖ϕ‖ 6 b, and then a 6 ϕ(r) 6 b for
any r ∈ [0, 1− µ0]. Thus, it results from (A2) that

α
(
Fϕ(r)

)
= min
r∈[0,1−µ0]

Fϕ(r) = (Fϕ)(1− µ0)

=

1∫
1−µ0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

> λ2a

(
k

Ck−1N−1

)1/k
1∫

1−µ0

(
1

tN−k

t∫
0

sN−1 ds

)1/k

dt

= λ2a

(
k

Ck−1N−1

)1/k
2µ0 − µ2

0

2N
1
k

= a.

So, condition (i) of Lemma 4 holds.
Thirdly, we verify that condition (iii) of Lemma 4 is satisfied. For any ϕ ∈ P (α, a, c)

with ‖Fϕ‖ > b, we have

α
(
ϕ(r)

)
= min

06r61−µ0

{
ϕ(r)

}
> a, ‖ϕ‖ 6 c.

Then we have
a 6 ϕ(r) 6 c ∀r ∈ [0, 1− µ0]

and

‖Fϕ‖ = max
r∈[0,1]

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

=

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

6 L−1
(

max
[0,1]×[0,c]

f(s, r)
)( k

NCk−1N−1

)1/k

. (10)

On the other hand, for ϕ ∈ P (α, a, c) with ‖Fϕ‖ > b, by (10) and (A4), we have

α
(
Fϕ(r)

)
= min
r∈[0,1−µ0]

Fϕ(r)

=

1∫
1−µ0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

> L−1
(

min
[0,1−µ0]×[a,c]

f(s, r)
)( k

NCk−1N−1

)1/k
1∫

1−µ0

(
1

tN−k

t∫
0

sN−1 ds

)1/k

dt
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> L−1
(

min
[0,1−µ0]×[a,c]

f(s, r)
)( k

NCk−1N−1

)1/k

µ0(1− µ0)

>
a

b
L−1

(
max

[0,1]×[0,c]
f(s, r)

)( k

NCk−1N−1

)1/k

>
a

b
‖Fϕ‖ > a.

Thus, all hypotheses of the Leggett–Williams theorem are satisfied. So, according
to the Leggett–Williams theorem, the k-Hessian equation (1) has at least three radial
solutions satisfying

‖ϕ1‖ < d, min
r∈[0,1−µ0]

(ϕ2)(r) > a, ‖ϕ3‖ > d with min
r∈[0,1−µ0]

(ϕ3)(r) < a.

Corollary 2. Assume that there exist three constants a, b, d such that 0 < d < a <
µ0(1− µ0)b and (A1), (A2), and the following condition are satisfied:

(A3′) f(r, ϕ) 6 λ1L(b) for all (r, ϕ) ∈ [0, 1]× [0, b].

Then the k-Hessian equation (1) has at least three radial solutions satisfying

‖ϕ1‖ < d, min
r∈[0,1−µ0]

(ϕ2)(r) > a, ‖ϕ3‖ > d with min
r∈[0,1−µ0]

(ϕ3)(r) < a.

Proof. Take c = b, then we have 0 < d < a < µ0(1 − µ0)b < b = c, thus, (A1), (A2),
and (A3) of Theorem 3 hold. In addition, if b = c, condition (i) of Lemma 4 implies
condition (iii). By Theorem 3 the conclusion of Corollary 2 is true.

Corollary 3. Suppose that (A2) and (A4) hold. In addition, assume the following condi-
tions are satisfied:

(A5′) lim
s→0+

max
r∈[0,1]

f(r, s)

L(s)
< λ1;

(A6′) lim
s→1−

max
r∈[0,1]

f(r, s)

L(s)
< λ1.

Then the k-Hessian equation (1) has at least three radial solutions satisfying

‖ϕ1‖ < d, min
r∈[0,1−µ0]

(ϕ2)(r) > a, ‖ϕ3‖ > d with min
r∈[0,1−µ0]

(ϕ3)(r) < a.

Proof. In fact, clearly, (A5) implies (A1). So, we only need to prove that there exists
a positive constant c with c > b such that F : P c → P c.

It follows from (A6) that there exists a constant δ > 0 such that

f(r, s) 6 λ1L(s) ∀r ∈ [0, 1], s > δ.

Taking
M = max

(r,s)∈[0,1]×[0,δ]
f(r, s),
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then we have
f(r, s) 6M + λ1L(s) ∀(r, s) ∈ [0, 1]× [0, 1).

Let

c > max

{
b, L−1

(
M

(21+σ − 1)λ1

)}
for any ϕ ∈ P c, one has

‖Fϕ‖ = max
r∈[0,1]

1∫
r

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, ϕ(s)

))]k
ds

)1/k

dt

6

1∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
M + λ1L(c)

)]k
ds

)1/k

dt

=
1

2

(
k

NCk−1N−1

)1/k

L−1
(
M + λ1L(c)

)
6

1

2

(
k

NCk−1N−1

)1/k

L−1
(
21+σλ1L(c)

)
6

1

2

(
k

NCk−1N−1

)1/k

× 2λ1+σ1 c = c,

which implies that F : P c → P c.

Corollary 4. Assume that there exist constants 0 < d1 < a1 < µ0(1 − µ0)b1 < d2 <
a2 < µ0(1−µ0)b2 < · · · < dn < an < µ0(1−µ0)bn such that the following conditions
hold:

(A1′) f(r, ϕ) 6 λ1L(di) for all (r, ϕ) ∈ [0, 1]× [0, di], 1 6 i 6 n;
(A2′) f(r, ϕ) > L(λ2ai) for all (r, ϕ) ∈ [µ0, 1− µ0]× [ai, bi], 1 6 i 6 n;
(A3′) f(r, ϕ) 6 λ1L(bi) for all (r, ϕ) ∈ [0, 1]× [0, bi], 1 6 i 6 n.

Then the k-Hessian equation (1) has at least 2n− 1 radial solutions.

6 Numerical examples

In this section, we present some examples to illustrate our main results.

Example 1. Consider the existence of radial solutions for the following Dirichlet problem
of the 2-Hessian equation:(

S
1/2
2

(
λ
(
D2u

)))2
S
1/2
2

(
λ
(
D2u

))
= |x|1/2 sin2(−u) in Ω ⊂ R5,

u = 0 on ∂Ω,
(11)

where Ω is a unit ball. Then the 2-Hessian equation (11) has at least one solution.
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Proof. In fact, here k=2 and f(t, u)= t1/2 sin2 u. Since B(x)=x2, we have L(x)=x3

and ∣∣f(t, u)∣∣ = ∣∣t1/2 sin2 u∣∣ 6 t1/2u2 = a(t)ψ(u), (t, u) ∈ [0, 1]× [0,+∞),

where a(t) = t1/2, ψ(u) = u2. Take m = 2, then

‖a‖ψ(m) = 4 6 L

(
2m

(
NCk−1N−1

k

)1/k)
=

(
4

(
5C1

4

2

)1/2)3
= 640

√
10,

and by Theorem 1, the 2-Hessian equation (11) has at least one solution.

Example 2. Consider the nonexistence of radial solutions for the following Dirichlet
problem of the 2-Hessian equation with a parameter(

S
1/2
2

(
λ
(
D2u

)))2
S
1/2
2

(
λ
(
D2u

))
= −µ

(
|x|1/2 + 1

)
u3 in Ω ⊂ R5,

u = 0 on ∂Ω,
(12)

where Ω is a unit ball. Then there exists µ0 > 0 such that the 2-Hessian equation (12)
has no solutions for 0 < µ < µ0.

Proof. In fact, here k = 2, N = 5 and f(r, ϕ) = (r1/2 + 1)ϕ3, B(x) = x2. Thus,
L(x) = x3 and

f0 = lim
|ϕ|→0+

max
r∈[0,1]

f(r, ϕ)

L(|ϕ|)
= 2, f∞ = lim

|ϕ|→+∞
min
r∈[0,1]

f(r, ϕ)

L(|ϕ|)
= 1.

By Theorem 2 there exists µ0 > 0 such that the 2-Hessian equation (12) has no solutions
for 0 < µ < µ0.

Example 3. Consider the existence of multiple radial solutions for the following Dirichlet
problem of the 2-Hessian equation:(

S
1/2
2

(
λ
(
D2u

)))2
S
1/2
2

(
λ
(
D2u

))
= f

(
|x|,−u

)
in Ω ⊂ R5,

u = 0 on ∂Ω,
(13)

where Ω is a unit ball and

f(r, ϕ) =


e−r + 1

2ϕ
2, 0 6 ϕ 6 1,

e−r + 1
2 + [18 · ( 365 )3 · 103/2 − 1

2 ](ϕ− 1), 1 6 ϕ 6 2,

e−r + ( 365 )3 · 103/2(20− ϕ), 2 6 ϕ 6 18,

e−r + 2 · ( 365 )3 × 10
3
2 , ϕ > 18.

(14)

Then the 2-Hessian equation (14) has at least three solutions satisfying

‖ϕ1‖ < 1, min
r∈[0,3/5]

(ϕ2)(r) > 2, ‖ϕ3‖ > 18 with min
r∈[0,3/5]

(ϕ3)(r) < 2.
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Proof. Since k = 2, N = 5, σ = 2, L(x) = x3. Take d = 1, a = 2, b = 18, c = 20,
µ0 = 2/5, then we have

λ1 =

(
NCk−1N−1

k

)(1+σ)/k

= 103/2, λ2 =
2

µ0(2−µ0)

[
NCk−1N−1

k

]1/k
=

25

8
· 101/2.

Now we check conditions (A1)–(A4) of Theorem 3.
Firstly, for any (r, ϕ) ∈ [0, 1]× [0, 1], we have

f(r, ϕ) 6 max
(r,ϕ)∈[0,1]×[0,1]

f(r, ϕ) =
3

2
< λ1L(d) = 103/2.

So, condition (A1) holds.
Next, we consider the interval (r, ϕ) ∈ [3/5, 1]× [2, 18], one has

f(r, ϕ) > min
(r,ϕ)∈[3/5,1]×[2,18]

f(r, ϕ) = e−1 + 2 ·
(
36

5

)3

· 103/2

> L(λ2a) =

(
25

4

)3

· 103/2.

Thus, condition (A2) is satisfied.
Thirdly, we focus on (r, ϕ) ∈ [0, 1]× [0, 20], and we get

f(r, ϕ) 6 max
(r,ϕ)∈[0,1]×[0,20]

f(r, ϕ) = 1 + 18 ·
(
36

5

)3

· 103/2

< λ1L(c) = 8000 · 103/2.

Therefore, condition (A2) also holds.
In the end, we check (A4). In fact, we have

min
[0,1−µ0]×[a,c]

f(s, r) = min
[0,3/5]×[2,20]

f(s, r) = e−3/5 + 2 ·
(
36

5

)3

· 103/2 = 23607,

L

(
a

µ0(1− µ0)b

)
max

[0,1]×[0,c]
f(s, r)

=

(
2

2
5 ·

3
5 · 18

)3

max
[0,1]×[0,20]

f(s, r) =

(
25

54

)3(
1 + 18 ·

(
36

5

)3

· 103/2
)

= 21082,

which implies (A4) is satisfied.
Thus, all of the conditions of Theorem 3 are satisfied. By Theorem 3 the 2-Hessian

equation (13) has at least three solutions satisfying

‖ϕ1‖ < 1, min
r∈[0,3/5]

(ϕ2)(r) > 2, ‖ϕ3‖ > 18 with min
r∈[0,3/5]

(ϕ3)(r) < 2.
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7 Conclusion

The k-Hessian equation is a class of very important fully nonlinear and nonuniformly
elliptic partial differential equations, which fill up the gap between the Monge–Ampère
and Poisson equations. In this paper, we introduce a nonlinear operator B such that
k-Hessian equation we studied include many important and interesting cases. To establish
the existence, nonexistence, and multiplicity of radial solutions to Dirichlet problems
of k-Hessian equations with a nonlinear operator in a ball, we adopt the Leray–Schauder
alternative theorem and the Leggett–Williams fixed point theorem as well as some suitable
growth conditions for nonlinearity. Our work improves and generalizes some recent work
such as [3, 4, 6, 17, 21, 28].

Acknowledgment. The authors would like to thank the referees for his/her very impor-
tant comments, which improve the results and the quality of the paper.
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