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Abstract. In this paper, a three-dimensional dynamical model consisting of a prey, a mature
predator and an immature predator is proposed and analysed. The interaction between prey and
mature predator is assumed to be of the Crowley–Martin type, and both the prey and mature
predator are harvested according to catch-per-unit-effort (CPUE) hypothesis. Steady state of the
system is obtained, stability analysis (local and global both) are discussed to explore the long-
time behaviour of the system. The optimal harvesting policy is also discussed with the help of
Pontryagin’s maximum principle. The harvesting effort is taken as an effective control instrument
to preserve prey and predator and to maintain them at an optimal level.
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1 Introduction

The Lotka–Volterra system of equations was established and analyzed long time back,
about 100 years ago. These equations are a mathematical and dynamical model repre-
senting the relationship between two or more species. Several attempts have been made
to generalize, modify and extend these equations. However, due to complex nature of the
biological species, their complete dynamics is still not known and needs to be investigated
with care. It has now been established that age plays an important role in deciding the
dynamics and evolution of various species. The rates of reproduction and survival largely
depend upon age or the developmental stage, and hence it could be remarked that the life
history of several species is composed of at least two stages, immature or juvenile and
mature or adult, with significantly different biological, physiological and morphological
characteristics.

The analysis of stage-structured predator–prey system has attracted good amount of
attention recently, as a way to eliminate the shortcomings of classical Lotka–Volterra
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models [1, 2, 11, 22, 28, 36]. In these models, a time delay represents the age of maturity
of the species. In fishery system, cannibalism has been observed, and various types of
cannibalism models have been discussed [6, 16, 26]. Recently, Bosch and Gabriel [4] and
Kar [19] studied the stage and age structure of species without or with time delays.

One of the major aims of ecologists is to gain insight into predator–prey relationship,
and one vital aspect of predator–prey relationship is the rate of predation by an average
consumer (this is known as the functional response or the “trophic function”). The func-
tional response takes into account of both the predator and prey biological and physiologi-
cal processes. The functional response largely controls the stability of the system, and they
are of several types: Holling I–III, ratio-dependent, Beddington–DeAngelis, Crowley–
Martin, Leslie–Gower [3, 17, 24, 25, 30, 34, 37]. There are a few literatures available on
predator–prey model with Crowley–Martin-type (CM-type) functional response [27, 33,
34]. The CM functional response involves the interference among individual of predators
engaged in handling or searching the prey, and it is given by

η(x, y) =
bxy

(1 + a1x)(1 + b1y)
,

where b, a1 and b1 are positive parameters that are used for effects of capture rate,
handling time and magnitude of interference among predators, respectively. The CM-type
functional response reduces to classical and Holling-type II functional response under the
following constraints on the parameters:

(i) a1 = 0, b1 = 0 implies linear mass action (classical Lotka–Volterra) functional
response.

(ii) a1 > 0, b1 = 0 implies Holling-type II (Michaelis–Menten) functional response.
(iii) a1 = 0, b1 > 0 implies Holling-type II (saturation with respect to predator)

functional response.

The effect of intra-specific interference among predators has been studied in a prey–
predator model with Holling-type II functional response in [13], with Holling-type III
functional response in [12] and with Beddington–DeAngelis-type functional response in
[15]. In these three studies, spatiotemporal dynamics of the system are also investigated.
Guin et al. [14] have also studied spatiotemporal pattern in a prey–predator model with
prey refuge and Beddington–DeAngelis-type functional response.

The optimal management and utilization of renewable and natural resources, which
is directly related to sustainable development, has been studied extensively by many
authors [7–10,18–20,23]. Recently, Maiti et al. [27] investigated the dynamics of a prey–
predator model with CM-type functional response with refuge for the prey species. To the
best of authors’ knowledge, optimal harvesting of prey–predator with CM-type functional
response and with stage structure in predator population has not been studied. Keeping
these in view, we propose a three-dimensional model consisting of prey and predator
in which predator is divided into two categories: mature and immature. The prey and
mature predator are harvested as CPUE hypothesis. The rest of the paper is organized as
follows: In Section 2, we formulate the mathematical model and its qualitative properties.
Section 3 deals with the existence of all feasible equilibria, and stability analysis is
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presented in Section 4. Optimal harvesting policy is discussed in Section 5, and numerical
simulations are presented in Section 6. Finally, concluding results are given in Section 7
followed by references.

2 Mathematical model and its qualitative properties

We consider a habitat consisting of a prey and predator system. We assume that the density
of prey population or the renewable resource under consideration, represented by x(t) at
any time t > 0, can be mathematically and dynamically modelled by a logistic equation
when the predator is absent. We assume that the predators are classified into two stage
groups – mature or adult and immature or juveniles, and their densities are denoted by
y(t) and z(t), respectively, at any time t > 0. Here we are assuming the fact that only
mature predators are capable of attacking the prey and have reproductive ability, while
the immature predator does not attack the prey and has no reproductive ability. A good
example of such a situation is the case of the Chinese alligator, which can be regarded as
a stage structured species since the mature is more than 10 years old, and can be regarded
as a predator because almost all the aquatic animals are the chief nutritional source for
the alligator. The interference between prey and adult predator is assumed to be of the
CM-type. One of the novel features about our model is to account for the universally
prevalent intra-specific competition in the consumer growth dynamics [21]. This intra-
specific competition is assumed to induce an additional increased death rate, which is
proportional to the square of the adult population [12, 13, 15]. We assume that prey and
adult predator are harvested as CPUE hypothesis, and juvenile predators are not harvested.
With these assumptions in mind, we propose the following stage-structured prey–predator
interaction model:

dx

dt
= rx

(
1− x

K

)
− αxy

(1 + ax)(1 + by)
− q1Ex,

dy

dt
=

cαxy

(1 + ax)(1 + by)
− δ0y − δ1y2 + β1z − q2Ey,

dz

dt
= βy − (β0 + β1)z,

x(0) > 0, y(0) > 0, z(0) > 0.

(1)

Here r is the specific growth rate of the prey, and K is the carrying capacity. The
predator functional response incorporated is the CM type, where α, a and b are positive
parameters that are used for the effects of capture rate, handling time and magnitude of
interference among predators, respectively. The parameter c is the conversion factor, q1
is the catchability coefficient of the prey, q2 is the catchability coefficient of the mature
predator or adult species, E is the harvesting effort, δ0 is the death rate of the matured
predator and δ1 is intra-specific interference coefficient of the adult predator. The parame-
ter β denotes the birth rate of immature predator, β0 denotes the death rate of the immature
predator, and β1 denotes the proportionality constant of transformation of immature to
mature predators.
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Remark 1. If E = 0, δ1 = 0 and β1 = 0, then dynamics of model (1) is well studied
in [31].

Next, we present some qualitative properties of our proposed model to show that the
model is biologically well behaved.

Theorem 1. The model system (1) has a unique and nonnegative solution with initial
values {(x(0), y(0), z(0)) ∈ R3

+}, where R3
+ = {(x1, x2, x3): xi > 0, i = 1, 2, 3}.

Further, the set

Ω =

{
(x, y, z): 0 6 x 6 K, 0 6 x+

1

c
(y + z) 6 L

}
is a positive invariant set for all the solutions initiating in the interior of the positive
octant, where L = rK/(4δm), δm = min{q1E, δ0 + q2E − β, β0}, δ0 + q2E > β.

Proof. The model system (1) can be written in the matrix form

Ẋ = G(X),

where X = (x1, x2, x3)T = (x, y, z)T ∈ R3, and G(X) is given by

G(X) =

G1(X)
G2(X)
G3(X)

 =

 rx(1− x
K )− αxy

(1+ax)(1+by) − q1Ex
cαxy

(1+ax)(1+by) − δ0y − δ1y
2 + β1z − q2Ey

βy − (β0 + β1)z

 .
Since G : R3 → R3

+ is locally Lipschitz-continuous in Ω and X(0) = X0 ∈ R3
+, the

fundamental theorem of ordinary differential equation guarantees the local existence and
uniqueness of the solution. Since [Gi(X)]xi(t)=0, x∈R3

+
> 0, it follows [29, 32, 35] that

X(t) > 0 for all t > 0. In fact, from the first equation of model (1) it can easily be seen
that ẋ|x=0 > 0 and hence x(t) > 0 for all t > 0. Secondly, ẏ|y=0 = β1z > 0 and hence
y(t) > 0 for all t > 0. If this is not true, then assume that there exist a t1 > 0 with
t1 = inf{t: y(t) = 0, t > 0} such that ẏ(t1)|y(t1)=0 = β1z(t1) < 0. But we also have
y(t1) = 0, y(t) > 0 with t ∈ [0, t1) and z(t1) < 0. Since z(0) > 0, there is a t2 > 0
with t2 = inf{t: z(t) = 0, t ∈ [0, t1)}. Hence, by the definition of t2, ż(t2) 6 0. But
ż(t2) = βy(t2) > 0, which is a contradiction to our assumption. From the last equation
of model (1) we have ż|z=0 = βy > 0, and therefore z(t) > 0 for all t > 0.

From the first equation of the model

dx

dt
6 rx

(
1− x

K

)
,

which yields
lim sup
t→∞

x(t) 6 K.

Now suppose

W (t) = x(t) +
1

c

(
y(t) + z(t)

)
,
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then we have

dW (t)

dt
=

dx

dt
+

1

c

(
dy

dt
+

dz

dt

)
6 rx

(
1− x

K

)
− δm

(
x+

y

c
+
z

c

)
,

where δm = min{q1E, δ0 + q2E − β, β0}.
It is easy to see that the function f(x) = rx(1− x/K) has maximum value rK/4 at

x = K/2.
Hence, it follows that

dW

dt
6
rK

4
− δmW (t),

which implies

lim sup
t→∞

W (t) 6
rK

4δm
.

We also note that if x > K and W (t) > rK/(4δm), then dx/dt 6 0, dW/dt 6 0.
This shows that all solutions of system (1) starting inΩ remain inΩ for all t > 0.

Theorem 2. Let the following inequalities are satisfied:

r >
αcL

1 + bcL
+ q1E,

cαxm
(1 + axm)(1 + bcL)

> δ0 + q2E.

Then the model system (1) is uniformly persistence, where xm is defined in the proof.

Proof. Permanence or uniform persistence of a system implies that all species will be
present in future and none of them will become extinct if they are initially present.
System (1) is said to be uniformly persistence if there are positive constants M1 and
M2 such that each positive solution X(t) = (x(t), y(t), z(t)) of the system with positive
initial conditions satisfies

M1 6 lim inf
t→∞

X(t) 6 lim sup
t→∞

X(t) 6M2.

Keeping the above in view, if we define

M2 = max{K, cL},

then from Theorem 1 it follows that

lim sup
t→∞

X(t) 6M2.

This also shows that for any sufficiently small ε > 0, there exists a T > 0 such that for
all t > T , the following holds:

x(t) < K + ε, y(t) < cL+ ε, z(t) < cL+ ε.
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Now from the first equation of model system (1), for all t > T , we can write

dx

dt
> rx− rx2

K
− αx(cL+ ε)

1 + b(cL+ ε)
− q1Ex,

=

(
r − α(cL+ ε)

1 + b(cL+ ε)
− q1E

)
x− rx2

K
.

Hence, it follows that

lim inf
t→∞

x(t) >
K

r

(
r − α(cL+ ε)

1 + b(cL+ ε)
− q1E

)
,

which is true for every ε > 0, thus

lim inf
t→∞

x(t) >
K

r

(
r − αcL

1 + bcL
− q1E

)
:= xm,

where r > αcL/(1 + bcL) + q1E.
Now from the second equation of model system (1) we obtain

dy

dt
>

cαxmy

(1 + axm)(1 + b(cL+ ε))
− δ0y − δ1y2 − q2Ey,

=

(
cαxm

(1 + axm)(1 + b(cL+ ε))
− δ0 − q2E

)
y − δ1y2,

and hence

lim inf
t→∞

y(t) >
1

δ1

(
cαxm

(1 + axm)(1 + b(cL+ ε))
− δ0 − q2E

)
,

which is true for every ε > 0, thus

lim inf
t→∞

y(t) >
1

δ1

(
cαxm

(1 + axm)(1 + bcL)
− δ0 − q2E

)
:= ym,

where (cαxm)/((1 + axm)(1 + bcL)) > δ0 + q2E.
Similarly, the third equation of model system (1) yields

dz

dt
> βym − (β0 + β1)z.

Hence,

lim inf
t→∞

z(t) >
βym

β0 + β1
:= zm.

Taking M1 = min{xm, ym, zm}, the theorem follows.
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3 Analysis of equilibria

It can be inspected that model (1) has four nonnegative equilibria, namely, P0(0, 0, 0),
P1(x̄, 0, 0), P2(0, ȳ, z̄), P ∗(x∗, y∗, z∗). The equilibrium point P0 exists obviously. We
shall show the existence of the other equilibria as follows:

Existence of P1. Here x̄ is the positive solution of the following equation:

rx

(
1− x

K

)
− q1Ex = 0,

and thus

x̄ =
K

r
(r − q1E).

Clearly, x̄ > 0 if the following inequality holds:

(r − q1E) > 0. (2)

Thus, the equilibrium P1 exists under condition (2).
Existence of P2. Here ȳ and z̄ are the positive solutions of the following equations:

βy = (β0 + β1)z, (3)

−δ0y − δ1y2 + β1z − q2Ey = 0. (4)

From Eqs. (3) and (4) we obtain

ȳ =
1

δ1

(
ββ1

β0 + β1
− δ0 − q2E

)
, z̄ =

βȳ

β0 + β1
.

We note that for ȳ and z̄ to be positive, we must have

ββ1
β0 + β1

> δ0 + q2E. (5)

Thus, P2 exists if inequality (5) holds true.
Existence of P ∗. Here x∗, y∗ and z∗ are the positive solutions of the following

algebraic equations:

r

(
1− x

K

)
− αy

(1 + ax)(1 + by)
− q1E = 0, (6)

cαx

(1 + ax)(1 + by)
− δ0 − δ1y +

ββ1
β0 + β1

− q2E = 0, (7)

βy − (β0 + β1)z = 0. (8)

It is easy to note that if we are able to verify the existence of x∗ and y∗, then existence
of z∗ automatically follows from Eq. (8). We perform the following analysis to show the
existence of x∗ and y∗.

Nonlinear Anal. Model. Control, 23(4):493–514
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From Eq. (6) we note the following:

(i) When x = 0, then y = (r − q1E)/(α− br + q1Eb) := ya. We note that ya > 0
if, in addition to (2), the following inequality holds:

α− br + q1Eb > 0. (9)

(ii) When y = 0, then x = (K/r)(r − q1E) := xa; xa > 0 under condition (2).

(iii)
dy

dx
=

1 + by

1 + ax

[
ay − r

αK
(1 + ax)2(1 + by)

]
.

It is easy to see that dy/dx < 0 if the following inequality holds:

αaKcL

1 + bcL
< r. (10)

The above analysis shows that isocline (6) is passing through the points (xa, 0) and (0, ya);
and in Eq. (6), y is a decreasing function of x under conditions (2), (9) and (10).

Now we note the following from Eq. (7):

(i) When x = 0, then y = (1/δ1)(ββ1/(β0 + β1) − δ0 − q2E) := yb; and yb > 0
under condition (5).

(ii) dy

dx
=

1 + by

(1 + ax)[ δ1cα (1 + ax)(1 + by)2 + bx]
> 0.

This shows that isocline (7) is passing through the point (0, yb) under condition (5), and
it has always a positive slope, thus in Eq. (7), y increases as x increases.

From the above analysis we infer that two isoclines (6) and (7) intersect at a unique
point (x∗, y∗) if

yb < ya. (11)

Now we are in a position to state the following theorem.

Theorem 3. The positive equilibrium P ∗(x∗, y∗, z∗) exists and it is unique if condi-
tions (2), (5), (9), (10) and (11) hold true.

4 Stability analysis

The local stability of each equilibria can be studied by computing the corresponding
Jacobian matrix. We note the following regarding the linear stability behavior of these
equilibria:

1. P0 is a saddle point. This follows from the following remarks:

• The eigenvalue corresponding to the x-direction is r − q1E, which is positive
from condition (2).
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• Since ββ1 > (δ0+q2E)(β0+β1) from condition (5), the product of eigenvalues
corresponding to the y- and z-directions is negative. This, in turn, implies that
the equilibrium point P0 is locally stable only in one direction (either y- or
z-direction) and is unstable in a two-dimensional space.

2. P1 is also a saddle point. This follows from the following remarks:

• The eigenvalue corresponding to the x-direction is equal to −(r − q1E), which
is negative from condition (2).
• The product of the eigenvalues corresponding to the y- and z-directions is given

by the following expression:

−cαK(r − q1E)(β0 + β1)

r + aK(r − q1E)
+ (δ0 + q2E)(β0 + β1)− ββ1.

This expression is clearly negative under conditions (2) and (5). Therefore, the
equilibrium point P1 is locally stable in a two-dimensional space and is unstable
in a single direction, which is either y-direction or z-direction.

3. The following analysis discusses the stability of P2:

• P2 is locally stable or unstable in x-direction depending upon the condition
whether r − q1E < αȳ/(1 + bȳ) or r − q1E > αȳ/(1 + bȳ) holds true,
respectively.
• The product and sum of the eigenvalues corresponding to the y- and z-directions,

respectively, is given by the following expressions:

ββ1 − (δ0 + q2E)(β0 + β1), (12)

−δ0 − q2E − 2δ1ȳ − (β0 + β1), (13)

respectively.
Expression (12) is positive by (5), which implies that the product of the eigen-

values is positive. The sum of the eigenvalues, that is, expression (13) is clearly
negative. The above statements imply that both the eigenvalues are negative.
Therefore, the equilibrium point P2 is locally stable in the two-dimensional
space spanned by the unit vectors pointing in y- and z-directions, respectively.

• Hence, the equilibrium point P2 is locally stable or a saddle point depending
upon the condition whether r− q1E < αȳ/(1 + bȳ) or r− q1E > αȳ/(1 + bȳ)
holds true, respectively.

4. We use the Routh–Hurwitz criterion to study the stability behavior of P ∗. The
Jacobian matrix evaluated at P ∗ is given by

J =

−x∗( rK −
αay∗

(1+ax∗)2(1+by∗) )
−αx∗

(1+ax∗)(1+by∗)2 0
cαy∗

(1+ax∗)2(1+by∗) − cαbx∗y∗

(1+ax∗)(1+by∗)2 − δ1y
∗ − β1z

∗

y∗ β1
0 β −(β0 + β1)

.
The characteristic equation corresponding to the above Jacobian matrix is

λ3 +Aλ2 +Bλ+ C = 0,

Nonlinear Anal. Model. Control, 23(4):493–514
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where A, B and C are given by

A = −(j11 + j22 + j33),

B = j11j22 + j22j33 + j33j11 − j12j21 − j23j32 − j13j31,
C = j12j21j33 + j11j23j32 + j13j31j22 − j11j22j33 − j12j23j31 − j13j21j32,

and jmn (m,n = 1, 2, 3) represents an entry in J , in mth row and nth column. All
eigenvalues of J will have negative real parts if and only if

A > 0, C > 0 and AB > C. (14)

Hence, P ∗ is locally asymptotically stable under conditions (14).

Remark 2. It has been noted that all inequalities in Eq. (14) are satisfied if

αay∗

(1 + ax∗)2(1 + by∗)
<

r

K
(15)

holds. Hence, P ∗ is locally asymptotically stable under condition (15).

We will now prove that P ∗ is globally asymptotically stable under certain conditions
in the next theorem.

Theorem 4. Let the following inequalities hold:

αay∗

(1 + ax∗)(1 + by∗)
<

r

K
, (16)

4ββ1 < y∗δ1(β0 + β1). (17)

Then P ∗ is globally asymptotically stable in Ω with respect to all the solutions initiating
in the interior of the positive octant.

Proof. Consider the following positive definite function about P ∗:

V = x− x∗ − x∗ ln
x

x∗
+K1

(
y − y∗ − y∗ ln

y

y∗

)
+
K2

2
(z − z∗)2,

where K1 and K2 are positive constants to be chosen suitably in the subsequent steps.
Differentiating V with respect to t along the solutions of model (1), a little algebraic
manipulation yields

dV

dt
= −

[
r

K
− αay∗

(1 + ax)(1 + ax∗)(1 + by∗)

]
(x− x∗)2

−
[

K1cαbx
∗

(1 + by)(1 + ax∗)(1 + by∗)
+K1δ1 +

K1β1z

yy∗

]
(y − y∗)2

− (β0 + β1)K2(z − z∗)2
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+

[
K1cα

(1 + by)(1 + ax)(1 + ax∗)
− α

(1 + by)(1 + ax)(1 + by∗)

]
× (x− x∗)(y − y∗) +

[
K1β1
y∗

+ βK2

]
(y − y∗)(z − z∗).

Choosing K1 = (1 + ax∗)/(c(1 + by∗)) and K2 = K1β1/(βy
∗), we note that dV /dt

is negative definite under conditions (16) and (17). Hence, V is a Liapunov function with
respect to all the solutions initiating in the interior of the positive octant, proving the
theorem.

The above theorem implies that under parametric conditions (16) and (17), the preda-
tor (juvenile and adult both) and prey densities settle down at their interior equilibrium
point irrespective of the initial values of their densities at t = 0.

Remark 3. As long as P ∗ exists, it is interesting to note here that condition (16) implies
condition (15) because 1 + ax∗ > 1 holds.

5 Optimal harvesting policy

The exploitation of biological resources is commonly practiced in fishery, forestry and
wildlife management. A management for biological species such as fishery is needed
to maintain an ecological balance, which is disrupted due to overexploitation of these
renewable resources. Keeping this in mind, we discuss the optimal harvesting policy that
is to be adopted by the regulatory agency so as to maximize the total discounted net
revenue obtained from harvesting prey and predator species using harvesting effort as
the control instrument. We wish to investigate the 3D curve (x, y, z) with the optimal
harvesting effort E so that the system remains at an optimal equilibrium level.

The net economic revenue to the society

π(x, y, z, E, t) = net economic revenue to the harvester
+ net economic revenue to the regulatory agency

= p1q1xE + p2q2yE − c′E,

where c′ is the harvesting cost per unit effort, which in turn is given by c′ = c1 + c2,
where c1 is the harvesting cost per unit effort corresponding to the prey species, and c2
is the harvesting cost per unit effort corresponding to the adult predator species. p1 is the
price per unit biomass of x, and p2 is the price per unit biomass of y. We take p1, p2 and
c′ to be positive constants.

Our problem is to optimize the objective functional

R =

∞∫
0

e−δt
(
p1q1Ex(t) + p2q2Ey(t)− c′E

)
dt

subject to the model equation (1) by using Pontryagin’s maximum principle.

Nonlinear Anal. Model. Control, 23(4):493–514
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We construct the Hamiltonian

H = e−δt(p1q1xE + p2q2yE − c′E)

+ λ1(t)

[
rx(1− x

K
)− αxy

(1 + ax)(1 + by)
− q1Ex

]
+ λ2(t)

[
cαxy

(1 + ax)(1 + by)
− δ0y − δ1y2 + β1z − q2Ey

]
+ λ3(t)

[
βy − (β0 + β1)z

]
, (18)

where λ1, λ2 and λ3 are the adjoint variables, E is the control variable subject to the
constraint: 0 6 E 6 Emax. Here Emax denotes a feasible upper limit of E subject to the
infrastructural support available to fishing/harvesting.

Suppose E is the optimal control, and x, y, z are the responses. By the maximum
principle, for t > 0, there exist adjoint variables λ1, λ2 and λ3 such that

dλ1
dt

= −∂H
∂x

= −
[
e−δtEp1q1 + λ1

(
r − 2rx

K
− αy

(1 + by)(1 + ax)2
− q1E

)
+ λ2

cαy

(1 + by)(1 + ax)2

]
,

dλ2
dt

= −∂H
∂y

= −
[
e−δtEp2q2 −

αxλ1
(1 + ax)(1 + by)2

+
cαxλ2

(1 + ax)(1 + by)2
− δ0λ2

− 2δ1λ2y − q2Eλ2 + λ3β

]
,

dλ3
dt

= −∂H
∂z

= −
[
λ2β1 − λ3(β0 + β1)

]
.

At the equilibrium point P ∗, the above equations reduce to(
D − rx∗

K
+

αax∗y∗

(1 + ax∗)2(1 + by∗)

)
λ1 +

(
cαy∗

(1 + ax∗)2(1 + by∗)

)
λ2

= −e−δtEp1q1,

−αx∗λ1
(1 + ax∗)(1 + by∗)2

+

(
D − δ1y∗ −

β1z
∗

y∗
− cαx∗by∗

(1 + ax∗)(1 + by∗)2

)
λ2 + βλ3

= −e−δtEp2q2,

β1λ2 +
(
D − (β0 + β1)

)
λ3 = 0,

where D denotes d/dt.
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This system of linear differential equations can be solved using the operator method
by eliminating λ2 and λ3. Then the reduced differential equation in λ1 can be written as(

a3D
3 + a2D

2 + a1D + a0
)
λ1 = M1e−δt, (19)

where

a3 = 1, a2 = t3 − β0 − β1 − t2,
a1 = t1t4 − β0t3 − β1t3 − t2t3 + t2β0 + t2β1 − ββ1,
a0 = t2β0t3 + t2β1t3 − ββ1t3 − β0t1t4 − β1t1t4,
M1 = Ep2q2t4δ + Ep2q2t4(β0 + β1) + Ep1q1ββ1 − Ep1q1t2β1

− Ep1q1t2β0 − Ep1q1t2δ − Ep1q1β1δ − Ep1q1β0δ − Ep1q1δ2,

where

t1 =
−αx∗

(1 + ax∗)(1 + by∗)2
, t2 = δ1y

∗ +
β1z
∗

y∗
+

cαx∗by∗

(1 + ax∗)(1 + by∗)2
,

t3 = −rx
∗

K
+

αax∗y∗

(1 + ax∗)2(1 + by∗)
, t4 =

−cαy∗

(1 + ax∗)2(1 + by∗)
.

(20)

The solution of Eq. (19) is

λ1 = A1eα1t +A2eα2t +A3eα3t +
M1

N
e−δt, (21)

where A′is (i = 1, 2, 3) are arbitrary constants, and αi’s (i = 1, 2, 3) are the roots of the
auxiliary equation

a3m
3 + a2m

2 + a1m+ a0 = 0,

N = δ3 + a2δ
2 + a1δ + a0 6= 0.

It is clear from (21) that λ1 is bounded if and only if αi < 0 (i = 1, 2, 3) or Ai (i =
1, 2, 3) are identical to zero. For robust calculations, we ignore the cases where αi < 0
(i = 1, 2, 3) and take Ai (i = 1, 2, 3) identical to zero. Then we have

eδtλ1 =
M1

N
.

Proceeding in a similar fashion, we obtain

eδtλ2 =
M2

N
, eδtλ3 =

M3

N
,

where

M2 =
Ep1q1N + t3M1 − δM1

t4
and M3 =

β1M2

δ + β0 + β1
.
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Thus, the shadow prices eδtλi (i = 1, 2, 3) remain constant over time in optimal equilib-
rium when they satisfy the transversality condition at t = ∞, i.e., when they remain
bounded as t → ∞. From (18) we note that Hamiltonian H is linear in the control
variable E. Hence, optimal control will be a combination of the bang-bang control and
singular control. A necessary condition for singular control to be optimal [5] is that

∂H

∂E
= e−δt(p1q1x+ p2q2y − c′)− λ1q1x− λ2q2y = 0,

which gives

λ1q1x+ λ2q2y = e−δt
∂π

∂E
. (22)

Therefore, we may conclude that the total cost of harvest per unit effort (the left-hand side
of (22)) must be equal to the discounted value of the marginal profit of the static effort
(the right-hand side of (22)) level.

Substituting the values of λ1 and λ2 in (22), we obtain

q1x

(
p1 −

M1

N

)
+ q2y

(
p2 −

M2

N

)
= c′. (23)

The above equation together with the value of E at the interior equilibrium, namely,

E =
r

q1
− rx∗

q1K
− αy∗

(1 + ax∗)(1 + by∗)q1

=
cαx∗

(1 + ax∗)(1 + by∗)q2
− δ0
q2
− δ1y

∗

q2
+
β1z
∗

q2y∗
, (24)

gives the optimal equilibrium population x = xδ and y = yδ .
When δ →∞, we have M1/N → 0, M2/N → 0. Then (23) reduces to

p1q1x∞ + p2q2y∞ = c′,

and hence π(x∞, y∞, z, E) = 0. This shows that the economic rent is completely dissi-
pated when the discount rate is infinite. The economic rent can be expressed as

π = (p1q1x+ p2q2y − c′)E =
(M1q1x+M2q2y)E

N
.

We note that M1 is of O(δ2), M2 and M3 are O(δ3) and N is of O(δ3). Thus, π is
a decreasing function of δ.

6 Numerical results

In the following section, we present some numerical simulations to verify our theoretical
results proved in the previous sections by using MATLAB R2010a.
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For model system (1), we choose the following set of values of parameters:

r = 7, K = 10, c = 0.1, α = 0.5,

δ0 = 1, E = 6, q1 = q2 = 1, β0 = 1,

β1 = 7, β = 10, δ1 = 1, a = b = 0.1

(25)

with initial conditions
x(0) = y(0) = z(0) = 1.

For the above set of values of the parameters, conditions in Theorem 4 for the
existence of the interior equilibrium is satisfied. Thus, the positive equilibrium point
P ∗(x∗, y∗, z∗) is given by

x∗ = 0.3973, y∗ = 1.7662, z∗ = 2.2078.

We also note that condition (14) is satisfied for the set of parameters chosen in (25). Thus,
the equilibrium point P ∗(x∗, y∗, z∗) is locally asymptotically stable. The time series of
x, y and z are presented in Fig. 1. This figure shows that the density of the prey species
decreases with time whereas densities of predator species (mature and immature both)
increase with time and finally settle down at their steady states. It is also observed here
that the density of immature predator settles at a larger value than that of the mature
predator and prey.

It may be pointed out that the values of parameters chosen in (25) satisfy local stability
conditions, but they do not satisfy global stability conditions. Since conditions obtained
in Theorem 4 are sufficient (not necessary) for the global stability of P ∗, hence at this
stage, we cannot say anything about the global stability of P ∗.

Now we choose following set of values of parameters:

r = 7, K = 10, c = 1, α = 0.5,

δ0 = 1, E = 1, q1 = q2 = 1, β0 = 1,

β1 = 7, β = 3, δ1 = 300, a = b = 0.1

(26)

with different initial conditions. These values of the parameters satisfy the global sta-
bility conditions of Theorem 4. The trajectories or solution curves of x, y and z with
different initial conditions are plotted in Fig. 2. From this figure we note that all the
trajectories starting from the different initial conditions converge to the equilibrium point
P ∗(8.568, 0.009763, 0.003665). This shows that P ∗ is globally asymptotically stable.

Figure 3 shows the behavior of x, y and z for different values of the parameter α. Here
the rest of parameters have the same values as in (25). We note that if α (capture rate) is
small, then all the three species grow and finally attain its respective steady states. If
α increases beyond a critical value, then prey population decreases, mature and immature
populations increase. If α becomes high, then the density of prey species tends to zero.

Figure 4 shows the behavior of x, y and z for different values of the parameter c.
Here, again, the rest of parameters have the same values as in (25). In this case, it can
be noted that as the value of c increases, the densities of y and z increase, but the density
of x decreases.
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Figure 3. Behavior of x, y and z with time t for different values of α. Other values are as in (25).
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Figure 4. Behavior of x, y and z with time t for different values of c. Other values are as in (25).

For the optimal harvesting part, we choose the following set of parameters:

r = 7, K = 10, c = 0.1, α = 0.5,

δ0 = 1, q1 = q2 = 1, β0 = 1, β1 = 7,

β = 10, δ1 = 1, a = b = 0.1.

(27)

Solving (23) and (24) simultaneously, we get the optimal values as xδ = 1.001, yδ =
2.3530, zδ = 2.94125, and the optimal value ofE is given byEδ = 5.4339. This value of
E is optimal in the sense that for such a value, the harvesting agency gets the maximum
revenue for the harvest, and all the three species will coexist at an optimal level.

From Fig. 5 one can remark that when the value of E is below Eδ , the prey and
predators (mature and immature both) survive, but when the value of E is above Eδ (case
of over harvesting), then the population densities of prey and mature predators tend to
zero.
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Figure 5. Behavior of x, y and z with time t for different values of E. Other values are as in (27).

Consider a set of parameters as follows:

r = 3.5, K = 70, c = 0.2, α = 0.5, δ0 = 1.2,

E = 1, q1 = q2 = 1, β0 = 0.2, β1 = 0.25,

β = 0.4, δ1 = 0.3, a = 0.01, b = 1.2.

(28)

In system (1), let b = 0.1 and the rest of parameters are same as that in (28). Then
it is easy to note that system (1) has a unique interior equilibrium E∗(27.7097, 2.3121,
2.0552), which is globally asymptotically stable as conditions of Theorem 4 are satisfied.
Figures 6(a)–6(c) show the time series analysis, and Fig. 6(d) shows the phase portrait
analysis of model system (1) for different values of the parameter b. These figures shows
that system is stable if b is small, and if b increases beyond a threshold value, the system
becomes unstable. Thus, the parameter b induces a Hopf-bifurcation in the system.

In order to consider the importance of parameter δ1, let δ1 = 2, and the rest of
parameters are same as that in (28). Then system (1) has unique positive equilibrium point
E∗(21.7536, 1.3268, 1.1793), and conditions of Theorem 4 are also satisfied. Hence, the
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Figure 6. Trajectory of x, y, z and limit cycle with respect to the parameter b. Other parameters are as in (28).
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Figure 7. Trajectory of x, y with respect to the parameter δ1. Other parameters are as in (28).

positive equilibrium point is globally stable. The behavior of x, y and z for different values
of δ1 are shown in Figs. 7, 8. These figures show that δ1 is also a bifurcation parameter
and it changes the instable behavior of the system into stable behavior.
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7 Conclusions

The proposed model consists of three nonlinear differential equations, namely, one for
mature predator, one for immature predator and one for the prey. Only the mature preda-
tor feeds on the prey, immature predator survives via mature predator and some alter-
native food. The interaction between prey and mature predator has been taken as the
Crowley–Martin type, which is more realistic in nature. For ecological balance, it has
been modeled in the system that only prey and mature predators are harvested, while the
immature predators are not harvested. An interesting aspect in mathematical ecology is
permanence/persistence, which ensures the survival of biological entities for all positive
initial conditions. If a system exhibits permanence, then the ecological planning on fixed
eventual population can be carried out. Analyzing the system, we have obtained some
constraints on the intrinsic growth rate of the prey species for the permanence of the
solutions of our system. It has been shown that all solutions of the system are positive and
bounded if all the species are initially present. Thus, our proposed model is biologically
well behaved. The dynamical modeling of the system’s behavior shows that the system
under consideration is locally stable around positive interior equilibrium. Also, it has been
observed that the system around the positive equilibrium is globally asymptotically stable
under certain conditions.

We have studied the optimal harvesting policy using the Pontryagin’s maximum prin-
ciple. For economic and biological views of renewable resource management, we studied
the exploitation of both prey and adult predators. From the point of view of ecological
management, in order to plan harvesting strategies and keep sustainable development
of ecosystem, we have used the harvesting effort as a control parameter and obtained
its optimal level Eδ . If applied effort is less that Eδ , all the species will coexist at an
optimal level, and ecological balance can be maintained. If applied effort is larger thanEδ ,
then it represents over-exploitation and the prey–predator system will be in the danger of
extinction. Our numerical simulation results obtained in Figs. 6–8 show that the parameter
b (magnitude of interference among predators) and δ1 (intra-specific interference among
adult predators) play an important role in governing the dynamics of the system. We
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hope that this study will help to understand the dynamics of prey–predator system with
harvesting. In this paper, we have considered the harvesting effort as a constant control
variable. This effort may be a dynamic variable, and the taxation policy imposed by
a regulatory agency can be thought of as a control variable. This work we leave as a future
research.
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