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Abstract. With the wide applications of the communication networks, the topic of information
networks security is getting more and more attention from governments and individuals. This paper
is devoted to investigating a malware propagation model with carrier compartment and delay to
describe the process of malware propagation in mobile wireless sensor networks. Based on matrix
theory for characteristic values, the local stability criterion of equilibrium points is established.
Applying the linear approximation method of nonlinear systems, we study the existence of Hopf
bifurcation at the equilibrium points. At the same time, we identify some sensitive parameters in
the process of malware propagation. Finally, numerical simulations are performed to illustrate the
theoretical results.
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1 Introduction

In recent years, social networks, as a new platform for information propagation and com-
munication and for establishing wide social relations, have gradually come into focus; see,
e.g., [7,11,12,26,30]. Compared with traditional ways of communication, social networks
have greatly increased the speed of information transmission and diffusion. Moreover,
social networks also play significant roles in social ties and business negotiation, as well
as information sharing.
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Since social networking has very important applications, considerable attention has
been paid to application and control problems of wireless sensor networks (WSNs). Par-
ticularly, communication protocols, hardware design, resource efficiency, battlefield sur-
veillance, and home security have been extensively studied; see, e.g., [5,16,23,27,29]. In
recent years, malicious software has become increasingly of concern to the economy and
society; hence, some authors have studied malware wireless sensor networks (MWSNs).
They try to understand how the MWSN spreads. In fact, for MWSNs, mobility is the
most important features in its wide applications in our everyday life [10]. For example, in
an intelligent factory, nodes may be attached to equipment to collect information, such as
equipment running condition, efficiency, and maintenance [1]. The purpose of monitoring
these conditions is to ensure that the equipment is always running at the highest efficiency.
For more applications to MWSNs, see, e.g., [13, 17, 20]. As Khan et al. [13] point out
the advantages of MWSNs over static wireless sensor networks include enhanced target
tracking, better improved coverage, energy efficiency, and superior channel capacity.
Owing to the characteristics of their wide applications, MWSNs are becoming attacked
targets [20]. Injecting malware often happens on the Internet, which causes harm to some
nodes, especially mobile nodes, such as instability of society, loss of online accounts, loss
of data, and network paralysis.

To eliminate and control the damage of malware, we must study reasons for malware
occurrence, its degree of damage to economy and society, and the dynamic character-
istics of malware propagation. Some interesting results have been obtained for malware
propagation. Newman [19] studied a large class of standard epidemiological models that
can be solved exactly on a wide variety of networks, and proposed a percolation theory
based evaluation of the spread of an epidemic on graphs with given degree distributions.
However, the temporal dynamics of epidemic spread were not considered by Newman.
Liu et al. [15] considered the spreading behavior of malware across mobile. Based on
the theory of complex networks, the spreading threshold that monitors the dynamics
of the model was calculated, the properties of malware epidemics were investigated.
Wang [21, 22] also obtained the threshold for a kind of malware to propagate, where
all the nodes were supposed to be stationary. The above systems are deterministic models
based on a system of ordinary differential equations. We note that there exists stochastic
perturbation in real world, so some stochastic epidemic models have also been proposed;
see, e.g., [2].

On the other hand, delays exist widely in different dynamic system, such as various
engineering, biological, and economic systems (see, e.g., [4, 6, 9, 14, 33]). In generally,
delays are divided into many categories, such as constant delay (discrete delay), time-
varying delay, and distribution delay. For the dynamical behavior analysis of delayed
networks systems, different types of time delay, have been taken into account by using
a variety of techniques that include the Lyapunov functional method, M-matrix theory,
topological degree theory, and techniques of inequality analysis; see, e.g., [18,24,25,28].
In this paper, the delay is the bifurcation parameter. Because a social network usually
contains tens of thousands of user nodes, it is inconvenient for us to give a clustering
analysis in the current work. We use the concept of network motifs proposed by Benson
[3] to search for clusters of an online social network.
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Motivated by the above work, the present work will consider a new model with
carrier compartment and delay. We use the delay to accomplish the control of the Hopf
bifurcation in MWSNs. Our main contributions are summarized as follows.

(i) Based on the clustering analysis of social networks and the SIR model in the
epidemic theory, we develop a new malware propagation model with a carrier
compartment and delay. To the best of our knowledge, few results have been
obtained for the present model. Our new model is more accurate about the actual
situation; hence, it will be more important for the applications.

(ii) We study the sensitivity of some parameters, guaranteeing the controllability of
the model. Thus, we can control stability and instability by sensitive parameters,
which has important implications for practical applications.

(iii) It is nontrivial to establish a unified framework to handle the mathematical tech-
niques (including matrix theory, Hopf analysis, etc.) for overcoming the above
difficulties.

The remaining structure of this paper is arranged as follows. In Section 2, we con-
struct a malware propagation model. In Section 3, we study the local stability and Hopf
bifurcation of the equilibrium points for the present model. In Section 4, some numerical
simulations are presented to illustrate our theoretical results. Finally, conclusions are
drawn in Section 5.

2 Modeling a malware propagation model

For the classic malware propagation model, all nodes are divided into three classes de-
pending on their states: susceptible (healthy), infected, and removed (immunized). Re-
cently, Guillén and del Rey [8] studied a new malware propagation model using a car-
rier compartment. Some devices are not targeted by the malware (for example, IOS
devices for Android malware), and they can be denoted as carrier devices. However,
the influence of delays cannot be considered in the model of [8]. In malware propaga-
tion model used in [8], the densities of infected individuals I(t) are not influenced by
discrete delay. In real malware propagation model, I(t) may be influenced by different
classes of delays at the same time, including discrete delays. Hence, we add the delay
term I(t − τ) in our model. Based on the above description, our model can be repre-
sented as a flow chart (see Fig. 1) or as a set of coupled differential equations (ODES) as
follows:

dS(t)

dt
= A− βS(t)

[
I(t− τ) + C(t)

]
− ηS(t) + δR(t),

dC(t)

dt
= βS(t)

[
I(t− τ) + C(t)

]
− γC(t),

dI(t)

dt
= βS(t)

[
I(t− τ) + C(t)

]
− εI(t)− ηI(t),

dR(t)

dt
= γC(t) + εI(t) + ηS(t)− δR(t)

(1)
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Figure 1. Flow diagram for system (1).

Table 1. Symbols and their meanings of system (1).

Parameters Notes
A The number of susceptible nodes
β The constant contact rate for S(t), I(t− τ), and C(t)
η The vaccination rate of nodes
δ The rate constant for nodes becoming susceptible again
γ The number of new recovered devices from carrier
ε The rate constant for nodes leaving I(t) for R(t)

with initial conditions

S(t) > 0, C(t) > 0, R(t) > 0, t ∈ [0,∞),

I(t) > 0, t ∈ [−τ,∞), τ > 0,
(2)

where C(t) is a carrier. For the dynamic relations among S(t), C(t), I(t), and R(t), see
Fig. 1.

Remark 1. In [8], considering the special class of carrier devices, the authors studied the
following system with carrier:

dS(t)

dt
= εR(t)− aS(t)

(
I(t) + C(t)

)
− νS(t),

dC(t)

dt
= a(1− δ)S(t)

(
I(t) + C(t)

)
− bCC(t),

dI(t)

dt
= aδS(t)

(
I(t) + C(t)

)
− bII(t),

dR(t)

dt
= bCC(t) + bII(t) + νS(t)− εR(t).

In generally, infectious I(t) is affected by the delay. However, the above system cannot
include the influence of delay. In order to reflect the actual situation, in system (1), we
add the delay to infectious I(t). Hence, our model is more accurate than the existing ones.
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As S(t) + C(t) + I(t) + R(t) = N , where N is a positive constant, then system (1)
can be written as follows:

dS(t)

dt
= A− βS(t)

[
I(t− τ) + C(t)

]
− ηS(t) + δ

[
N − S(t)− C(t)− I(t)

]
,

dC(t)

dt
= βS(t)

[
I(t− τ) + C(t)

]
− γC(t),

dI(t)

dt
= βS(t)

[
I(t− τ) + C(t)

]
− εI(t)− ηI(t).

(3)

Similar to the analysis of [8], we can verify that the positive cone D is a positive invariant
set with respect to (3), where

D =
{
(S,C, I) ∈ R3: S,C, I > 0, S + C + I 6 N

}
.

In view of SIR epidemic model and characteristic of malware propagation model, we
give the following three facts:

(i) When nodes lie in state I , users can immunize their nodes with countermeasures;
(ii) Some part of all recovered nodes go through a temporary immunity with proba-

bility δ, others with probability γ;
(iii) For convenience of calculating equilibrium points, the number N of all is a con-

stant, which is independent on time t.

3 Local stability and Hopf bifurcation

In this section, we will discuss the local stability and Hopf bifurcation of system (3) by
analyzing the corresponding characteristic equations. Furthermore, we can obtain that
the time delay τ is the bifurcation parameter, which is significant for control theory.
Obviously, the virus-free equilibrium point of (3) is

E0 = (S0, C0, I0) =

(
A+ δN

η + δ
, 0, 0

)
.

Furthermore, if the following condition hold:

(H1) β(A+ δN)(γ + ε+ η) > ε+ η,

then the endemic equilibrium point of (3) is positive and represents as follows:

E∗ = (S∗, C∗, I∗),

where

S∗ =
ε+ η

β(ε+ η + γ)
, I∗ =

γ(A+ δN)(γ + ε+ η)− γβ−1(ε+ η)

(γ + ε+ η)(γε+ γη + δε+ δη + δγ)
,

C∗ =
(A+ δN)(ε+ η)(γ + ε+ η)− β−1(ε+ η)2

(γ + ε+ η)(γε+ γη + δε+ δη + δγ)
.
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Let

b = ε+ η + γ − βS0 − S0, k =
β(A+ δN)

η + δ
.

For convenience of proof, we list the following assumptions:

(H2) b > 2
√
(ε+ η − βS0)(γ − S0)− β2S2

0 , (ε+ η − βS0)(γ − S0) > β2S2
0 ;

(H3) (γ − k)(ε+ η) > (1− β2)k2 − k > 0;
(H4) (ε+ η + γ)2 − 2k(ε+ η + γ) > 4(γ − k)(ε+ η);
(H5) (γ − k)2(ε+ η)2 < [(1− β2)k2 − k]2;
(H6) βS∗ < min{η + δ, η + ε};
(H7) a2 > 2a1, a

2
1 − 2a0a2 − b21 > 0;

(H8) a20 > b2 + b0.

3.1 Virus-free equilibrium and its stability

Theorem 1. Assume that assumption (H2) hold, then the virus-free equilibrium point E0

of system (3) with τ = 0 is locally asymptotically stable.

Proof. The characteristic equation of system (3) at E0

det

−η − δ − λ −k − δ −δ
0 k − γ − λ ke−λτ

0 k −ε− η + ke−λτ − λ

 = 0,

which is equivalent to

(λ+ η + δ)(λ− k + γ)
(
λ+ ε+ η − ke−λτ

)
− β2k2e−λτ (λ+ η + δ) = 0. (4)

Reducing (4), we have

(λ+ η + δ)
[
λ2 + u1λ+ u0 + (v1λ+ v0)e

−λτ ] = 0, (5)
where

u1 = ε+ η + γ − k, u0 = (γ − k)(ε+ η),

v1 = −k, v0 = (1− β2)
β2(A+ δN)2

(η + δ)2
− γk.

As τ = 0, (4) is changed into

(λ+ η + δ)(λ− k + γ)(λ+ ε+ η − k)− β2k2(λ+ η + δ) = 0. (6)

In view of assumption (H2), (6) has three negative roots:

λ1 = −η − δ < 0,

λ2,3 =
1

2

[
−(ε+ η + γ − βS0 − S0)

±
√
(ε+ η + γ − βS0 − S0)2 + 4β2S2

0 − 4(ε+ η − βS0)(γ − S0)
]
< 0.

Thus, the equilibrium E0 is locally asymptotically stable as τ = 0.
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Next, we investigate the effect of the delay τ on the stability of the equilibrium E0.

Theorem 2. Assume that assumptions (H3) and (H4) hold, then the virus-free equilibrium
point E0 of system (3) with τ > 0 is locally asymptotically stable.

Proof. By (5) we have

λ2 + u1λ+ u0 + (v1λ+ v0)e
−λτ = 0. (7)

Assume that iω (ω > 0) is a root of (7). Then ω satisfies the following equation:

−ω2 + u1ωi + u0 + (v1ωi + v0)(cosωτ − i sinωτ) = 0,

which implies that
v1ω cosωτ − v0 sinωτ = u1ω,

v0 cosωτ + v1ω sinωτ = ω2 − u0.
(8)

Taking square on both sides of (8) and summing them up, we have

ω4 +
(
u21 − v21 − 2u0

)
ω2 + u20 − v20 = 0. (9)

Set z = ω2, (9) becomes

z2 +
(
u21 − v21 − 2u0

)
z + u20 − v20 = 0. (10)

Since u20 − v20 = [(γ − k)(ε+ η)]2 − [(1− β2)k2 − γk]2, in view of (H3), we have

u20 − v20 > 0. (11)

On the other hand, by (H4) we have(
u21 − v21 − 2u0

)2 − 4
(
u20 − v20

)
=
[
(ε+ η + γ)2 − 2k(ε+ η + γ)− 2(γ − k)(ε+ η)

]2
− 4
[
(γ − k)(ε+ η)

]2
+ 4
[(
1− β2

)
k2 − γk

]2
> 0. (12)

From (11) and (12), (10) has no positive solutions. Moreover, there are no positive solu-
tions for (5) and (7). Thus, the equilibrium E0 is locally asymptotically stable as
τ > 0.

Theorem 3. Suppose that assumptions (H2)–(H5) hold. Then for system (3), the follow-
ing statements are true:

(i) The equilibrium point E0 of system (3) is locally asymptotically stable as τ ∈
[0, τ0).

(ii) The Hopf bifurcation is τ j0 . That is, system (3) has a branch of periodic solutions
bifurcating from the equilibrium E0 near τ = τ j0 , where τ j0 is defined by (13).

https://www.mii.vu.lt/NA
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Proof. From (H4) and (H5), (10) has a unique positive root, denoted by Z0. Then (9) has
a unique positive root ω0 =

√
Z0. By (8) we have

cosω0τ =
(ω2

0 − u0)v0 + u1v1ω
2
0

v20 + v21ω
2
0

.

Then denote

τ j0 =
1

ω0

[
arccos

(ω2
0 − u0)v0 + u1v1ω

2
0

v20 + v21ω
2
0

+ 2jπ

]
, j = 0, 1, 2, . . . . (13)

Thus, ±iω0 is a pair of purely imaginary roots of (7) at τ = τ j0 . Furthermore, all the roots
of (7) have negative real parts for τ ∈ [0, τ j0 ), and all the roots of (7), except ±iω0, have
negative real parts for τ = τ j0 . Using the Hopf bifurcation theorem, we can obtain the
following transversality condition:

d(Re(λ(τ)))

dτ

∣∣∣∣τ=τj
0

λ=iω0

> 0.

In fact, in view of (H4) and (H5), we have

d(Re(λ(τ)))

dτ

∣∣∣∣τ=τj
0

λ=iω0

=
1

ω0(v21ω
2
0 + v20)

[
2v1ω

2
0 sinω0τ

j
0 − u1v1 cosω0τ

j
0

− v21ω0 + 2v0ω0 cosω0τ
j
0 + u1v0 sinω0τ

j
0

]
=

1

(v21ω
2
0 + v20)

2

[
2v21ω

4
0 +

(
2v20 + u21v

2
1 − v41 − 2u0v

2
1

)
ω2
0

+ u12v
2
0 − v21v20 − 2u0v

2
0

]
=

1

(v21ω
2
0 + v20)

2

[
1

2
v21
(
v21 + 2u0 − u21

)2
+

1

2
v1
(
v21 + 2u0 − u21

)√(
v21 + 2u0 − u21

)2 − 4
(
u20 − v20

)
+ v20

√(
v21 + 2u0 − u21

)2 − 4
(
u20 − v20

)
+ 2v21

(
v20 − u20

)]
> 0.

3.2 Endemic-equilibrium and its stability

The characteristic equation of system (3) at the positive equilibrium E∗ is of the form

det

−βI∗ − η − δ − λ −βS∗ − δ −βS∗e−λτ − δ
βI∗ βS∗ − γ − λ βS∗e−λτ

βI∗ βS∗ −ε− η + βS∗e−λτ − λ

 ,

Nonlinear Anal. Model. Control, 23(4):568–582
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which is equivalent to

λ3 + a2λ
2 + a1λ+ a0 +

(
b2λ

2 + b1λ+ b0
)
e−λτ = 0, (14)

where

a2 = ε+ γ + βS∗ + 2η + δ + βI∗,

a1 = (η + δ)(γ + βS∗) + 2δβI∗ + βI∗(γ + ε+ η),

a0 = (γ + βS∗ + η + δ)(ε+ η) + (η + δ)(γ + βS∗)(ε+ η) + δβγI∗

+ βI∗(ε+ η)(δ + γ),

b2 = −βS∗, b1 = −βS∗(η + δ + γ), b0 = −βS∗(η + δ)γ.

When τ = 0, (14) becomes

λ3 + (a2 + b2)λ
2 + (a1 + b1)λ+ a0 + a0 + b0 = 0.

It is easy to see that

a2 + b2 = ε+ γ + 2η + δ + βI∗ > 0,

a1 + b1 = γ(η + δ − βS∗) + 2δβI∗ + βI∗(γ + ε+ η) > 0.

By assumption (H6) we have

a0 + b0 = (γ + βS∗ + η + δ)(ε+ η) + (η + δ)γ(ε+ η − βS∗)
+ (η + δ)(ε+ η)βS∗ + δβγI∗ + βI∗(ε+ η)(δ + γ)

> 0.

Hence, the endemic equilibrium E∗ of system (3) is locally asymptotically stable when
τ = 0. Based on the above analysis, we have the following theorem.

Theorem 4. Assume that assumptions (H1) and (H6) hold, then the endemic equilibrium
point E∗ of system (3) with τ = 0 is locally asymptotically stable.

If iω (ω > 0) is a solution of (14), separating real and imaginary parts, (14) becomes

−iω3 − a2ω2 + a1iω + a0

+
[
−b2ω2 + b1iω + δ + b0

]
(cosωτ − i sinωτ) = 0. (15)

By (15) we have

b1ω cosωτ + (b2 − b0) sinωτ = ω3 − a1ω,
(−b2 + b0) cosωτ + b1ω sinωτ = a2ω

2 − a0.
(16)

Taking square on both sides of (16) and summing them up, we obtain

ω6 + (a2 − 2a1)ω
4 +

(
a21 − 2a0a2 − b21

)
ω2 + a20 − (b2 + b0) = 0. (17)

https://www.mii.vu.lt/NA
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Set z = ω2, (17) is transformed into the following equation:

z3 +A1z
2 +A2z +A3 = 0, (18)

where
A1 = a2 − 2a1, A2 = a21 − 2a2a0 − b21, A3 = a20 − b2 − b0.

From the results of [31] we give the following theorem for the distribution of roots
of (18).

Theorem 5.
(i) If a20 < b2 + b0, then (18) has at least one positive root.

(ii) If a20 > b2+ b0, then (18) has positive roots if and only if z̃ > 0, r(z̃) 6 0, where

r(z) = z3 +A1z
2 +A2z +A3, z̃ =

−A1 +
√
A2

1 − 3A2

3
. (19)

If (18) has positive real roots Z1, Z2, and Z3, then we have

ω1 =
√
Z1, ω2 =

√
Z2, ω3 =

√
Z3.

By (16) we have

cosωkτk =
b1ω

2
k(ω

2
k − a1)

b21ω
2
k + (b2 − b0)2

− (b2 − b0)(a2ω2
k − a0)

b21ω
2
k + (b2 − b0)2

and

τ jk =
1

ωk
arccos

(
b1ω

2
k(ω

2
k − a1)

b21ω
2
k + (b2 −−b0)2

− (b2 − b0)(a2ω2
k − a0)

b21ω
2
k + (b2 − b0)2

+ 2jπ

)
.

where k = 1, 2, 3, j = 0, 1, . . . .
Thus, ±iω is a pair of purely imaginary roots of (18). Denote

τ0 = τ0k0 = min
k=1,2,3

{
τ0k
}
, ω0 = ωk0 . (20)

Now, we give an important result for the roots of (17).

Theorem 6. If assumptions (H1), (H7), and (H8) hold, then (17) has no positive real
roots.

Proof. By (H7) we have

a2 − 2a1 > 0

and
a21 − 2a0a2 − b21 > 0.

By (H8) it is easy to show that

a20 − (b2 + b0) > 0.

According to Descartes’s rule of sign, (17) has no positive real roots.

Nonlinear Anal. Model. Control, 23(4):568–582
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From the results of [10, 32] we have the following theorem.

Theorem 7. Let λ(τ) = α(τ) ± iω(τ) be the root of (14) near τ = τ0 satisfying
α(τ0) = 0 and ω(τ0) = ω0, where τ0 is defined by (20). Assume that r′(ω2

0) > 0, where
r(z) is defined by (19). Then ±iω0 is a pair of simple purely imaginary roots of (14) and
satisfies

d(Re(λ(τ)))

dτ

∣∣∣∣τ=τ0
λ=±iω0

> 0.

Using Theorems 4–7, we have the following theorem.

Theorem 8. Suppose that (H1), (H6)–(H8) hold.

(i) If the conditions of Theorem 4 hold, then the equilibrium point E∗ of system (3)
is locally asymptotically stable as τ ∈ [0, τ0).

(ii) If the condition of (i) is satisfied and r′(ω2
0) > 0, then system (3) undergoes

a Hopf bifurcation at E∗ when τ = τ0.

Here τ0 and ω0 are defined by (20).

4 Numerical analysis and discussion

In this section, we simulate and discuss the dynamic characteristics of the proposed
malware model with carrier compartment and delay by using simulations in Matlab.

4.1 Sensitivity analysis of the rate constant ε on the number of carrier nodes

To obtain the sensitivity of the rate constant ε in (3), let N = 1000, A = 1.2, β = 0.5,
η = 0.2, δ = 0.005, γ = 0.3 and assign 0.2, 0.3, 0.4 to ε, respectively. Then all the
conditions of Theorem 8 hold. For different ε, we can easily obtain the corresponding
positive equilibrium points and the region of stability of system (3), see Table 2.

In view of Table 2, we find that the critical value τ0 increases when the parameter ε
increases. Hence the rate constant ε is sensitive for the stability of (3). We can extended
range of stability for (3) by using the increase of parameter ε. Without loss of generality,
we assign τ = 4 < τ0 with the other parameters unchanged. The simulation results are
shown in Fig. 2. From Fig. 2 we notice that the number of carrier nodes converges to
the positive equilibrium point E∗. When τ > τ0, according to Theorem 8, the solutions
emerge from the positive equilibrium point E∗, as shown in Fig. 3. From Fig. 3 we notice
that the malware propagation goes into periodic oscillation.

Table 2. The dynamical properties of system (3)
for different constant ε.

ε positive equilibrium points τ0

0.2 (0.3429, 13.2562, 9.9422)> 5.9743
0.3 (0.3750, 16.0714, 9.6428)> 6.0081
0.4 (0.4000, 15.8266, 7.9133)> 8.2649
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Figure 2. When the rate constant ε is variable,
the positive equilibrium point E∗ is stable with
τ = 4 < τ0.
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Figure 3. Hopf bifurcation occurs from the
equilibrium point E∗ when τ > τ0 with the rate
constant ε varying.
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Figure 4. The positive equilibrium point E∗ is
stable when τ < τ0.
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Figure 5. Hopf bifurcation occurs from the
positive equilibrium point when τ > τ0.

4.2 Influence of delays on the number of carrier nodes

To study the sensitivity of the delay τ in (3), let N = 800, A = 1.16, β = 0.5,
η = 0.2, δ = 0.005, γ = 0.3, ε = 0.2. The positive equilibrium point of (3) is
E∗ = (0.3428, 13.0509, 9.7882)>. All the conditions of Theorem 8 hold. According
to Theorem 8, the critical value is τ0 = 5.8762. As the other parameters remained
unchange, we assign 0.75, 3.5, 5.5 to τ . The simulation results can be seen in Fig. 4. From
Fig. 4 we notice that the number of carrier nodes converges to the positive equilibrium
point E∗ of (3). Next, we assign 6.2, 6.3, 7.5 to τ with τ > τ0, and the other parameters
remained unchange. According to Theorem 8, the solutions of (11) emerge from the
positive equilibrium point E∗, as shown in Fig. 5.

Remark 2. From numerical results we find that the value of delay τ is key to the stability
of the above model. In the present paper, we obtain only local stability of system (3). For
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global stability of (3), because of the existence of the delay in (3), so far we cannot obtain
global stability results for (3). We hope that someone will solve the problem in the future.
Furthermore, some parameters in (3) has strongly influence the stability interval of the
system, which is important for control theory.

5 Conclusions

In this article, we study a new malware spreading model with a carrier compartment
and delays. It is noted that the new class of carrier devices is considered (apart from
susceptible, infectious and recovered), which is different from the corresponding ones of
past work.

By theoretical analysis and numerical simulations we show how time delay affects
malware propagation. Also, using delay as a bifurcating parameter, we obtain some con-
ditions for occurrence of Hopf bifurcation. Furthermore, numerical simulations verify
the correctness of theoretical analyses. More importantly, we investigate the effect of
a variable parameter ε on the scale of a malware spreading model. Simulation results
show that there is a great impact on stability interval. However, many important questions
about malware spreading remain to be studied, such as optimal control, clustering for
complex networks, global stability, and the direction of bifurcation.

Acknowledgment. We are grateful to the anonymous referees, whose careful reading
and valuable comments and suggestions greatly enhanced the original manuscript.
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