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Abstract. In this paper, we consider the fractional Kirchhoff equations with electromagnetic
fields and critical nonlinearity. By means of the concentration–compactness principle in fractional
Sobolev space and the Kajikiya’s new version of the symmetric mountain pass lemma, we obtain
the existence of infinitely many solutions, which tend to zero for suitable positive parameters.
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1 Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions for
the p-fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity

M
(
[u]ps,A

)
(−∆)sp,Au = α|u|p

∗
s−2u+ βk(x)|u|q−2u, x ∈ RN, (1)

where ε > 0 is a positive parameter, N > ps, 0 < s < 1,

[u]ps,A :=

∫∫
R2N

|u(x)− ei(x−y)A((x+y)/p)u(y)|p

|x− y|N+ps
dx dy,
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where p∗s = pN/(N−ps) is the critical Sobolev exponent,A ∈ C(RN,RN) is a magnetic
potential, k(x) ∈ Lr(RN) with r = p∗s/(p

∗
s − q), α and β are real parameters.

Nonlocal operators can be seen as the infinitesimal generators of Lévy stable diffusion
processes [2]. Moreover, they allow us to develop a generalization of quantum mechanics
and also to describe the motion of a chain or an array of particles that are connected
by elastic springs as well as unusual diffusion processes in turbulent fluid motions and
material transports in fractured media (for more details, see, for example, [2, 11, 12] and
the references therein). Indeed, the literature on nonlocal fractional operators and on their
applications is quite large, see, for example, the recent monograph [10], the extensive
paper [8], and the references cited there.

The important reason for studying problem (1) lies in the new feature of the Kirchhoff
problems. More precisely, in 1883, Kirchhoff proposed the following model

ρ
∂2u

∂t2
−

(
p0

λ
+

E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0 (2)

as a generalization of the well-known d’Alembert’s wave equation for free vibrations
of elastic strings. Here L is the length of the string, h is the area of the cross section,
E is the Young modulus of the material, ρ is the mass density, and p0 is the initial
tension. Essentially, Kirchhoff’s model takes into account the changes in length of the
string produced by transverse vibrations. Recently, Fiscella and Valdinoci in [17] first
deduced a stationary fractional Kirchhoff model, which considered the nonlocal aspect of
the tension arising from nonlocal measurements of the fractional length of the string, see
the Appendix of [17] for more details. Moreover, the authors in [17] studied the following
Kirchhoff type problem involving critical exponent:

M
(
[u]2s
)
(−∆)su = λf(x, u) + |u|2

∗
s−2u in Ω,

u = 0 in RN \Ω,
(3)

whereΩ is an open bounded domains in RN. By using the mountain pass theorem and the
concentration–compactness principle together with a truncation technique, they obtained
the existence of nonnegative solutions for problem (3). For more recent results, we refer
the readers to [1, 4, 6, 24, 32] and references therein.

If the magnetic field A ≡ 0, the operator (−∆)sp,A can be reduced to the p-fractional
Laplacian operator (−∆)sp, which is defined as

(−∆)spu(x) := lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy

along any u ∈ C∞0 (RN), where Bε(x) denotes the ball of RN centered at x ∈ RN and
radius ε > 0. There are also some interesting results obtained by using some different
approaches under various hypotheses on the potential and the nonlinearity. In [18], the
authors obtained the existence and multiplicity results by using Morse theory. In [38], the

https://www.mii.vu.lt/NA



Infinitely many solutions for the p-fractional Kirchhoff equations 601

authors investigated the existence of solutions for Kirchhoff-type problem involving the
fractional p-Laplacian via variational methods, where the nonlinearity is subcritical, and
the Kirchhoff function is nondegenerate. In [31], the authors studied a nonlocal equation
involving the fractional p-Laplacian

(−∆)spu+ V (x)|u|p−2u = f(x, u) + λh in Rn.

When the nonlinearity f is assumed to have exponential growth, by using a fixed point
method, the authors established an existence result on weak solutions. By using the
mountain pass theorem and Ekeland’s variational principle, the authors in [40] studied
the multiplicity of solutions to a nonhomogeneous Kirchhoff-type problem driven by
the fractional p-Laplacian, where the nonlinearity is convex-concave, and the Kirchhoff
function is degenerate. Using the same methods as in [40], Pucci et al. in [28] obtained the
existence of multiple solutions for the nonhomogeneous fractional p-Laplacian equations
of Schrödinger–Kirchhoff type in the whole space. Indeed, there is a wide literature
concerning the study of multiplicity results for critical Kirchhoff problems under a non-
degenerate setting, see, for example, [3, 7, 8, 14, 15, 21–23, 26, 27, 30, 33, 35, 43] for the
recent advances in this direction.

WhenA 6= 0 and p = 2, Xiang [37] first studied the following Schrödinger–Kirchhoff-
type equation involving the fractional p-Laplacian and the magnetic operator

M
(
[u]2s,A

)
(−∆)sAu+ V (x)u = f

(
x, |u|

)
u in RN, (4)

where the right-hand term in (4) satisfies the subcritical growth. By using variational
methods, they obtained several existence results for problem (4). Following similar meth-
ods, for M(t) = a + bt with a ∈ R+

0 and p = 2, Wang and Xiang in [34] proved
the existence of two solutions and infinitely many solutions for fractional Schrödinger–
Choquard–Kirchhoff-type equations with external magnetic operator and critical expo-
nent in the sense of the Hardy–Littlewood–Sobolev inequality. In [41], the authors first
considered the following fractional Schrödinger equations:

ε2s(−∆)sAεu+ V (x)u = f
(
x, |u|

)
u+K(x)|u|2

∗
α−2u in RN , (5)

the existence of ground state solution (mountain pass solution) uε, which tends to the
trivial solution as ε→ 0, is obtained by using variational methods. Moreover, they proved
the existence of infinitely many solutions and sign-changing solutions for problem (5)
under some additional assumptions. But for the case p 6= 2, to our best knowledge, there
is no results about p-fractional Schrödinger–Kirchhoff equations with electromagnetic
fields.

In this paper, we consider infinitely many solutions for the p-fractional Schrödinger–
Kirchhoff equations with electromagnetic fields and critical nonlinearity. Here we use
the fractional version of Lions’ second concentration–compactness principle and concen-
tration–compactness principle at infinity to prove that the Palais–Smale condition (PS)c
holds. Some difficulties arise when dealing with this problem because of the appearance
of the magnetic field and the critical frequency and of the nonlocal nature of the frac-
tional Laplacian. Therefore, we need to develop new techniques to overcome difficulties
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induced by these new features. As far as we know, this is the first time that the fractional
version of the concentration–compactness principle and variational methods have been
combined to get the multiplicity of solutions for the p-fractional Schrödinger–Kirchhoff
equations with electromagnetic fields and critical nonlinearity.

The paper is organized as follows. In Section 2, we will introduce the working space
and give some necessary definitions and properties, which will be used in the sequel. In
Section 3, we will use the fractional version of Lions’ second concentration–compactness
principle and concentration–compactness principle at infinity to prove the (PS)c condi-
tion. In Section 4, using symmetric mountain pass lemma together with some delicate
estimates, we will prove the main result.

2 Preliminaries

For the convenience of the reader, we recall in this part some definitions and basic prop-
erties of fractional Sobolev spaces. For a deeper treatment of the (magnetic) fractional
Sobolev spaces and their applications to fractional Laplacian problems of elliptic type,
we refer to [25, 37, 41] and the references therein.

For any s ∈ (0, 1), the fractional Sobolev space W s,p
A (RN,C) is defined by

W s,p
A

(
RN,C

)
=
{
u ∈ Lp

(
RN,C

)
: [u]s,A <∞

}
,

where [u]s,A denotes the so-called Gagliardo seminorm, that is,

[u]s,A =

(∫∫
R2N

|u(x)− ei(x−y)A((x+y)/p)u(y)|p

|x− y|N+ps
dxdy

)1/p

,

and W s,p
A (RN,C) is endowed with the norm

‖u‖W s,p
A (RN,C) =

(
[u]ps,A + ‖u‖pLp

)1/p
.

IfA = 0, thenW s,p
A (RN,C) reduces to the well-known spaceW s,p(RN,C). Furthermore,

the space Ds,p
A (RN) is defined as

Ds,p
A

(
RN,C

)
=
{
u ∈ Lp

∗
s
(
RN,C

)
: [u]s,A <∞

}
and endowed with the norm [u]s,A. We have the following diamagnetic inequality:

Lemma 1. For every u ∈ Ds,p
A (RN,C), we get |u| ∈ Ds,p(RN). More precisely,[

|u|
]
s
6 [u]s,A.

Proof. The assertion follows directly from the pointwise diamagnetic inequality∣∣∣∣u(x)
∣∣− ∣∣u(y)

∣∣∣∣ 6 ∣∣u(x)− ei(x−y)A((x+y)/p)u(y)
∣∣,

for a.e. x, y ∈ RN, see [13, Lemma 3.1, Remark 3.2].
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We recall the following embedding theorem, the proof of which is similar to [13,
Lemma 3.5] and [25].

Proposition 1. Let A ∈ C(RN,RN). Then the embedding

Ds,p
A

(
RN,C

)
↪→ Lp

∗
s
(
RN,C

)
, W s,p

A

(
RN,C

)
↪→ Lθ

(
RN,C

)
is continuous for any θ ∈ [p, p∗s]. Moreover, the embedding

W s,p
A

(
RN,C

)
↪→↪→ Lθloc

(
RN,C

)
is compact for any θ ∈ [p, p∗s).

For our problem, we first assume that the Kirchhoff function M : R+
0 → R+ and the

weight function k(x) satisfy the following assumptions:

(A1) M ∈ C(R+
0 ,R+) satisfies inft∈R+

0
M(t) > m0 > 0, where m0 is a constant.

(A2) There exists θ ∈ [1, N/(N − ps)) such that θM̃(t) := θ
∫ t

0
M(τ) dτ > M(t)t

for any t ∈ R+
0 .

(A3) 0 6 k(x) ∈ Lr(RN), where r = p∗s/(p
∗
s − q).

A typical example forM isM(t) = m0 +b1t
θ−1 with θ > 1,m0 ∈ R+, and b1 ∈ R+

0 .
When M is of this type, the Kirchhoff problem is said to be nondegenerate if m0 > 0,
while it is called degenerate if m0 = 0.

The energy functional J : Ds,p
A (RN,C)→ R associated with problem (1)

J(u) :=
1

p
M̃
(
[u]ps,A

)
− α

p∗s

∫
RN

|u|p
∗
s dx− β

q

∫
RN

k(x)|u|q dx

is well defined. Under the assumptions, it is easy to check that, as shown in [29, 36],
J ∈ C1(Ds,p

A (RN,C),R) and its critical points are weak solutions of problem (1).
Now we first give the definition of weak solutions for problem (1).

Definition 1. We say that u ∈ Ds,p
A (RN,C) is a weak solution of problem (1) if

M
(
[u]ps,Aε

)
ReL(u, v) = Re

∫
RN

(
α|u|2

∗
s−2u+ βk(x)|u|q−2u

)
v̄ dx,

where

L(u, v) =

∫∫
R2N

1

|x− y|N+ps

(∣∣u(x)− ei(x−y)A((x+y)/p)u(y)
∣∣p−2

×
(
u(x)− ei(x−y)A((x+y)/p)u(y)

)
×
(
v(x)− ei(x−y)A((x+y)/p)v(y)

) )
dxdy

and v ∈ Ds,p
A (RN,C).
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In the sequel, we will omit the term weak when referring to solutions that satisfy the
conditions of Definition 1. Our main result of this paper is stated as follows.

Theorem 1. Let (A1)–(A3) and 1 < q < p hold. Then:

(i) For all α > 0, there exists β0 > 0 such that if 0 < β < β0, then (1) has a se-
quence of solutions {un}n with J(un) < 0, J(un)→ 0 and limn→∞ un → 0.

(ii) For all β > 0, there exists α0 > 0 such that if 0 < α < α0, then (1) has a se-
quence of solutions {un}n with J(un) < 0, J(un)→ 0 and limn→∞ un → 0.

Remark 1. Unlike solutions with concentration phenomena constructed in some earlier
works without the magnetic field. We obtain the existence of infinitely many solutions for
the p-fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity,
and our nontrivial solutions are closed to the trivial solution.

Remark 2. It should be mentioned that our result also extends the result in [5,17,19,35]
in which the authors considered the case A = 0 and p = 2. To our best knowledge, it
seems that there is no result on the existence of solutions for the p-fractional Kirchhoff
equations with electromagnetic fields and critical nonlinearity.

Remark 3. The proof of Theorem 1 is mainly based on the application of the symmetric
mountain pass lemma introduced by Kajikiya in [19]. For this, we need a truncation
argument, which allow us to control from below functional J . Furthermore, as usual in
elliptic problems involving critical nonlinearities, the main difficulties is to prove the (PS)c
condition, because of the appearance of the magnetic field and the critical nonlinearity,
and of the nonlocal nature of the fractional Laplacian. To overcome this difficulty, we fix
parameters α and β under a suitable threshold strongly depending on assumptions (A1)
and (A2).

3 The Palais–Smale condition

In this section, we recall the concentration–compactness principle in the setting of the
fractional p-Laplacian, see [39, Def. 2.1, Thms. 2.1 and 2.2] and [16].

Definition 2. Let M̃(R) denote the finite nonnegative Borel measure space on RN. For
any µ ∈ M̃(RN), µ(RN) = ‖µ‖ holds. We say that µ ⇀ µ ∗-weakly in M̃(RN) if
(µn, η)→ (µ, η) holds for all η ∈ C0(RN) as n→∞.

Proposition 2. Let {un}n ⊂ Ds,p(RN) with upper bound C > 0 for all n > 1 and
suppose that

un ⇀ u weakly in Ds,p
(
RN
)
,∫

RN

|un(x)− un(y)|p

|x− y|N+ps
dy ⇀ µ ∗-weakly in M̃

(
RN
)
,

∣∣un(x)
∣∣p∗s ⇀ ν ∗-weakly in M̃

(
RN
)
.
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Then

µ =

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dy +

∑
j∈I

µjδxj + µ̃, µ
(
RN
)
6 Cp,

ν = |u|p
∗
s +

∑
j∈I

νjδxj , ν
(
RN
)
6 Sp

∗
sCp,

where I is at most countable, sequences {µj}j , {νj}j ⊂ R+
0 , {xj}j ⊂ RN, δxj is the

Dirac mass centered at xj , µ̃ is a nonatomic measure. Furthermore,

ν
(
RN
)
6 S−p

∗
s/pµ

(
RN
)p∗s/p, νj 6 S−p

∗
s/pµ

p∗s/p
j ∀j ∈ I,

here S > 0 is the best constant of Ds,p(RN) ↪→ Lp
∗
s (RN).

Proposition 3. Let {un}n ⊂ Ds,p(RN ) be a bounded sequence such that∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy ⇀ µ ∗-weakly in M̃

(
RN
)
,

∣∣un(x)
∣∣p∗s ⇀ ν ∗-weakly in M̃

(
RN
)
,

and define

µ∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN: |x|>R}

∫
RN

|un(x)− un(y)|p

|x− y|N+ps
dy dx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
{x∈RN: |x|>R}

|un|p
∗
s dx.

Then the quantities µ∞ and ν∞ are well defined and satisfy

lim sup
n→∞

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dy dx =

∫
RN

dµ+ µ∞,

lim sup
n→∞

∫
RN

|un|p
∗
s dx =

∫
RN

dν + ν∞.

Moreover,
Sν

p/p∗s∞ 6 µ∞.

Next, we perform a careful analysis of the behavior of the minimizing sequences
with the aid of the concentration–compactness principle in fractional Sobolev space stated
above, which allows us to recover compactness below some critical threshold.
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Lemma 2. Let (A1)–(A3), 1 < q 6 p and c < 0 hold. Then:

(i) There exists C > 0 such that, for all n ∈ N, ‖un‖ 6 C;
(ii) For each α > 0, there exists β∗ > 0 such that if 0 < β < β∗, then J satisfies

(PS)c;
(iii) For each β > 0, there exists α∗ > 0 such that if 0 < α < α∗, then J satisfies

(PS)c.

Proof. We first prove that {un}n is bounded in Ds,p
A (RN,C). Let {un}n be a (PS)c-

sequence in Ds,p
A (RN,C). Then

c+ on
(
‖un‖

)
= J(un) =

1

p
M̃
(
[un]ps,A

)
− α

p∗s

∫
RN

|un|p
∗
s dx− β

q

∫
RN

k(x)|un|q dx,

〈
J ′ε(un), v

〉
= Re

{
M
(
[un]ps,A

)
L(un, v)−

∫
RN

(
α|u|p

∗
s−2u+ βk(x)|u|q−2u

)
v̄ dx

}
= o(1)‖un‖.

Therefore,

0 > c+ on
(
‖un‖

)
= J(un)− 1

p∗s

〈
J ′(un), un

〉
=

1

p
M̃
(
[un]ps,A

)
− 1

p∗s
M
(
[un]ps,A

)
[un]ps,A − β

(
1

q
− 1

p∗s

)∫
RN

k(x)|un|q dx

>

(
1

pθ
− 1

p∗s

)
M
(
[un]ps,A

)
[un]ps,A − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r

( ∫
RN

|un|p
∗
s dx

)q/p∗s
>

(
1

pθ
− 1

p∗s

)
m0[un]ps,A − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
S−q/p[un]qs,A

>

(
1

pθ
− 1

p∗s

)
m0‖un‖p − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
S−q/p‖un‖q.

Since θ ∈ [1, N/(N − ps)) and q < p, it follows that {un}n is bounded in Ds,p
A (RN,C).

Hence, by diamagnetic inequality, {|un|}n is bounded in Ds,p(RN,C). Then, for some
subsequence, there is u0 ∈ E such that un ⇀ u0 in Ds,p

A (RN,C). We claim that, as
n→∞, ∫

RN

|un|p
∗
s dx→

∫
RN

|u0|p
∗
s dx.

In order to prove this claim, we invoke Prokhorov’s theorem (see [9, Thm. 8.6.2]) to
conclude that there exist µ, ν ∈M(RN) such that∫

RN

||un(x)| − |un(y)||p

|x− y|N+ps
dy ⇀ µ (∗-weak-sense of measures),

|un|p
∗
s ⇀ ν (∗-weak-sense of measures),

https://www.mii.vu.lt/NA
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where µ and ν are a nonnegative bounded measures on RN. It follows from Proposition 2
that either un → u in Lp

∗
s

loc(RN) or ν = |u|p∗s +
∑
j∈I δxjνj as n → ∞, where I is

a countable set, {νj}j ⊂ [0,∞), {xj}j ⊂ RN.
Take φ ∈ C∞0 (RN) such that 0 6 φ 6 1; φ ≡ 1 in B(xj , ρ), φ(x) = 0 in

RN \ B(xj , 2ρ). For any ρ > 0, define φρ = φ((x − xj)/ρ), where j ∈ I . It follows
that {unφρ}n is bounded in Ds,p

A (RN,C) since {un}n is bounded in Ds,p
A (RN,C). Then

〈J ′(un), unφρ〉 → 0, which implies

M
(
[un]ps,A

) ∫∫
R2N

|un(x)− ei(x−y)A((x+y)/p)un(y)|pφρ(y)

|x− y|N+ps
dx dy

+ Re
{
M
(
[un]ps,A

)
L(un, unφρ)

}
= α

∫
RN

|un|p
∗
sφρ dx+ β

∫
RN

k(x)|un|qφρ dx+ on(1), (6)

where

L(un, unφρ) =

∫∫
R2N

1

|x− y|N+ps

(∣∣un(x)− ei(x−y)A((x+y)/p)un(y)
∣∣p−2

×
(
un(x)−ei(x−y)A((x+y)/p)un(y)

)
un(x)

(
φρ(x)−φρ(y)

) )
dxdy.

It is easy to verify that∫∫
R2N

||un(x)| − |un(y)||pφρ(y)

|x− y|N+ps
dxdy →

∫
RN

φρ dµ

as n→∞ and ∫
RN

φρ dµ→ µ
(
{xj}

)
as ρ→ 0. Note that the Hölder inequality implies∣∣Re

{
M
(
[un]ps,A

)
L(un, unφρ)

}∣∣
6 C

∫∫
R2N

|un(x)− ei(x−y)A((x+y)/p)un(y)|p−1|φρ(x)− φρ(y)||un(x)|
|x− y|N+ps

dxdy

6 C

(∫∫
R2N

|un(x)− ei(x−y)A((x+y)/p)un(y)|p

|x− y|N+2s
dxdy

)(p−1)/p

×
(∫∫

R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dx dy

)1/p

6 C

(∫∫
R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dxdy

)1/p

. (7)
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In a way similar to the proof of Lemma 3.4 in [42], we have

lim
ρ→0

lim
n→∞

∫∫
R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dxdy = 0. (8)

In the following, we just give a sketch of the proof for reader’s convenience.
On the one hand, we notice that

RN × RN =
((
RN \B(xi, 2ρ)

)
∪B(xi, 2ρ)

)
×
((
RN \B(xi, 2ρ)

)
∪B(xi, 2ρ)

)
=
((
RN \B(xi, 2ρ)

)
×
(
RN \B(xi, 2ρ)

))
∪
(
B(xi, 2ρ)× RN

)
∪
((
RN \B(xi, 2ρ)

)
×B(xi, 2ρ)

)
.

Then we have∫∫
R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dxdy

=

∫∫
B(xi,2ρ)×RN

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dxdy

+

∫∫
(RN\B(xi,2ρ))×B(xi,2ρ)

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+ps
dxdy

6 Cρ−ps
∫

B(xi,Kρ)

∣∣un(x)
∣∣p dx+ CK−N

( ∫
RN\B(xi,Kρ)

∣∣un(x)
∣∣p∗s dx

)p/p∗s
6 Cρ−ps

∫
B(xi,Kρ)

∣∣un(x)
∣∣p dx+ CK−N .

Note that un ⇀ u in E and un → u in Ltloc(RN), p 6 t < p∗s , which implies

Cρ−ps
∫

B(xi,Kρ)

∣∣un(x)
∣∣p dx+ CK−N → Cρ−ps

∫
B(xi,Kρ)

∣∣u(x)
∣∣p dx+ CK−N

as n→∞. Then the Hölder inequality yields

Cρ−ps
∫

B(xi,Kρ)

∣∣u(x)
∣∣p dx+ CK−N

6 CKps

( ∫
B(xi,Kρ)

∣∣u(x)
∣∣p∗s dx

)p/p∗s
+ CK−N → CK−N
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as ρ→ 0. Furthermore, we have

lim sup
ρ→0

lim sup
n→∞

∫∫
R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+2s
dx dy

= lim
K→∞

lim sup
ρ→0

lim sup
n→∞

∫∫
R2N

|un(x)|p|φρ(x)− φρ(y)|p

|x− y|N+2s
dxdy

= 0.

This proves (8). By assumption (A3), we arrive at

lim
ρ→0

lim
n→∞

∫
RN

k(x)|un|qφρ dx = lim
ρ→0

lim
n→∞

∫
B2ρ(xj)

k(x)|un|qφρ dx

6 lim
ρ→0

lim
n→∞

∥∥k(x)
∥∥
Lr(B2ρ(xj))

‖un‖qLp∗s (B2ρ(xj))

= 0. (9)

By using the diamagnetic inequality and (6), we have

m0

(
[un]ps,A

) ∫∫
R2N

||un(x)| − |un(y)||pφρ(y)

|x− y|N+ps
dxdy

+ Re
{
M
(
[un]ps,A

)
L(un, unφρ)

}
6M

(
[un]ps,A

) ∫∫
R2N

|un(x)− ei(x−y)A((x+y)/p)un(y)|pφρ(y)

|x− y|N+ps
dx dy

+ Re
{
M
(
[un]ps,A

)
L(un, unφρ)

}
= α

∫
RN

|un|p
∗
sφρ dx+ β

∫
RN

k(x)|un|qφρ dx+ on(1), (10)

Since φρ has compact support, letting n→∞ in (10), we can deduce from (7)–(9) that

m0µ
(
{xj}

)
6 ανj .

Combining this fact with Proposition 2, we obtain

(i) νj = 0, or
(ii) νj > (m0α

−1S)N/(ps),

which implies that I is finite. The claim is thereby proved.

To obtain the possible concentration of mass at infinity, we similarly define a cut off
function φR ∈ C∞0 (RN) such that φR(x) = 0 on |x| < R and φR(x) = 1 on |x| > R+1.
We can verify that {unφR}n is bounded in Ds,p

A (RN,C), hence 〈J ′(un), unφR〉 → 0
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as n→∞, which implies

M
(
[un]ps,A

) ∫∫
R2N

|un(x)− ei(x−y)A((x+y)/p)un(y)|pφR(y)

|x− y|N+ps
dx dy

+ Re
{
M
(
[un]ps,A

)
L(un, unφR)

}
= α

∫
RN

|un|p
∗
sϕR dx+ β

∫
RN

k(x)|un|qϕR(x) dx. (11)

It is easy to verify that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

||un(x)| − |un(y)||pφR(y)

|x− y|N+ps
dxdy = µ∞

and∣∣{M([un]ps,A
)
L(un, unφR)

}∣∣ 6 C

(∫∫
R2N

|un(x)|p|φR(x)− φR(y)|p

|x− y|N+ps
dxdy

)1/p

.

Note that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|p|φR(x)− φR(y)|p

|x− y|N+ps
dxdy

= lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|p|(1− φR(x))− (1− φR(y))|p

|x− y|N+ps
dxdy.

In a way similar to the proof of Lemma 3.4 in [42], we have

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|p|(1− φR(x))− (1− φR(y))|p

|x− y|N+ps
dx dy = 0.

By the Hölder inequality and the definition of S,∫
RN

k(x)|un|qϕR dx

6

( ∫
{|x|>2R}

|un|p
∗
s dx

)q/p∗s( ∫
{|x|>2R}

∣∣k(x)
∣∣p∗s/(p∗s−q) dx

)(p∗s−q)/p
∗
s

6 S−q/p
∗
s [un]qs,p

( ∫
{|x|>2R}

∣∣k(x)
∣∣p∗s/(p∗s−q) dx

)(p∗s−q/p
∗
s

6 S−q/p
∗
s‖un‖qW

( ∫
{|x|>2R}

∣∣k(x)
∣∣p∗s/(p∗s−q) dx

)(p∗s−q)/p
∗
s

,
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which implies

lim
R→∞

lim sup
n→∞

∫
RN

k(x)|un|qϕR dx

6 C lim
R→∞

( ∫
{|x|>2R}

∣∣k(x)
∣∣p∗s/(p∗s−q) dx

)(p∗s−q)/p
∗
s

= 0.

Therefore, by letting R→∞ and n→∞ in (11), we have

m0µ∞ 6 αν∞. (12)

By Proposition 2, and (12), we conclude that either

(iii) ν∞ = 0 or
(iv) ν∞ > (m0α

−1S)N/(ps).

Next, we claim that (ii) and (iv) cannot occur if α and β are chosen properly. To this
end, from the Hölder inequality we have

0 > c = lim
n→∞

[
J(un)− 1

p∗s

〈
J ′(un), un

〉]
>

(
1

pθ
− 1

p∗s

)
M
(
[u0]ps,A

)
[u0]ps,A − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r

(∫
RN

|u0|p
∗
s dx

)q/p∗s
>

(
1

pθ
− 1

p∗s

)
m0[u0]ps,A − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
S−q/p[u0]

q/p
s,A

>

(
1

pθ
− 1

p∗s

)
m0S‖u0‖pp∗s − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
‖u0‖qp∗s .

Thus, it follows that
‖u0‖p∗s 6 Cβ1/(p−q). (13)

If (iv) occurs, we obtain by (13) that

0 > c = lim
R→∞

lim
n→∞

[
J(un)− 1

p∗s

〈
J ′(un), ϕR

〉]
>

(
1

pθ
− 1

p∗s

)
m0µ∞ − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
‖u0‖qp∗s

>

(
1

pθ
− 1

p∗s

)
m0µ∞ − β

(
1

q
− 1

p∗s

)∥∥k(x)
∥∥
r
Cβq/(p−q)

>

(
1

pθ
− 1

p∗s

)
m0α

−N/(ps)SN/(ps) − Cβp/(p−q).
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However, since θ ∈ [1, N/(N − ps)), q < p, if α > 0 is given, we can take small β∗
such that for every 0 < β < β∗, the term on the right-hand side above is greater than
zero, which is a contradiction. Similarly, if β > 0 is given, we can choose small α∗ such
that for every 0 < α < α∗, the term on the right-hand side above is greater than zero.
Similarly, we can prove that (ii) cannot occur. Hence,∫

RN

|un|p
∗
s dx→

∫
RN

|u0|p
∗
s dx as n→∞.

On the other hand, since k ∈ Lr(RN), we have∫
RN

k(x)
(
|un|q − |u|q

)
dx 6

∥∥k(x)
∥∥
r

∥∥|un|q − |u|q∥∥p∗/q → 0, n→ +∞.

By the weak lower semicontinuity of the norm, conditon (A1), and the Brézis–Lieb
lemma, we have

o(1)‖un‖ =
〈
J ′(un), un

〉
= M

(
[un]ps,A

)
[un]ps,A − α

∫
RN

|un|p
∗
s dx− β

∫
RN

k(x)|un|q dx

> m0

(
[un]ps,A − [u0]ps,A

)
+M

(
[u0]ps,A

)
[u0]ps,A

− α
∫
RN

|u0|p
∗
s dx− β

∫
RN

k(x)|u0|q dx

> m0‖un − u0‖p + o(1)‖u0‖.

Here we use the fact that J ′(u0) = 0. Thus we have proved that {un}n strongly converges
to u0 in Ds,p

A (RN,C). Hence, the proof is complete.

4 Main results

To prove the multiplicity result stated in Theorem 1, we will use some topological re-
sults introduced by Krasnoselskii in [20]. For the sake of completeness and for reader’s
convenience, we recall here some basic notions on the Krasnoselskii’s genus. Let X be
a Banach space, and let us denote by Σ the class of all closed subsets A ⊂ X \ {0} that
are symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Definition 3. Let A ∈ Σ. The Krasnoselskii’s genus γ(A) of A is defined as being the
least positive integer n such that there is an odd mapping φ ∈ C(A,RN) such that φ(x) 6=
0 for any x ∈ A. If n does not exist, we set γ(A) =∞. Furthermore, we set γ(∅) = 0.

In the sequel, we will recall only the properties of the genus that will be used through-
out this work. More information on this subject may be found in the references [19,20,29].
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Proposition 4. Let A and B be closed symmetric subsets of X which do not contain the
origin. Then the following hold:

(i) If there exists an odd continuous mapping from A to B, then γ(A) 6 γ(B);
(ii) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);

(iii) If γ(B) <∞, then γ(A \B) > γ(A)− γ(B);
(iv) n-dimensional sphere Sn has a genus of n+ 1 by the Borsuk–Ulam theorem;
(v) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Nδ(A) ⊂ Σ

and γ(Nδ(A)) = γ(A) with Nδ(A) = {x ∈ X: dist(x,A) 6 δ}.

We conclude this section recalling the symmetric mountain pass lemma introduced by
Kajikiya in [19]. The proof of Theorem 1 is based on the application of the following
result.

Lemma 3. Let E be an infinite-dimensional space and J ∈ C1(E,R) and suppose the
following conditions hold:

(J1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local Palais–
Smale condition, i.e., for some c̄ > 0, in the case when every sequence {un}n
in E satisfying limn→∞ J(un) = c < c̄ and limn→∞ ‖J ′(un)‖E′ = 0 has a
convergent subsequence;

(J2) For each n ∈ N, there exists an An ∈ Σn such that supu∈An J(u) < 0.

Then either (i) or (ii) below holds:

(i) There exists a sequence {un}n such that J ′(un) = 0, J(un) < 0 and {un}
converges to zero.

(ii) There exist two sequences {un}n and {vn}n such that J ′(un) = 0, J(un) < 0,
un 6= 0, limn→∞ un = 0, J ′(vn) = 0, J(vn) < 0, limn→∞ J(vn) = 0, and
{vn}n converges to a nonzero limit.

To obtain infinitely many solutions, we need some technical lemmas. Let J(u) be the
functional defined as above, 1 < q < 2, α > 0, and β > 0. Then

J(u) =
1

p
M̃
(
[u]ps,A

)
− α

p∗s

∫
RN

|u|p
∗
s dx− β

q

∫
RN

k(x)|u|q dx

>
1

pθ
M
(
[u]ps,A

)
[u]ps,A −

α

p∗s

∫
RN

|u|p
∗
s dx− β

q

∫
RN

k(x)|u|q dx

>
1

pθ
m0[u]ps,A −

α

p∗s

∫
RN

|u|p
∗
s dx− β

q

∥∥k(x)
∥∥
r
‖u‖qp∗s

>
1

pθ
m0[u]ps,A −

α

p∗s

(
S−1[u]ps,A

)(p∗s)/p − β

q
‖k(x)‖r

(
S−1[u]ps,A

)q/p
> C1[u]ps,A − αC2[u]

p∗s
s,A − βC3[u]qs,A.
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Define
h(t) = C1t

p − αC2t
p∗s − βC3t

q.

Then it is easy to see that, for the given α > 0, we can choose β∗ > 0 so small that if
0 < β < β∗, there exists 0 < t0 < t1 such that h(t) < 0 for 0 < t < t0; h(t) > 0 for
t0 < t < t1; h(t) < 0 for t > t1.

Similarly, for the given β > 0, we can choose α∗ > 0 so small that if 0 < α < α∗,
there exists 0 < t∗0 < t∗1 such that h(t) < 0 for 0 < t < t∗0; h(t) > 0 for t∗0 < t < t∗1;
h(t) < 0 for t > t∗1.

Clearly, h(t0) = 0 = h(t1). Following the same idea as in [5], we consider the
truncated functional

J̃(u) =
1

p
M̃
(
[u]ps,A

)
− α

p∗s
ψ(u)

∫
RN

|u|p
∗
s dx− β

q

∫
RN

k(x)|u|q dx,

where ψ(u) = τ(‖u‖), and τ : R+ → [0, 1] is a nonincreasing C∞ function such that
τ(t) = 1 if t 6 t0 and τ(t) = 0 if t > t1. Obviously, J̃(u) is even. Thus, from Lemma 2
we obtain the following lemma.

Lemma 4. Let c < 0 and 1 < q < p. Then:

(i) J̃ ∈ C1 and J̃ is bounded from below.
(ii) If J̃(u) < 0, then ‖u‖ < t0 and J̃(u) = J(u).

(iii) For each α > 0, there exists β̃∗ = min{β∗, β∗} > 0 such that if 0 < β < β̃∗,
then J̃ satisfies (PS)c.

(iv) For each β > 0, there exists α̃∗ = min{α∗, α∗} > 0 such that if 0 < α < α̃∗,
then J̃ satisfies (PS)c.

Proof. Obviously, (i) and (ii) are immediate. To prove (iii) and (iv), observe that all (PS)c-
sequences for J̃ with c < 0 must be bounded, similar to the proof of Lemma 2, there exists
a strong convergent subsequence in Ds,p

A (RN,C).

Remark 4. Denote Kc = {u ∈ Ds,p
A (RN,C): J̃ ′(u) = 0, J̃(u) = c}. If α, β are as in

(iii) or (iv) above, then it follows from (PS)c that Kc (c < 0) is compact.

Lemma 5. Denote J̃c := {u ∈ Ds,p
A (RN,C): J̃ ′(u) = 0, J̃(u) 6 c}. Given n ∈ N,

there exists εn < 0 such that

γ(J̃εn) := γ
({
u ∈ Ds,p

A

(
RN,C

)
: J̃(u) 6 εn

})
> n.

Proof. Let Xn be a n-dimensional subspace of Ds,p
A (RN,C). For any u ∈ Xn, u 6= 0,

write u = rnw with w ∈ Xn, ‖w‖ = 1, and then rn = ‖u‖. From condition (A3) it
is easy to see that, for every w ∈ Xn with ‖w‖ = 1, there exists dn > 0 such that∫
RN k(x)|w|q dx > dn. Thus, for 0 < rn < t0, by the continuity of M , we have

J̃(u) =
1

p
M̃
(
[u]ps,A

)
− α

p∗s
ψ(u)

∫
RN

|u|p
∗
s dx− β

q

∫
RN

k(x)|u|q dx
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6
1

p
rpnM

(
[w]ps,A

)
− α

p∗s
r
p∗s
n

∫
RN

|w|p
∗
s dx− β

q
rqn

∫
RN

k(x)|w|q dx

6
C1

p
rpn −

α

p∗s
r
p∗s
n

∫
RN

|w|p
∗
s dx− β

p
dnr

q
n

= εn.

Therefore, we can choose rn ∈ (0, t0) so small that J̃(u) 6 εn < 0. Let

Srn =
{
u ∈ Xn: ‖u‖ = rn

}
.

Then Srn ∩Xn ⊂ J̃εn . Hence, by Proposition 4,

γ
(
J̃εn
)
> γ(Srn ∩Xn) = n.

As desired.

According to Lemma 4, we denote Σn = {A ∈ Σ: γ(A) > n}, and let

cn = inf
A∈Σn

sup
u∈A

J̃(u). (14)

Then
−∞ < cn 6 εn < 0 (15)

because J̃εn ∈ Σn and Ĩ is bounded from below.

Lemma 6. Let α, β be as in (iii) or (iv) of Lemma 4. Then all cn (given by (14)) are
critical values of J̃ , and cn → 0.

Proof. Since Σn+1 ⊂ Σn, it is clear that cn 6 cn+1. By (15), we have cn < 0. Hence,
there is a c̄ 6 0 such that cn → c̄ 6 0. Moreover, since that all cn are critical values
of J̃ (see [29]), we claim that c̄ = 0. If c̄ < 0, then by Remark 4, Kc̄ = {u ∈
Ds,p
A (RN,C): J̃ ′(u) = 0, J̃(u) = c̄} is compact, and Kc̄ ∈ Σ, then γ(Kc̄) = n0 < +∞,

and there exists δ > 0 such that γ(Kc̄) = γ(Nδ(Kc̄)) = n0, here Nδ(Kc̄) = {x ∈
Ds,p
A (RN,C): ‖x −Kc̄‖ 6 δ}. By the deformation lemma (see [36]), there exist ε > 0

(c̄+ ε < 0) and an odd homeomorphism η : Ds,p
A (RN,C)→ Ds,p

A (RN,C) such that

η(J̃ c̄+ε \Nδ(Kc̄)) ⊂ J̃ c̄−ε.

Since cn is increasing and converges to c̄, there exists n ∈ N such that cn > c̄ − ε and
cn+n0

6 c̄. Choose A ∈ Σn+n0
such that supu∈A J̃(u) < c̄ + ε, that is A ⊂ J̃ c̄+ε. By

the properties of γ, we have

γ
(
A \Nδ(Kc̄)

)
> γ(A)− γ

(
Nδ(Kc̄)

)
> n, γ

(
η
(
A \Nδ(Kc̄)

) )
> n.

Hence, we have η(A \Nδ(Kc̄)) ∈ Σn. Consequently,

sup
u∈η(A\Nδ(Kc̄))

J̃(u) > cn > c̄− ε,

a contradiction, hence cn → 0.
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Proof of Theorem 1. By Lemma 4(ii), J̃(u) = J(u) if J̃(u) < 0. By Lemmas 4–6, one
can see that all the assumptions of Lemma 3 are satisfied. This completes the proof.
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