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Abstract. The increase in human population has posed several problems for the ecosystem. One
of these problems is the decrease in forestry resources, which leads to decline in forest area and
thus threaten the survival of wildlife species as the intraspecific competition among the wildlife
species increases. Moreover, these wildlife species can also be apprehended easily by poachers
and smugglers. This affects the biodiversity across the globe. In this paper, we have proposed and
analyzed a nonlinear mathematical model to see the effect of deforestation caused by population
and its pressure on wildlife species. The analysis of proposed model reveals that, as the parameters
in respect to the increase in population pressure increase, wildlife species decrease. To support
analytical findings, we have done numerical simulation.
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1 Introduction

Deforestation is the consequence of large growth in human population. The basic needs,
like houses, roads, agricultural land for food production, etc. have increased with the
increase in population size. To fulfil these needs, the forestry resources are overexploited
by population to clear forest land. This has resulted to deforestation at a large scale across
the globe and threatened the survival of wildlife species, which are wholly dependent
on forestry resources [6, 9, 16]. As the forest land reduces, the wildlife species lose
their natural habitat and easily reach to the hands of poachers and animal smugglers
[14, 15]. Thus, the overgrowth in population has negative effect on the wildlife species.
According to Adebayo [1], the over growth in population leads to increase in population
pressure and poverty, which are the prime reasons for mowing the forest resources and
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convert the forest land for agricultural purposes. Jhoom cultivation is an example for the
encroachment of forest region by population. In this cultivation, people slash and burn
forestry resources for clearing the land to be used for agriculture, and when soil loses its
fertility, they move to another forest region and apply the same technique [10, 26].

In the past few decades, forestry resources and wildlife species are under stress due
to increase in population and its associated pressure. Other reasons behind the deforesta-
tion are the increase in industrialization and pollution, which are also linked to human
population [3, 11, 13, 17, 25, 28, 32]. Some researchers have shown their concern for
the depletion of forestry resources as well as wildlife species and made suggestions
for their conservation. In this respect, Shukla and Dubey [27] and Shukla et al. [29]
have presented nonlinear mathematical models to see the effect of habitat destruction
and reduction in resources on the survival of species. They have shown that as habitat
shrinks and resources decrease, the species which are wholly dependent upon them may
become extinct. Keeping in mind the necessity of the use of forestry resources by human
population, Shukla et al. [31] have suggested that the application of technological efforts,
such as genetically engineered plants, are helpful in conserving forestry resources along
with fulfilling the need of human population. In addition to this, Misra and Lata [20] have
shown that these technological efforts are beneficial to conserve forestry resources when
they are implemented within appropriate time. Some studies have been conducted to see
the effect of wood based industries on forestry resources, and it is shown that forestry
resources decrease as the number of industries increases [2, 24, 30]. Moreover, Lata et
al. [17] have shown that the wood and nonwood-based industries continuously emit the
pollution into the environment, and due to uptake of this pollution by forestry resources,
the metabolism of forestry resources is affected. Further, population pressure is a prime
factor behind industrialization, and in this regard, Dubey et al. [12] have studied the effect
of population and increase in industrialization due to population pressure on the depletion
of forestry resources. It is shown that as population pressure increases, industrialization
increases, which leads to deforestation. To reduce the population pressure, in some stud-
ies, it is suggested that economic efforts in the form of incentives, like fuel efficient stoves
and biogas, subsidies on the products, which are the alternate of forestry resources (tin,
fibre, metal, etc.) [5, 22, 23], and alternative resources, like synthetic [4, 7, 8], may be
provided to the people. It is found that these efforts are helpful to check deforestation.
Moreover, Misra and Lata [21] have studied the conservation of forestry resources by
using economic as well as technological efforts. In this study, it is found that economic as
well as technological efforts both are beneficial in the conservation of forestry resources
only upto a certain level. Recently, Lata and Misra [18] have proposed a mathematical
model for the conservation of forestry resources using economic efforts (money), where
some part of the money is used to reduce population pressure, whereas the other part is
used for plantation. The study clearly demonstrates when more money should be spent
on plantation to increase the forestry resources and when the money should be spent to
reduce the population pressure.

From the above it may be pointed out that the increase in population and its associated
pressure are the major factors behind deforestation and thus threatens the survival of
wildlife species. Motivated from prior discussion, in this paper, we study the effect of
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deforestation: (i) directly caused by human population and (ii) indirectly by the clearance
of forest to fulfill the land’s requirement for agriculture and housing complexes on the
wildlife species.

2 Mathematical model

In this section, we present a mathematical model dealing with the subject of depletion of
forestry resources and its effect on wildlife species. It is assumed that wildlife species
wholly depend upon forestry resources for food and shelter. As the encroachment of
human population increases in the forest region due to the demand of agricultural land for
food production, wood, space for housing complexes and economic position, the wildlife
species are also affected. Therefore, we consider a forest habitat, where forestry resources
and wildlife species both are under endangered situation due to enlargement in human
population and their demand (known as population pressure). LetR(t) andH(t) represent
the density of forestry resources and human population, respectively, in the region under
consideration at any time t. Further, let P (t) and S(t) denote the intensity of population
pressure and density of wildlife species, respectively, at time t in the same region.

We propose the following nonlinear mathematical model:

dR

dt
= sR

(
1− R

L

)
− α1RH − α2R

2P − φRS,

dH

dt
= rH

(
1− H

K

)
+ π1α1RH,

dP

dt
= λH − λ0P,

dS

dt
= θφRS − δ0S2 − θ1PS − δ1PS2 − θ0S,

(1)

where R(0), H(0), P (0), S(0) > 0. Here all the parameters are assumed to be positive.
The first equation for forestry resources accounts for its logistic growth with intrinsic

growth rate s and carrying capacity L. As a result of use of forestry resources by the
human population, the forestry resources undergo a loss in their growth rate expressed
by the term α1RH [31]. This use of forestry resources mainly covers the cutting of
trees for wood, medicinal requirement, grazing, etc. In addition to the direct use of
forestry resources by human population, the forest land is also cleared for the agricultural
production, housing complexes, etc. to fulfill the increasing demand of ever increasing
human population. This reduces the forest land in the region under consideration. We
have explicitly modeled this aspect by the third term α2R

2P in the first equation of model
system (1). This is due to the fact that once forest land cleared for the above purposes
cannot be used for the regeneration of forest and thus adversely affected the carrying
capacity of forestry resources. Finally, the last term expresses the predation rate of the
wildlife species modeled using bilinear interaction, denoting possible feeding satiation,
with predation rate φ.
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The dynamics of human population is described by the second equation. It is assumed
that human population also follow the logistic growth with intrinsic growth rate r and
carrying capacity K and is subject to further growth due to use of forestry resources for
their livelihood π1α1RH , where π1 is a proportionality constant [31].

As the human population increases, the demand of population for food, housing
complexes, etc. increases. To fulfil this demand, the forest land is cleared for agriculture,
making houses, roads, etc. Thus, the growth rate in the demand of population is assumed
to be proportional to the human population (i.e., λH) and is modeled in the third equation
of model system (1). However, this demand of population reduces on applying some other
efforts (e.g., economic) by making more agricultural production using fertilizers, con-
structing multi-storey buildings, etc. and is modeled by the second term in this equation.

The wildlife species, as described in fourth equation, is assumed to be wholly depen-
dent on forestry resources for food, shelter, etc. thereby decreasing the forestry resources;
it is subject to mortality due to crowding at a rate δ0. As a result of population demand
(population pressure), the forest land is cleared, which reduces the forest area, and thus,
the intraspecific competition among wildlife species increases. Moreover, the wildlife
species can also be easily captured by the poachers and smugglers. This aspect has been
explicitly modeled by the third and fourth terms in this equation (i.e., θ1PS and δ1PS2),
where θ1 represents declination in the wildlife species due to capture by poachers and
smugglers, whereas δ1 accounts for the increment in the intraspecific competition among
the wildlife species due to the reduction in the forest area on account of population
pressure. Furthermore, as time passes, the wildlife species migrate from the forest region
and also depleted naturally at a rate θ0.

From first equation of model system (1),

dR

dt
= sR− sR2

L
− α1RH − α2R

2P − φRS

= (s− α1H − φS)R−R2

(
s

L
+ α2P

)
.

From the above equation it may be easily noted that in presence of human population
and wildlife species, intrinsic growth rate of forestry resources at any time t > 0 is
s − α1H − φS. To avoid the extinction of forestry resources and thus the feasibility of
model system (1), s− α1H − φS must be positive for all time t > 0. Similarly, from the
last equation of the above model system (1), to avoid the extinction of wildlife species and
the feasibility of model system (1), θφR − θ1P − θ0 must be positive for all time t > 0.
Therefore, in the rest of the paper, we assume that s − α1H − φS and θφR − θ1P − θ0
are positive.

3 Boundedness of solutions

Boundedness is necessary to analyze the model system (1). For this, we require the
following lemma, which ensures boundedness of the model system (1).
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Lemma. The set Ω = {(R,H,P, S): 0 6 R 6 L; 0 6 H 6 Hm; 0 6 P 6 Pm;
0 6 S 6 (φθL − θ0)/δ0}, where Hm = (K/r)(r + π1α1L) and Pm = (λ/λ0)Hm, is
the region of attraction for model (1) and attracts all solutions initiating in the interior of
the positive orthant. Here it is assumed that φθL− θ0 > 0.

Proof of above lemma is given in Appendix A.

4 Equilibrium analysis

Since the proposed model is nonlinear, we analyze it qualitatively using the stability
theory of differential equations. For this, we first obtain the equilibrium solutions of the
model by setting the growth rate of all the dynamical variables to zero. It is found that
only six nonnegative equilibria are feasible, which are given as follows:

(i) F0(0, 0, 0, 0), (ii) F1(L, 0, 0, 0), (iii) F2

(
0,K,

λK

λ0
, 0

)
,

(iv) F3

(
s+ φθ0/δ0
s/L+ θφ2/δ0

, 0, 0,
s(φθL− θ0)

δ0L(s/L+ θφ2/δ0)

)
, provided φθL− θ0 > 0,

(v) F4(R4, H4, P4, 0), and (vi) F ∗(R∗, H∗, P ∗, S∗).

The feasibility of equilibria F0, F1, F2, F3 is obvious, hence omitted, and in the following,
we show the feasibility of equilibria F4 and F ∗.

Feasibility of equilibrium F4

s

(
1− R

L

)
− α1H − α2RP = 0, (2)

r

(
1− H

K

)
+ π1α1R = 0, (3)

λH − λ0P = 0. (4)

From equations (3) and (4) we get the values of H and P as

H =
K

r
(r + π1α1R), P =

λH

λ0
.

Now, putting the above values of H and P in equation (2), we get the following quadratic
equation in R:

π1α1α2λK

λ0r
R2 +

(
s

L
+
π1α

2
1K

r
+
α2λK

λ0

)
R− (s− α1K) = 0.

Above equation possesses a unique positive root, which is given as follows:

R =
λ0r

2π1α1α2λK

(
−
(
s

L
+
π1α

2
1K

r
+
α2λK

λ0

)
+A

)
,
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where A =
√

(s/L+ π1α2
1K/r + α2λK/λ0)2 + 4π1α1α2λK(s− α1K)/(λ0r) > 0,

provided s − α1K > 0. Now using this positive value of R = R4 (say), the positive
values of H4 and P4 can be obtained. Thus, the equilibrium F4 is feasible without any
condition.

Feasibility of equilibrium F ∗. On solving the following algebraic equations, we get
the values of R∗, H∗, P ∗, and S∗:

s

(
1− R

L

)
− α1H − α2RP − φS = 0, (5)

r

(
1− H

K

)
+ π1α1R = 0, (6)

λH − λ0P = 0, (7)

θφR− δ0S − θ1P − δ1PS − θ0 = 0. (8)

From equation (6) we get

H =
K

r
(r + π1α1R) = f(R) (say). (9)

Further, from equation (7) we have

P =
λ

λ0
f(R) = g(R) (say). (10)

Again, from equation (8) we get

S =
φθR− θ1g(R)− θ0

δ0 + δ1g(R)
= h(R) (say). (11)

Now, using the values of H , P , and S, we obtain the following cubic equation in R:

p0R
3 + p1R

2 + p2R+ p3 = 0, (12)

where

p0 =
1

r2λ20
π2
1α

2
1α2λ

2δ1K
2,

p1 =
1

λ20r
2L

[
λ0δ1λLπ

2
1α

3
1K

2 + 2rπ1α1δ1α2λ
2K2L+ srλ0π1α1δ1λK

+ rπ1λ0δ0λα1α2KL
]
,

p2 =
1

λ20rL

[
−π1λ0λδ1α1sKL− θφλλ0π1α1KL+ δ0λ

2
0rs+ λ0λδ1srK

+ 2π1α
2
1λ0λδ1K

2L+ θφ2λ20rL+ π1δ0λ
2
0α

2
1KL+ rλλ0δ0α2KL

+ rδ1λ
2α2K

2L
]
,
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p3 = −
(
(s− α1K)

(
δ0 +

λδ1K

λ0

)
+ φθ0 +

φθ1λK

λ0

)
.

Here it is noted that p0 and p1 are positive, whereas p3 is negative, provided s−α1K > 0.
Hence, by Descartes’ rule of signs equation (12) has unique positive root. Further, this
positive root can be obtained by Cardan’s method and is given asR = (A3−A2/A3−p1)/
3p0 = R∗ (say), where A1 = 2p31 − 9p0p1p2 + 27p20p3, A2 = 3p0p2 − p21, and A3 is the
real positive value of the root (−A1 +

√
A1

2 + 4A2
3/2)1/3. After knowing the positive

value of R = R∗, the positive values of H = H∗, P = P ∗, and S = S∗ can be obtained
from equations (9), (10), and (11), respectively.

5 Stability analysis

5.1 Local stability analysis

The local stability behavior of equilibria F0, F1, F2, F3, F4, and F ∗ is discussed in this
section. The local stability means that if we perturb the system in the neighborhood of
that equilibrium, then system approaches to its equilibrium. The local stability behavior
of equilibria F0, F1, F2, F3, F4, and F ∗ are described in the following theorem.

Theorem 1. The equilibria F0, F1, F2, F3, and F4 are always unstable. The interior
equilibrium F ∗ is locally asymptotically stable if the following condition holds:

16

9

rλ20
π1λ2K

> max

{
α2
2R
∗2

( s
L + α2P ∗)

,
(δ1S

∗ + θ1)
2

θ(δ0 + δ1P ∗)

}
. (13)

For the proof of above theorem, see Appendix B

5.2 Global stability analysis

In the present section, we discuss the global stability behavior of interior equilibrium F ∗,
and for this, we state the following theorem.

Theorem 2. The interior equilibrium F ∗ is globally asymptotically stable inside the
region of attraction Ω, provided the following inequality holds:

S1 =
16rλ20
9π1λ2K

−max

{
α2
2L

2

( s
L + α2P ∗)

,
(δ1(φθL− θ0) + θ1δ0)

2

θδ20(δ0 + δ1P ∗)

}
> 0. (14)

For the proof of above theorem, see Appendix C.

Remark 1. It may be pointed out that for small values of α2, δ1, φ, and λ, the stability
conditions (13) and (14) will be easily satisfied. This indicates that the large values
for the depletion in carrying capacity of forestry resources and wildlife population due
to population pressure, use of forestry resources by wildlife species and the growth in
population pressure due to population, respectively, destabilize the system (see Fig. 1).
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Figure 1. The destabilizing effect of parameters α2, δ1, φ, and λ on the coexistence equilibrium. The remaining
parameters are same as given in (16).

6 Persistence

The permanence or uniform persistence plays a significant role to understand the survival
of biological species. It ensures that all the species will be present in future if they
are initially present in the system. Mathematically, system (1) is said to be uniformly
persistence if there exists positive constants L1 and L2 such that each positive solution
(R(t), H(t), P (t), S(t)) of the system with positive initial condition satisfies

L1 6 lim inf
t→∞

V (t) 6 lim sup
t→∞

V (t) 6 L2, (15)

where V (t) = (R(t), H(t), P (t), S(t)).
The following theorem gives the criteria for the uniform persistence of the model

system (1).

Theorem 3. The model system (1) is uniformly persistent if conditions (26) and (28) hold.

For the proof of this theorem, see Appendix D.

7 Numerical simulation

In the present section, we simulate model system (1) by choosing the following set of
parameter values, which are given as follows:

K = 100, L = 100, r = 0.5, s = 0.8,

α1 = 0.003, α2 = 0.00004, δ0 = 0.08, δ1 = 0.006,

φ = 0.021, λ = 0.04, λ0 = 0.5, π1 = 0.05,

θ = 0.8, θ0 = 0.00002, θ1 = 0.0001.

(16)
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Figure 2. Global stability of interior equilibrium
F ∗ inR,P, S-space. All parameters are same as
given in (16).
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Figure 3. Global stability of interior equilibrium
F ∗ inR,H, S-space. All parameters are same as
given in (16).

Using this set of parameter values, we have obtained the components of the interior
equilibrium F ∗, which are given as

R∗ = 44.8281, H∗ = 101.3448, P ∗ = 8.1075, S∗ = 5.8477.

Further, we have obtained the eigenvalues of Jacobian matrix evaluated at F ∗ of the model
system (1) and are given as

−0.5568 + 0.2443i, −0.5568− 0.2443i, −0.5511, and − 0.4672.

Here it is noted that the eigenvalues of JF∗ are either negative or with negative real
part. Therefore, the negativity of the sign ensures the local stability of interior equilib-
rium F ∗ for the above set of parameter values. We have plotted Figs. 2 and 3 to show
the global stability behavior of equilibrium F ∗. In these figures, it is apparent that all
solution trajectories initiating inside the region of attraction are approaching towards
the equilibrium values, showing the global stability behavior. To see the influence of
some crucial parameters, like λ0, δ1, φ, λ, and α2, on the system dynamics, we have
also plotted Figs. 4–7. First, we have shown the effect of φ (i.e., the depletion rate
coefficient of forestry resources R due to wildlife species) on the variables R and P with
respect to time t in Fig. 4. In this figure, it is manifested that the equilibrium levels of
forestry resources and population pressure decrease as φ increases. Further, the variation
of forestry resourcesR and wildlife species S for different values of λ by taking the value
of φ = 0.0021 and the remaining parameters as in (16) is demonstrated in Fig. 5. From
this figure it is apparent that the equilibrium level of forestry resources as well as wildlife
species decreases as the growth rate coefficient of population pressure due to population
increases. This means that, due to pressure, population is compelled to clear more forestry
resources and forest land to fulfil the demand of more food and space. Again, in Fig. 6,
the variation of forestry resources R and wildlife species S with respect to time for the
different values of λ0 by taking the value of φ = 0.0021 and the remaining parameters
as in (16) has been shown. From this figure it is clear that as λ0 (i.e., the declination rate
coefficient due to natural and use of some economic efforts) increases, the equilibrium

Nonlinear Anal. Model. Control, 23(3):303–320
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Figure 4. Effect of different values of φ on the forestry resources and population pressure with time. The
remaining parameters are same as given in (16).
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Figure 5. Effect of different values of forestry resources and wildlife species with time for different values of λ
by taking φ = 0.0021. The remaining parameters are same as given in (16).
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Figure 6. Variation of forestry resources and wildlife species with time for different values of λ0 by taking
φ = 0.0021. The remaining parameters are same as given in (16).
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respectively. The remaining parameters are same as given in (16).

level of forestry resources and wildlife species both increase. In Fig. 7, we have shown
the cumulative effect of the parameters α2 and δ1 on the equilibrium values R∗, H∗,
P ∗, and S∗. From this figure it is manifested that when α2 and δ1 both are zero, all
the equilibrium values of interior equilibria F ∗ are at their maximum level. Moreover,
for the value of α2 to be zero, on increasing the value of δ1, the equilibrium levels
of forestry resources, population, population pressure increase, whereas the equilibrium
level of wildlife species decrease. Further, δ1 to be zero, on increasing the value of α2,
the equilibrium level of forestry resources, population, population pressure, and wildlife
species decreases. Here it is interesting to note that as the values of α2 and δ1 increase
simultaneously, the equilibrium levels of all variables decrease. Because of population
pressure, peoples clear the forestry resources and land, therefore, forestry resources and
wildlife species both decrease. Hence, from the prior discussion it may be noted that large
population size is the major driver behind the deforestation and is also responsible for the
endangered situation of wildlife species.

8 Conclusion

Millions of wildlife species are living in the forest habitat and depend upon forestry
resources for food and shelter. In the past few decades, forestry resources have been
remarkably reduced due to overgrowth in population and its pressure and thus threatened
the survival of wildlife species. Therefore, to study this problem, we have considered that
forestry resources and human population follow logistic growth in their natural habitats,
and wildlife species wholly depend upon forestry resources for their survival. Further, it
is considered that, due to increase in population, population pressure increases, which
depletes the forestry resources and increases the intraspecific competition among wildlife
species and thus also decreases the wildlife species. The stability theory of differential
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equations is used to make the qualitative analysis of the proposed model. It is found that
for the proposed model, only six equilibria are feasible. The components in each equilibria
are obtained by setting the growth rate of dynamical variables to zero. The stability
behavior of all the equilibria is performed and found that only coexistence equilibrium
is stable (locally as well as globally), provided condition (14) is satisfied. It is noted
that the coefficients related to the increase in population pressure (λ) decrease in the
forestry resources due to the use of wildlife species (φ) and decrease in the growth rate of
wildlife species and forestry resources due to population pressure (δ1 and α2), all of them
destabilize the system. To see the survival of wildlife species, the uniform persistence is
also performed. It is found that wildlife species persist if the coefficients related to the
depletion of forestry resources and wildlife species, due to population pressure, are small.
The analysis suggests that the reduction in population pressure by applying some efforts
(e.g., economic efforts) is helpful to conserve forestry resources and wildlife species, and
it also stabilizes the system. Therefore, for sustainable development and retaining the
biodiversity of wildlife species, it is important that the population pressure be reduced by
making some additional efforts, like increasing the agricultural production using fertiliz-
ers, constructing multi-storey buildings for housing complexes, etc.

Acknowledgment. Authors are thankful to the handling editor and both the referees for
their useful suggestions, which have improved the quality of this paper.

Appendix A: Proof of the Lemma

Now, here only the outline of the proof is given. For detail, see [19].
From the firts equation of model system (1) we get

dR

dt
6 sR

(
1− R

L

)
=⇒ lim sup

t→∞
R(t) 6 L.

Again, through the second equation of model system (1) we obtain

dH

dt
6 rH

(
1− H

K

)
+ π1α1LH

=⇒ lim sup
t→∞

H(t) 6
K

r
(r + π1α1L) = Hm (say).

Further, from the third equation of model system (1) we get

dP

dt
6 λHm − λ0P.

Therefore,

lim sup
t→∞

P (t) 6
λK

rλ0
(r + π1α1L) = Pm (say).
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Now, from the fourth equation of model system (1) we obtain

dS

dt
6 φθLS − δ0S2 − θ0S =⇒ lim sup

t→∞
S(t) 6

φθL− θ0
δ0

.

Hence the proof.

Appendix B: Proof of Theorem 1

For the model system (1), the Jacobian matrix B is given as follows:

B =


a11 −α1R −α2R

2 −φR
π1α1H a22 0 0

0 λ −λ0 0
θφS 0 −δ1S2 − θ1S a44

 ,

where

a11 = s

(
1− 2R

L

)
− α1H − 2α2RP − φS,

a22 = r

(
1− 2H

K

)
+ π1α1R,

a44 = θφR− 2δ0S − 2δ1PS − θ0 − θ1P.

From the Jacobian matrix B (evaluated at F0) it is apparent that two eigenvalues, i.e.,
s and r are positive. Thus, equilibrium F0 is always unstable in R–H-plane.

From the Jacobian matrix B (evaluated at F1) it is apparent that two eigenvalues, i.e.,
(r + π1α1L) and (φθL − θ0) are positive. Thus, equilibrium F1 is always unstable in
H–S-plane.

Again, from Jacobian matrix B (evaluated at F2) it is straightforward that one eigen-
value, (i.e., s − α1K) is positive. Hence, the equilibrium F2 is always unstable in
R-direction.

Similarly, from Jacobian matrix B (evaluated at F3) it is apparent that one eigenvalue
(i.e., r+π1α1R3) is positive. Thus, the equilibrium F3 is always unstable inH-direction.

Further, from Jacobian matrix B (evaluated at F4) it is easy to note that one eigen-
value (i.e., θφR4 − θ0 − θ1P4) is positive. Hence, equilibrium F4 is always unstable in
S-direction.

Now, to determine the nature of eigenvalues of Jacobian matrixB (evaluated at F ∗) is
difficult by using Routh–Herwitz criterion, so we use Lyapunov’s stability theory. By
using the Taylor’s series expansion, the linearized system of model system (1) about
F ∗(R∗, H∗, P ∗, S∗) can be written as follows:

ẋ1
ẋ2
ẋ3
ẋ4

 =


−( s

L + α2P
∗)R∗ −α1R

∗ −α2R
∗2 −φR∗

π1α1H
∗ − rH∗

K 0 0
0 λ −λ0 0

θφS∗ 0 −(δ1S∗ + θ1)S
∗ −(δ0 + δ1P

∗)S∗



x1
x2
x3
x4


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where “·” denote d/(dt) and x1, x2, x3, x4 are small perturbations around the equilib-
rium F ∗, i.e., R = R∗ + x1, H = H∗ + x2, P = P ∗ + x3, S = S∗ + x4.

Now consider the positive definite function which is given as follows:

X =
1

2

(
x21
R∗

+ k1
x22
H∗

+ k2x
2
3 + k3

x24
S∗

)
, (17)

where k1, k2, and k3 are some positive constants to be chosen appropriately.
The differentiation of equation (17) along the solutions of linearized system of (1)

with respect to t we get

dX

dt
= −

(
s

L
+ α2P

∗
)
x21 − k1

r

K
x22 − k2λ0x23 − k3(δ0 + δ1P

∗)x24

− α1(1− k1π1)x1x2 − α2R
∗x1x3 − φ(1− k3θ)x1x4

+ k2λx2x3 − k3(δ1S∗ + θ1)x3x4.

Choosing k1 = 1/π1 and k3 = 1/θ, dX/dt is simplified as

dX

dt
= −

(
s

L
+ α2P

∗
)
x21 −

r

π1K
x22 − k2λ0x23 −

1

θ
(δ0 + δ1P

∗)x24

− α2R
∗x1x3 + k2λx2x3 −

1

θ
(δ1S

∗ + θ1)x3x4.

Now, if the following inequalities hold:

α2
2R∗2 <

4

3
k2λ0

(
s

L
+ α2P

∗
)
, (18)

k2λ
2 <

4

3

r

π1K
λ0, (19)

1

θ
(δ1S

∗ + θ1)
2 <

4

3
k2λ0(δ0 + δ1P

∗), (20)

then dX/dt will be negative definite.
From inequalities (18)–(20) we may easily choose the positive value of k2 if

max

{
3

4

α2
2R
∗2

λ0(
s
L + α2P ∗)

,
3

4

(δ1S
∗ + θ1)

2

λ0θ(δ0 + δ1P ∗)

}
< k2 <

4

3

rλ0
π1Kλ2

. (21)

From inequality (21) we assert that dX/dt is negative definite under condition (13),
proving the theorem.
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Appendix C: Proof of Theorem 2

To prove the global stability of equilibrium F ∗, we assume the following Lyapunov
function, about equilibrium F ∗:

Y (R,H,P, S) =

(
R−R∗ −R∗ ln R

R∗

)
+ z1

(
H −H∗ −H∗ ln H

H∗

)
+
z2
2
(P − P ∗)2 + z3

(
S − S∗ − S∗ ln S

S∗

)
,

where z1, z2, z3 > 0 and will be chosen appropriately. It can be easily checked that
the function Y is zero at the equilibrium F ∗(R∗, H∗, P ∗, S∗) and positive for all other
positive values of R, H , P , and S.

Now the derivative of Y with respect to t along the trajectories of model system (1) is
given by

dY

dt
= −

(
s

L
+ α2P

∗
)
(R−R∗)2 − rz1

K
(H −H∗)2 − z2λ0(P − P ∗)2

− z3(δ0 + δ1P
∗)(S − S∗)2 − α1[1− z1π1](R−R∗)(H −H∗)

+ z2λ(P − P ∗)(H −H∗)− α2R(R−R∗)(P − P ∗)
− φ(1− z3θ)(R−R∗)(S − S∗)− z3(δ1S + θ1)(P − P ∗)(S − S∗).

Choosing z1 = 1/π1 and z3 = 1/θ, we have

dY

dt
= −

(
s

L
+ α2P

∗
)
(R−R∗)2 − r

π1K
(H −H∗)2 − z2λ0(P − P ∗)2

− (δ0 + δ1P
∗)
1

θ
(S − S∗)2 − α2R(R−R∗)(P − P ∗)

+ z2λ(P − P ∗)(H −H∗)−
1

θ
(δ1S + θ1)(P − P ∗)(S − S∗). (22)

Now dY /dt will be negative definite inside the region of attraction Ω, provided the fol-
lowing inequalities:

α2
2L

2 <
4

3
z2λ0

(
s

L
+ λ2P

∗
)

(23)

z2λ
2 <

4

3

r

π1K
λ0 (24)

1

θ

(
δ1
δ0

(θφL− θ0) + θ1

)2

<
4

3
z2λ0(δ0 + δ1P

∗). (25)

From inequalities (23)–(25) we may choose positive z2 if inequality (14) is satisfied.
Thus, dY /dt is negative definite under condition (14).
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Appendix D: Proof of Theorem 3

First, from the lemma we define

L2 = max

{
L,Hm, Pm,

1

δ0
(φθL− θ0)

}
.

Hence, it implies that lim supt→∞ V (t) 6 L2.
This also shows that for any adequately small εi > 0, there exists a Ti > 0 such

that R(t) < L + ε1 for all t > T1, H(t) < Hm + ε2 for all t > T2, P (t) < Pm + ε3
for all t > T3, and S(t) < (φθL − θ0)/δ0 + ε4 for all t > T4. Taking ε = max εi,
T = maxTi, i = 1, . . . , 4, one can say that for ε > 0, there exists a T > 0 such that
for all t > T , the following holds: R(t) < L + ε, H(t) < Hm + ε, P (t) < Pm + ε,
S(t) < (φθL− θ0)/δ0 + ε.

Now from the first equation of model system (1), for all t > T , we can write

dR

dt
> sR− sR2

L
− α1(Hm + ε)R− α2(Pm + ε)R2 − φ

(
1

δ0
(φθL− θ0) + ε

)
R,

=

(
s− α1(Hm + ε)− φ

(
1

δ0
(φθL− θ0) + ε

))
R−

(
s

L
+ α2(Pm + ε)

)
R2.

It gives

lim inf
t→∞

R(t) >
(s− α1(Hm + ε)− φ((φθL− θ0)/δ0 + ε))

s/L+ α2(Pm + ε)
,

which is true for every ε > 0, thus,

lim inf
t→∞

R(t) >
s− α1Hm − (φ/δ0)(φθL− θ0)

s/L+ α2Pm
= Ra (say),

here Ra is positive, provided

s− α1Hm −
φ

δ0
(φθL− θ0) > 0. (26)

Again, from the second equation of model system (1) we have

dH

dt
> rH − rH2

K
+ π1α1RaH = (r + π1α1Ra)H −

rH2

K
, (27)

it follows that lim inft→∞H(t) > (K/r)(r + π1α1Ra) = Ha (say), which is true for
every ε > 0.

Further, from the third equation of model system (1) we get

dP

dt
> λHa − λ0P,

this implies that lim inft→∞ P (t) > λHa/λ0 = Pa (say).
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Similarly, through the fourth equation of model system (1) we get

dS

dt
> φθRaS − δ0S2 − δ1(Pm + ε)S2 − θ0S − θ1(Pm + ε)S,

and so lim inft→∞R(t) > (φθRa − θ0 − θ1Pm)/(δ0 + δ1Pm) = Sa (say), which is true
for every ε > 0 if

φθRa − θ0 − θ1Pm > 0, (28)

and hence, taking L1 = min(Ra, Ha, Pa, Sa), the theorem follows.
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