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Abstract. In this paper, the y-stability analysis issue of nonlinear differential systems along with
two kinds of delay components, namely leakage delay and transmission delay, is investigated. By
constructing a suitable Lyapunov—Krasovskii’s functional and utilizing Finsler’s lemma, some novel
p-stability criteria for the concerned nonlinear system are obtained. These criteria are expressed
in the framework of linear matrix inequalities (LMIs), which can be verified easily by means of
standard software. Finally, two examples are presented to exhibit the advantage and effectiveness
of the proposed theoretical results.
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1 Introduction or the first section

It is obvious that time delay often occur in many industrial and engineering systems, such
as chemical engineering systems, long transmission lines in pneumatic systems, popu-
lation dynamic models, network control systems, etc. It cannot be avoided in modeling
such practical systems. A delay may induce instability, oscillation, and thereby the system
suffers poor performance [9, 16]. That is why the problem on stability analysis of delayed
systems has attracted interests of many researchers for past several decades. In general,
the methods for dealing with delay conditions are Lyapunov—Razumikhin method [28,29],
Lyapunov—Krasovskii functional [24] and linear matrix inequality (LMI) approach. Until
recent times, a large number of publications has come out in dedication to time delay
systems, regarding which some important and interesting results can be seen in [21,22].
However, majority of the published results have focused only on bounded time delays. In
contrary, time delays may be unbounded in many practical systems [2, 8, 15], and there

(© Vilnius University, 2018


mailto:lxd@sdnu.edu.cn
mailto:lxx_math@163.com
mailto:rakkigru@gmail.com

p-stability for nonlinear differential systems with TD 381

by considering this fact, the results accomplished so far in [21,22] seem to be insufficient
and restrictive.

An obvious question is therefore placed as how to analyze the stability of delayed
systems in case of unbounded time delays. Recently, a new rescuing concept has been
introduced, namely p-stability, which answers the aforementioned question. In this con-
nection, few papers have been devoted in establishing some novel p-stability criteria for
delayed systems with or without uncertainties [3, 20, 26, 30]. In [20], the authors have
analyzed the p-stability of impulsive neural networks with unbounded time-varying de-
lays and continuously distributed delays by constructing a suitable Lyapunov—Krasovskii
functional. In [26], authors discussed the p-stability of impulsive differential systems with
unbounded time-varying delays and nonlinear perturbations and obtained some p-stability
criteria that depend on the range of distributed delay and the decay rate of discrete delay.

Alongside, time delay in leakage term will also highly affect the stability of dy-
namical networks. This may be due to some theoretical as well as technical difficulties,
as can be seen in [7]. Inspite of this fact, we cannot see much existing work on time
delays in leakage term or forgetting term, see, for example, [1,7, 12, 13,23]. Particularly,
in [1], leakage delay in the leakage term has been used to destabilize the neuron states,
where an appropriate Lyapunov—Krasovskii functional with a triple integral term has
been constructed to improvise the stability criterion of neural network systems. The state
estimation problem for neural networks with leakage delay and time-varying delay has
been studied in [23], where a new Lyapunov—Krasovskii functional and matrix inequality
techniques have been employed. Some authors have done extensive works on stability of
neural networks with constant leakage delays, see, for example, [18,19]. It is clear that all
results regarding existence and uniqueness of equilibrium point are independent of both
time delays and initial conditions. This shows that leakage term with time delay does not
affect the existence and uniqueness of equilibrium point.

Recently, some authors have studied the dynamics of impulsive functional differential
equations with leakage time delay and impulsive effects [19] by using some analytical
methods. In the existing literature, leakage delay, which endures as a constant in negative
feedback terms, has been taken into account, and results have been published. But, still
considerations on the stability analysis of dynamical systems with leakage time-varying
delay are rare in the literature. More recently, authors in [17] have discussed the stability
issues of nonlinear differential systems with leakage time-varying delays.

In [5, 6], authors have reported that in networked control systems, signals transmitted
from one device to another via some components of systems would originate a way to
many delay components to occur with different physical properties. For example, time
delays d; (t) and d(t) in the dynamical model & (t) = Az(t) + BKx(t — dy(t) — da(t))
has been induced from sensor to controller and from controller to actuator, respectively.
Consequently, stability analysis on such systems has been carried out in [5, 6, 27] by
introducing two additive time-varying delay components d;(t) and do(t) with dy(¢) +
dy(t) = d(t). It is worth pointing out that information on the additive delays is not
suitably taken into account in the aforementioned works, and the introduction of many
slack variables inevitably increases the computational burden, which motivates the study
of this paper. Inspired by this idea, in this paper, u-stability of nonlinear differential
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systems with two kinds of additive time-varying delays, namely leakage time-varying
delay and transmission time-varying delay, is investigated. However, to the optimum of
our knowledge, very few works in the existing literature that consider p-stability problem
of nonlinear differential systems with two delay components.

By applying the Finsler’s Lemma and constructing appropriate Lyapunov—Krasovskii
functional, several delay-dependent u-stability conditions of the addressed system are
derived in the form of linear matrix inequalities (LMIs). These conditions can be easily
tested with any of the available numerical packages. As the present conditions involve
no free-weighting matrices, the computational burden is largely reduced. The p-stability
criteria subject to the equality constraints are derived based on a Lyapunov—Krasovskii
functional, and then less conservative p-stability criteria are obtained via LMIs by apply-
ing the Finsler’s lemma.

Notations. Let R™ denote the n-dimensional real spaces equipped with the Euclidean
norm |-|, and let R"*™ denote the n x m-dimensional real spaces. X > 0 means that the
matrix X is a real symmetric positive definite matrix, whereas X > 0 indicates a positive
semi-definite matrix. The notations X " and X ~! denote the transpose and the inverse
of X, respectively. Denote the largest eigenvalue and the smallest eigenvalue of matrix
X by Amax(X) and Apin(X), respectively. I denotes the identity matrix with proper
dimensions. The notion C(A, B) denotes the space of all continuous functions from A to
B. B* denotes a matrix whose columns form the bases of the right null space of B. In
addition, the notation * denotes the symmetric terms in a symmetric matrix.

2 Problem description and preliminaries

In this section, we introduce our system and some notations and lemmas to facilitate the
presentation of our main results in the following sections.

Consider the following nonlinear differential system with additive leakage and trans-
mission time-varying delay components:

@(t) = —Az(t — & (1) — &) + f(t (1))
+ f(t,z(t —01(t) — 02(1))), t>0, (D
z(t) = ¢(t), te (—o0,0],

where x(t) € R™ denotes the state vector, A € R™*™ denotes a constant matrix, and ¢ €
C:= C(<_OO7 0]7Rn) For any ¢ € C, define ||(10||oo = maXsG(foo,O]{‘(P(S)L |@(S)‘}
Till the end of this paper, it is assumed that

(B1) &1(t), &2(t) and 1 (t), 02(t) are the nonnegative and continuously differentiable
additive time-varying leakage delays and additive time-varying transmission
delays, respectively, and satisfy |£1 ()] < wy < 1, |€a(t)] < wp < 1, 61(t) <
m < 1, 02(t) < 2 < 1, where w1, wa, 71, and 72 are some real constants.

(By) fe€C([0,00) xR™, R™) and satisfies I < (f;(t,51)—f;(t, 82))/(s1—s52) <If
forany t € [0,00), 51 # s2,7 = 1,2,...,n, where f = (f1, f2,.-., fn) " and

I, lj‘ are some real constants, and they may be positive, zero or negative.
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For representation convenience, the following notations are introduced:
L = diag{lflf,l;lg, e Y

T+ L+ I+t
R T e a

Ly = diag{

For completeness, we first give the following definition and lemmas.

Definition 1. (See [3].) Assume pu(t) to be a nonnegative continuous function, which
satisfies pu(t) — oo as t — oo. If there exists a scalar X' > 0 such that

then system (1) is said to be pu-stable.

Clearly, Definition 1 includes the global asymptotical stability and the global expo-
nential stability.

Lemma 1. (See [8].) For any constant matrix M € R"*", M = MT > 0, a scalar
d > 0, and a vector function g(-) : [0,d] — R™ such that the integrations concerned are

well defined,
d T d
{/m@d% Q{/M$ds

0 0

d
<d [ 47 (6)Qu(s) ds.
0

Lemma 2 [Finsler’s lemmal. (See[4].) Let 2 e R*, I' =TT € R"*" and B € R™*"
such that rank(B) < n. The following statements are equivalent:
() 272 <0forall B2 =0, 2 #0;
(i) (BH)TI'(B*) < 0;
(iii) there exists X € R™™ suchthatI' + XB+ BT X" < 0.

3 Main results

Before deriving our main results, the notations of several vectors are defined for sim-
plicity:

El = [Oa 07 07 _-’47 Oa 07 AR 07 Oa_Ia I7 I]7
—_—
22
52 = [Oa 07 07 _A7 Oa 07 R 07 Oa_l7 17 I]
—_————
13

3.1 Leakage and transmission delays are bounded

In the following theorem, we consider both leakage and transmission time-varying delays
to be bounded (&1 (t) < 71, &2(t) < 2, 01(t) < p1, 02(t) < p2), and the criterion for
p-stability in terms of LMI for system (1) has been derived.
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Theorem 1. Assume that (B1) and (B2) hold. Then the equilibriuAm solution of system (1)
is p-stable if there exist constants «; > 0 (i = 1,2,...,31), T > 0, positive definite
matrices P, Q;, R; (j =1,2,...,6), M;, N;, S;, Ty, Ui, W; (I = 1,2, 3), any matrix H
with proper dimension, and a continuous differential function p(t) > 0, which is defined
on [0, 00) such that, for t > ZA“

At) pt=&0M) o plt = &(1))
pt) =0 pty 7 F u(t)
pt =& (1) = &) pt —m) p(t = 2)
w20 T 2 w2
plt=—m—") _ pt—a®) o plt—oo(t) o
wy 7T uty = uty

> Qas,

p(t)
J2 Jy (e — 5)dsdo _ SOy = s)dsdo
() o ()
fp1f9 (t—s)dsdf fpzfe (t—s)dsdf
u(0) S o )
S e Jo 1t = ) ds o SO Sy it = s) ds o dA
mt) = o u(t)
f_w f,\ fe 5) ds df dA < f—m s f/\ f(, s)dsdfdx
u(t) S u(t)
S, I3 5 e = ) dsdodx SO N Sy nlt = s) ds dg dA
() = e ()
f—m o fA fe (t —s)dsdfdr
p(t)

< (og,

< Qog,

< a0,

< a3,

and the following inequality holds:
—INT (=
(:f) @(:f ) <0,

where Zi- is the orthogonal complement of the matrix =1 and ® is defined in Appendix A.
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Proof. Consider the Lyapunov—Krasovskii functional V' (¢, y) = 2?21 Vj(t,y), where

t T t
V1(t7y)=u(t)ly(t)—u4 / y(s)ds| P|y(t) — A / y(s)ds]7
t—&1(t)—E2(t) t—£1(t)—&2(t)
Valt.y) = / u(s)y T (5)Quy(s) ds + / 1(5)y T (5)Qay(s) ds
t—£1(t) t—E&2(t)

t

b [ T @ s+ [ T (9wl ds

t—&1(t)—E2(t) t
+ / 1(s)y™ (5)Qsy(s) ds + / u(s)y ™ (5)Qoy(s) ds,
Valt,y) = / u(s)yT () Ruy(s) ds + / 1(s)y ™ (s) Ray(s) ds
t—p1(t) t—o2(t)
+ (s)y ™ (s) Ray(s) ds + / u(s)yT (5) Ray(s) ds
t—o1(t)—02(t) t—p1
4 / 1(s)y T () Rsy(s) ds + / u(s)y T () Roy(s) ds.
Vilty) = 1 / / (s — 8)y T (w)S1y(u) duds
731H;s
" / / (= 8y (u) Syy(u) du ds
—v2 t+s . )
+ (1 +72) / / il — )y T (u)Ssy(u) duds,
—y1—72 t+s
0 t
Vit =p1 [ [ wlu sy @) Ty duds
—p1 t+s . )
(o1 4 p2) / / (s — )y () Tay(u) duds,
—p1—p2 t+s

Nonlinear Anal. Model. Control, 23(3):380-400



386 X. Lvetal.

0

Vit = [ [ [ uta- 95T @00) dudsas
[
0

0
2
+ 2 // w(u — 8)y " (u)Usgy(u) duds do
0
(n+92)° +,Y2 / // (u—28)y (u)Usy(u)dudsdd,
—v1—72 6 t+s
00
<]
2
o

—P1

2/°j

P2

t
/uufs w)Wiy(u) duds d

t+

0 0
(oL + p2)” + pa)” / / p(u —s)y " (w)Wsy(u)dudsdd,
0

—P1—P2 t+s
0 0 0 ¢
%////“(“—3) (u) My 3(u) du ds d dA
71 A 0 t+s
0 0 0 ¢
73 .
+F////“(“—S) (w) Magj(u) duds d dA
A 6 t+

6
—Y1—72 t+s
s 0 00 ¢
Vot =" [ [ [ [t 9 @Nigtn) dudsasar
—p1 A 0O t+s
s 0 00 ¢
—l—%////u(u—s) (1) Nagi (1) dut ds 6 d\
—p2 A 0 t+s
s 0 00 ¢
+ (o1 2'02) / ///u(u—s) (u)N3y(u) duds d dA
—p1—p2 A 0 t+s
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The derivatives of V;(t,y) (j = 1,2,..., 9) with respect to time along trajectory (1) are
obtained as follows:

Vi(t,y) < jiult) [yT(t)Py(t) - yT(t)PA< / y(s) d8>

t=&1()—&2(t)
<t—£1 (t)—&2(8)

x ( /t y(s) ds>

t—81(t)—&2(¢)

y'(s) d5> AT Py(t) + ( y T (s) ds> ATPA

t—=&1(t)—&2(t)

+ 2p(t) [yT(t)PQ(t) —y' (t)PAy(t)

yWﬂPAO—wn—wﬁy@—fﬂw—fﬂU)—< l/ yT@wu>

t—&1(t)—€2(t)

x AT Py(t) + < / y'(s) ds> AT PAy(t)

t—&1(t)—€2()
< /t

y'(s) ds) ATPA(1 —w; — wg)y(t —&(t) — {2(0)] ,
t—&1(t)—€2(¢)

Va(t,y) < p(t)y" ()[Q1 + Q2 + Qs + Qu + Qs + Qgly(t)
—p(t=&®) [y (t—&®))Quy(t — &)1 —w)
—u(t = &) [y (t - &) Qay(t — &(1))] (1 — wo)
—u(t = &) = &) [y (t - &) — &0)Qsy(t — &1(t) — &(1)]
X (1 —wi —wa) — M(t—%)[yT(t—%)Qw(t—’71)]
—pult—m =) [y (t = = 72)Qey(t — 11 — 72)]
=t =) [y (t = 22)Qsy(t —72)],

Va(t,y) < p(t)y" (t)[R1 + Ry + Rs + Ry + Rs + Rgly(
—nu(t=a®) [y (t = 1)) Ray(t — o1(t)] (1 —m)
—p(t—o02(t)) [y (t — 02(t)) Roy(t — 02(t))] (1 — m2)
—p(t—o1(t) = 02(t)) [y (t — 01(t) — 02(t)) Rsy (t — 01(t) — 02(t))]
X (L=m =) — p(t — p1) [y (t = p1)Qay(t — p1)]
—p(t—p1—p2) [y (t = p1 — p2)Qey(t — p1 — p2)]
—p(t = p2) [y (t = p2)Qsy(t — p2)],

f)
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t

0
Vilt.y) < ( / u(t—s)ds>wlyT< >sly<>—< / yT<u>du)u<t>sa

—1 t—7

(/ty U> (/ (t—s)d5>72yT(t)S2y(t)

1 —72

d
. t :
_ ( y'(u )du) (t )Sz( / y(u) du) + < / u(t—s) ds)

=72 t—2 —Y1—72
t t

><(71+V2)1/T(t)53y(t)< /yT(U)dU>u(t)Ss< /y(U)dU>,

t—y1—"2 t—y1—"2
t

Valt,y) < ( / u(t—S)dS>p1yT( )le()—< / J(u)du)u(tm

P1 t—p1

/y dU> (/ (t—S)dS>p2yT(t)sz(t)

t—p1 P2

ufoor [« [ s

—pP1—p2

X (p1+p2)y () T3y(t) ( /t ) ( /ty(u)du)

t—p1—p2 t=p1—p2

|
_<t /

0 0 0

<(//M<t_s>dsdg) ity ([ fue- o)

-7 0 72 0

0 0
x”;yW)Uzy(m( / /mt—s)dsde)(“j?)

—Y1—72 6

x T (OUsy(t) — p(t) [y () [PV + 13Uz + (31 +72)*Us]y (1)

—f(tmm( / y(u)du> —( / yT(u>du>mU1y<t>

t=m1 t—m
t t t

+ ( / y' (u) du) U1< / y(u) du) - yT(t)’ygU2< / y(u) du)

- -7 =72
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—( / yT(u)dU>72U2y(t)+<

t

/ y(u) du)

t

/ y'"(u) du) U, (

—y' (t)(n +72)U3< / y(u) du) - ( / y' (u) du>
X (71 4+ 72)Usy(t) + ( / y'(u) du> U3< / y(u) du)] ,
) o o Vo
Vi (t,y) << w(t —s) dsd@)p1 )T (OWag(t) ( u(t —s) dsd9>
[l /]
) 0 0
< 25T Wi (1) + ( [ [ua-9 dsd9>(”1+2”2)' (Wi (0)
—p1—p2 0

— pu(t) [yT(t) [PIW1 + p3Wa + (p1 + p2)*Ws]y(t) —y ' ()W

><< /t y(U)dU> —< /t yT(U)dU>p1W1y(t)+<

t—p1 t—p1

t

/ y' (u) du)

t—p1

—( /tyT(u)du>

t—p2

t t

X W1< / y(u) du) —yT(t)p2W2< / y(u) du

t—p1 t—p2

x paWay(t) + ( / y' (u) du) W2< / y(u) du)

t—p2 t—p2
t

xW3< j y(u)du>—< / yT(u)du>

t—p1—p2 t—p1—p2

X (p1+ p2)Way(t) + ( / y' (u) dU) W3< / y(u) du)} ;

t—p1—p2 t—p1—p2

) < ( /O/O/Ou(t—s)de9d)\>?yT(t)Mlz)(t)
N b

Y1

+< /O/O/Out—s dsdadA>72 § ' (6) Mag(t)
A6

—72

—y () (p1 + p2)
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0 0 0
+< / //M(t—s)dsded)\> (71272)31)T(t)ng(t)
A

0
— u(t) [yT( )(fM1 L 220, + WM?))y(t)

4 4
( /0 /tyT dudx\> —Myy(t) - yT(ﬂf%( /O /ty(U)dudA>
—1 A —v1 t+A
0t
(_A/A y'(u) dud/\>z\41<_4t+/A dudA)
0 ¢
72M2< / /y(u) dudA) - ( / / dud>\> szy(t)
—v2 t+ A =72 t+ A
+ (Zﬂl dudA) <4f+/>\ dud)\>
0
_yT(t)WM3<71/W2t+/A y(u )dudA)
» 072 t+/\ y' dudA) Mg(_%/im tJr//t\ y(u) dudA)]

0
2
—Y1— ’th+>\

[’
— (1) [J(t) (ZN iy, 2”)4N3)y<t>
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0 t 0 t

—( /] yT<u>dudA>p§N1y<t>—f(t)ffvl( [/ y(u)dudA>

—p1 t+A —p1 t+A
0 t 0 t

+< / /yT(u)dud)\>N1< / /y(u)dudA)

—p1t+A —p1 t+A
0 t 0 t

—yT(t)‘fM( / /y(u)dudA) - < / /yT(u)dud)\>p2%N2y(t)

—p2 t4+A —p2 t4+A

+< /O /tyT(U)dud/\>Nz< /O /ty(U)dudA>

—p2 t+A —p2 t+A

—y<>(’””2 (// dud)\>

—p1—p2 t+X
0 t

—( [ [vw dudA) RS Y0

—p1—p2 t4+A
0 t

(] Jromaln( ] Jooes)

—p1—p2 t+A —p1—p2 t+A
Furthermore, for any matrix H with appropriate dimension, we get
2u(t)y (OH [~ Ay(t — &1(0) — &(0) + F (¢, y(0)
+F(ty(t = oi(t) — 02(t)) —y(t)] = 0.

From our hypothesis (B2) the following inequalities hold for any diagonal matrices
X7 > 0and X5 > 0:

TN I i PRGN

y'(t—o1(t) — 02(t)) Li Xy —Ly X,
ut) [}'T(t y(t —o1(t) — 2@))} [ * X5 }
y(t — o01(t) — 02(1))
t

X {]-‘(t,y(t —o01(t) — 92)( )))}

It then can be deduced that

< 0.

V(t,y) < u(t)¢) ()¢ (L) )

Nonlinear Anal. Model. Control, 23(3):380-400
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with

L (1) = lyT(t), y (t—&@), y (t—&®), y t—&®) —&®), y' t—m),

Yy t—v2), y (t—m—72), ¥ (t— o), y" (t—021),
T T T T
y (t—o1(t) —02(t)), y (t—p1), y' (t—p2), y' (t —p1 — p2),
t t t
y7 (s)ds, / y7 (s)ds, / Y7 (s)ds,
t—E1(t)—&2(t) t—m1 t—y2
t t t t
/ Y7 (s)ds, / YT (s)ds, / Y7 (s)ds, / y" (s)ds,
t*Vl*Vz t—p1 t—p2 t—p1—p2
/ / s)dsd), / / s)dsd), / / s)dsd),
=71 t+A —v2 t+A —v1—"72 t+A
/ / s)dsd), / / s)dsd), / / s)dsd),
—p1t+A —p2 t+X —p1—p2 t+A

g @), F'(t,y®), F'(t,y(t — oi(t) — Qg(t))):|.

Finally, by use of Lemma 2, condition (2) with = (; (t) = 0 is equivalent to the following
condition:

—1\ T —_
u(t)(Z1) @(51) <o.
From this relation we obtain that

V(t,y) <0, t=>T. 3)

Then it follows from (3) and the generalized Ito’s formula that

\Y
~)

V(t,y) = V(0,y) = /V(S,y) ds <0, t “)

From (3) and (4) we have

Vit,y) <V(0,y9), t>T.
By using Lemma 1, we obtain
t

() (71 +72)V(0,y), t=0.

t—&1(t)—€2(t)
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Similarly, by considering the definition of V; (¢, y), we have

V(0,y)
t t) — <
p(t)|y(t) — A y(s)d o (P)
t—&1(t)—&2(1)
Therefore, it follows that
2 Amax(Az) V(O) y)
ly(t)]” < 282" 2 , 2 , t>0. 5
®)]y(t)] o (53) (m +72)V(0,y) + o (P) < 0. (5

From the definition of V' (¢, y), we have

V(0,y) < P‘max(P) [1 + (m + 72)/\maX<~A)]2 + Y1 Amax(@1) + Y2 Amax(Q2)
+ (71 + 72) Amax(@3) + V1 Amax (Q4) + Y2 Amax (@5) + (71 + 72) Amax(Qs)
+ Amax (R1) +Amax(R2) +Amax(R3) +Amax(Ra) +Amax(R5) +Amax (Rs)
=+ ’Yf)‘maX(Sl) + 72 )‘maX(SQ) (m+ ’72)3)\max(53) + P1 Amax (1)
+ P2 Amax(T2) + (p1 + P2) Amax(T3) + 77 Amax (U1) + 73 Amax (U2)
+ (71 +72)° Amax (Us) + ¥ Amax (W1) + 5 Amax (W)
+ (p1 4 p2)" Amax(W3) + 7] Amax(M1) + 75 Amax (M2)
+ (71 4 72) Amax (M) + p3 Amax (V1) + p5Amax (N2)
+ (P14 p2)* Amax (N3)] [l ol|% = K
From (5), we get the following:

2 1 [ Amax(A?) 2
‘y(t)‘ < m 2 )\min(S?;) (’71 +'Y2) + Amin(P) K < oo.

By Definition 1, it can be concluded that system (1) is p-stable. O

3.2 Leakage delay is bounded and transmission delay is unbounded

In the following theorem, sufficient conditions for pu-stability of system (1) with bounded
leakage time-varying delays and unbounded transmission time-varying delays (£ (t) <71,
&2(t) <72) have been derived in the form of LMIs.

Theorem 2. Assume that (B1) and (Bz) hold. Then the equilibrium solution of system (1)
is p-stable if there exist constants o; > 0 (i = 1,2,...,10,14,15,16, 20, 21, 22, 26,
27,28), which are defined as in Theorem 1, T' > 0, positive definite matrices P, Q;
(g =12,...,6), R, M, S;, Uy (I = 1,2,3), any matrix H with proper dimension, and
a continuous differential function u(t) > 0, which is defined on [0, ), such that, for
t> f, the following inequality holds:

(Z5) w(=4) <o,

where Z5- is the orthogonal complement of the matrix =5 and W is defined in Appendix B.
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Proof. Choose the Lyapunov—Krasovskii functional candidate as follows:

V(t,y) = Vilt,y) + Valt,y) + Va(t,y) + Va(t,y) + Vs(t,y) + Vs(t,y),  (6)

where
t t

Dalt,y) = / 1(s)y ™ (s) Ruy(s) ds + / u(s)y T (5) Ray(s) ds

t—o1(t) t—02(t)
t

+ / 1(s)y T (5)Ray(s) ds,
t—o1(t)—02(t)

and the remaining terms are defined as in Theorem 1. Then applying the similar discussion
as the proof of Theorem 1, we get

V(t.y) < n(t)¢ ()P (1) @

with

>

—_
=

S~—"
I

PW&JF@—&@»yT@—&w%yWﬁ%ﬂﬂ—&mL
y =),y (t—2), ' (t—m =)y (t— (),
y'(t—02(), y' (t—01(t) — 02(t)),

t7§1(t)7§2(t) t—m t—v2 t—y1—2

// s)dsd), //yT(s)dsd)\, / /yT(s)dsdA,

—y1 t+ A —Y2 t+ A —y1—72 t+A
yT(t)? ]:T(tay(t))v ]:T (t7y(t - Ql(t) - QQ(t)))] :

Finally, by use of Lemma 2, condition (7) with Z5(5(¢) = 0 is equivalent to the following
condition:

From this relation we obtain that
Vity) <0, t>T. ®)

Then it follows from (6) and the generalized Ito’s formula that

i
0

\Y
M)

€))
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From (8) and (9) we have

Vit,y) <V(0,y), t>T.

Similar as in Theorem 1, by using Lemma 1, we obtain
t
A / y(s)ds
t—€1(t)—&2(t)

’ )\max (AQ) 17

<~——5~ y), t=0.
)\min(S?)) (71 +72)V(0 y) 0

u(t)

Similarly, by considering the definition of V; (¢, y), we have

t 2 ~
V(0,y)
_ < .
O -4 [ ] <
t—&1(t)—62(t)
Therefore, it follows that
2 )\max(-AQ) 7 ‘7(07 y)
Olyt)| < 2———7—= V0, 22— , t=0. 10
:u( )’y( )’ )\min(SB) (’71 +'72) ( y) + )\min(P) <0 10)

From the definition of V' (¢, y) we have

V(0,) < Pmax(P) [1+ (1 +72) Amax (A)]” + 71 Ama(@Q1) + T2 Ama(Q2)
+ (711 +72) Amax (Q3) + 11 Amax(Q4) + 12 Amax(Q5) + (Y1+72) Amax(Qs)
+ Amax(R1) + Amax (R2) + Amax (R3) 4 77 Amax (S1) + 75 Amax (S2)
+ (M1 4+72)* Amax (93) 4 97 Amax (U1) 4+ 73 Amax (U2) + (71+72)* Amax (Us)
+ 9 Amax (M1) + 73 Amax (M) + (71 +72) Amax (M) |01 %
=K.

From (10) we get the following:

2 1 [ Amax(A?) 2 ~
y@O)| €« = 2—5~M+72) + —— | K < oc.
| ( )| M(t) )‘min(SS) ( ) )\min(P)
By Definition 1 we conclude that system (1) is p-stable. O

Remark 1. In the field of delay-dependent stability analysis, one of major concerns is to
get maximum delay bounds with fewer decision variables [10, 11, 14]. By utilization of
Finsler’s lemma one can eliminate free variables, which were used in zero equalities in the
works [11,14]. From Lemma 2 one can check that the (B+) T I'(B+) < 0 is equivalent to
the existence of X such that I'+ X B+ BT X T < 0 holds. Insertion of such an additional
matrix X does not play a role to reduce the conservatism of (B+)"I'(B+) < 0. It only
increases the number of decision variables. Therefore, our proposed p-stability criteria
are derived in the form of (ii) in Lemma 2.
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Remark 2. So far many researchers have examined the stability of time-varying delay
systems via a lot of methods, for example, see [25,31]. Unluckily, we cannot implement
all those methods to the time-varying delay systems together with leakage time-varying
delay owing to the occurrence of the term 3 (t) in the corresponding systems. In addition,
very few researchers have investigated the stability problem of nonlinear differential sys-
tems with leakage time-varying delay [12,17]. So far, no results in the literature studies the
issue of pu-stability of nonlinear differential systems with additive time-varying leakage
delays. To fulfill this idea, in this paper, we have examined the p-stability of nonlinear
differential systems with bounded and unbounded additive time-varying leakage delays.

4 Numerical examples

Example 1. Consider the nonlinear system with additive leakage and transmission time-
varying delays (1) with the following parameters: A = B 2], 1 = 0.1, v» = 0.3,
pP1r = 0.2, P2 = 0.5, w1 = 0.2, Wy = 03, m = 0.4, N2 = 0.5, ./—"1(8) = FQ(S) =
0.015 tanh(s), Ly = 0, Ly = 0.03I. Let u(¢t) = t and choose oy = 2.7, a9 = 3.3,
Qgp — 05, Qo1 = 06, g2 = 07, Qo3 — 09, a2y = 09, Qg5 — ]..]., Qg — 1.2,
g7 = 1.3, asg = 1.4, agg = 1.5, azg = 1.5, ag; = 1.6, then the LMI in Theorem
1 have the feasible solution via MATLAB LMI toolbox. By Theorem 1, system (1) with
bounded leakage and transmission time-varying delays is p-stable as shown in Fig. 1(a).

Example 2. Consider the nonlinear system with additive bounded leakage and unbounded
transmission time-varying delays (1) with the following parameters: A = [ 2 ] LY =
0.2, 79 = 0.4, w1 = 0.1, wo = 0.3, 51 = 0.3, p2 = 0.5. Choose F1(s) = Fa(s) =
0.005tanh(s), then Ly = 0 and Ly = 0.017. Let u(t) = t and take the parameters
as oy = 1.3, Q10 = 1.5, Qg = 0.2, Qg1 = 0.4, gy = 0.6, Qg = 1.5, Qo7 = 1.8,
asg = 1.9, then the LMI in Theorem 2 have the feasible solution via MATLAB LMI
toolbox. By Theorem 2, system 1 with bounded leakage and unbounded transmission
time-varying delays is u-stable, as shown in Fig. 1(b).

t

20— — —
0O 10 20 30 40 50 60 70 80 90 100
(a) Example 1 (b) Example 2

Figure 1. State trajectories of system (1).
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5 Conclusion

In this paper, we have studied the problem of p-stability for a class of nonlinear differen-
tial systems with two kinds of additive time-varying delay components, namely leakage
delay and transmission delay. Based on the Finsler’s lemma and Lyapunov stability theory,
some new delay-dependent p-stability criteria are derived in terms of LMIs that can be
easily solved by various convex optimization algorithms. Two numerical examples have
been given to show the effectiveness and usefulness of the presented criteria.

Acknowledgment. The authors would like to thank the referee for his/her very impor-
tant comments that improved the results and the quality of the paper.

Appendix A

The elements of & = (¢; j)29x29 are defined by

6
¢11 = P—PA— ATP+ Z(Qz + R;) + a1av151 + a157252 + e (71 + 72)S3

i=1

+ a17p1Th + a1gp2Te + ai9(p1 + p2)T3 — ViU, — ’Y§U2 —(n+ ’Y2)QU3

4 4 4
+
- p%WI - P%WQ — (p1 + p2)2W3 - %Ml - %MQ - %MB

4 4 4
P1 P2 (p1 + p2)

_ AN PN, ML) N X
47T g 4 3 D

¢174:PA(1—(/J1 —UJQ), ¢1’14: —O¢1P)14—()4114T}D-i-14—rf)147
¢1,15 = 11U, ¢1,16 = 12U2, ¢1,17 = (1 + 12)Us, ¢1,18 = p1 Wi,

2 2
1,19 = p2Wa, d1,20 = (p1 + p2)Ws, P1,21 = %Mh 1,22 = %Mz,

+ 2 2 2 + 2
P18 = %M& broa = %Nl, P15 = %NQ, P26 = %N&

¢1,071 = P, P1,28 = —L2X7, P22 = —02Q1(1 — w1), ¢33 = —a3Q2(1 — w2),
Pa,4 = —0uQ3(1 — w1 — w2), P4,14 = —ATPA(l — w1 — w2), Paor = —HA,
¢5,5 = —a5Qa, ¢6,6 = —a6Qs, 7.7 = —arQs, ¢s,s = —asRi(1 —n1),
P99 = —agRa(1 — m2), ¢10,10 = —a10R3(1 — 1 — 12) — L1 Xo,

@10,20 = —L2Xo, ¢11,11 = —a11Ra, P12,12 = —a12Rs, ¢13,13 = —au3Re,

$raa = 1A' PA=Ss,  $uazm=—A'P,  ¢i505=—5 — U,

16,16 = —S2 — Uy, ¢17.17 = —Us, ¢18,18 = =11 — Wi, 19,10 = =T — Wa,

#2020 = =13 — W3, P21,21 = —Mi, 22,22 = —Mo, $23,23 = —Ms3,

¢24,24 = — N1, ¢25,25 = —Na, $26,26 = — N3,

(m +12)°

) 2
p1 P2
) U3+a232W1+a242W2

2 2
P27,27 = azo%Ul + a1 %Uz + a2
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(1 +72)° M

1 )2 3 3
MW3+Q26£M1 +0127’L2M2+0428 3

oz 6 6 6

+a29%N1 +C¥30%NQ +a31%1\@, —H-H",

¢Pa7,28 = H, 27,20 = H, Pas,28 = X1, $20,29 = Xo.

Appendix B

The elements of ¥ = (15 ;)20x20 are defined by

6 3
P11 =a1P— PA— ATP+ Z Qi + ZRi + 147151 + 157252 + a16(Y1 + 72)S3

i=1 i=1

4 4 4
+
- ’YfUl *’Y%Uz —(n +72)2U3 - %M1 - %M2 - %Ms —L1Xy,

1/)174 :PA(lfwl 7&)2), 11)1711 = 7a1PA7CM1ATP+ATPA, ’lﬂ1712 :’)/1U17

2 2
Y113 = 12Us, Y14 = (11 +72)Us, Y115 = %Ml’ Y16 = %Mz’

1 o)?
Y117 = MM& P1,18 = P, Y119 = —L2 X, Pa2 = —a2Q1(1 — w1),

P33 = —a3Q2(1 — wa), Yaa = —aaQs(l — w1 — wa),

Ya11 = —ATPA(l — w1 — wa), Y18 = —HA, P55 = —a5Qa,
6,6 = —a6@s, P66 = —as@s, P77 = —arQe, g8 = —agRi(1 —m),
P90 = —agRa(1 — n2), Y10,10 = —a1oR3(1 —m — n2) — L1Xo,

10,20 = —L2 X2, Y1111 = a1 AT PA — Ss, P18 = —A' P,

P12,12 = =51 — Un, P13,13 = —S2 — Us, Y1414 = —Us,

P15,15 = — M, 16,16 = — Mo, Y1717 = —Ma,

(71 +72)?

3 3
Us + 01267*1]\41 + Oz27FL2M2

2 2
18,18 = 020£U1 + 21 %Uz + a2 5 G

2
3
_|_0¢28%]\43_H_HT7

P18,10 = H, Yi1g,20 = H, Y19,19 = X1, 20,20 = Xo.
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