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Abstract. In this paper, the compactness of the set of L2 trajectories of the control system described
by the Urysohn-type integral equation is studied. The control functions are chosen from the closed
ball of the space L2 with radius r and centered at the origin. Existence of an optimal trajectory of
the optimal control problem with lower semicontinuous payoff functional is discussed.
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1 Introduction

The mathematical models of many processes in mechanics, physics, economy, biology are
described via nonlinear integral equations (see, e.g., [2,6,7,18,23] and references therein).
W. Heisenberg in his well-known Physics and Philosophy writes: “The final equation of
motion for matter will probably be some quantized nonlinear wave equation. . . This wave
equation will probably be equivalent to rather complicated sets of integral equations. . . ”
(see [10, p. 68]). It should be noted that the theory of integral equations is considered
one of the origins of contemporary functional analysis (see, e.g., [11, p. 2, Chap. 1]).
Some processes described by the integral equations quite often include a parameters,
which characterize the control efforts or describe the model uncertainties. Many of control
efforts and some of uncertainties have limited resources and as usual they are exhausted
by consumption, say as fuel, energy, finance etc. These kinds of efforts in general are
characterized by an integral constraint on the control functions (see, e.g., [8, 9, 17, 19]).
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Control systems described by the integral equations with geometric constraints on
the controls are discussed in [1, 3, 4, 22] (see also the references in these papers). The
properties of the set of trajectories of the control systems with integral constraints on
the control functions and described by different type integral equations are considered
in [13, 14]. In [12, 15] and [16], the methods for approximate construction of the set of
trajectories are discussed. Note that in aforementioned papers, it is accepted that the tra-
jectories of the considered equations are continuous function. In this paper, the functions
from the space L2 are chosen as a trajectory of the Urysohn-type integral equation. Note
that L2 solution concept is very useful tool for investigation various problems arising in
theory and applications (see [5,20,21] and references therein). In the presented paper, the
compactness of the set of trajectories is established, which is applied to prove existence
theorem for optimal control problem with semicontinuous payoff functional. The distance
between the trajectories generated by admissible control functions is evaluated.

The paper is organized as follows: In Section 2, the basic conditions, which satisfy
the system’s equation, are given. In Section 3, it is proved that every admissible control
function generates unique trajectory (Proposition 3). In Section 4, it is shown that the set
of trajectories is a bounded subset of the spaceL2 (Proposition 4). The distance evaluation
between the trajectories is given in Section 5 (Proposition 5). In Section 6, it is proved that
the set of trajectories is a compact subset of the space L2 (Theorem 1), and the existence
of optimal trajectories in given optimal control problem, where the payoff of the control
is a lower semicontinuous functional, is discussed (Proposition 6).

2 Preliminaries

Consider control system described by the Urysohn-type integral equation

x(ξ) = f
(
ξ, x(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x(s)

)
+K2

(
ξ, s, x(s)

)
u(s)

]
ds, (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, ξ ∈ Ω, λ ∈ R, Ω ⊂ Rn
is a Lebesgue measurable set such that µ(Ω) <∞, µ(Ω) is the Lebesgue measure of the
set Ω.

Let r > 0 be given number,

Ur =
{
u(·) ∈ L2

(
Ω;Rm

)
:
∥∥u(·)∥∥

2
6 r
}
,

where L2(Ω;Rm) is the space of Lebesgue measurable functions u(·): Ω → Rm such
that ‖u(·)‖2 < +∞, ‖u(·)‖2 = (

∫
Ω
‖u(s)‖2 ds)1/2, ‖·‖ denotes the Euclidean norm.

Ur is called the set of admissible control functions, and every u(·) ∈ Ur is said to be
an admissible control function.

It is assumed that the functions and a number λ ∈ R given in system (1) satisfy the
following conditions:

(A) The function f(·, x) : Ω → Rn is Lebesgue measurable for every fixed x ∈ Rn,
f(·, 0) ∈ L2(Ω;Rn), and there exists l0(·) ∈ L∞(Ω;R) such that for almost all
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(a.a.) ξ ∈ Ω, the inequality∥∥f(ξ, x1)− f(ξ, x2)∥∥ 6 l0(ξ)‖x1 − x2‖

is satisfied for every x1 ∈ Rn and x2 ∈ Rn, where L∞(Ω;Rm) is the space
of Lebesgue measurable functions u(·) : Ω → Rm such that ‖u(·)‖∞ < +∞,
‖u(·)‖∞ = inf{c > 0: ‖u(s)‖ 6 c for almost all s ∈ Ω};

(B) The function K1(·, ·, x) : Ω × Ω → Rn is Lebesgue measurable for every fixed
x ∈ Rn, K1(·, ·, 0) ∈ L2(Ω ×Ω;Rn), and there exists l1(·, ·) ∈ L2(Ω ×Ω;R)
such that for a.a. (ξ, s) ∈ Ω ×Ω, the inequality∥∥K1(ξ, s, x1)−K1(ξ, s, x2)

∥∥ 6 l1(ξ, s)‖x1 − x2‖

is satisfied for every x1 ∈ Rn and x2 ∈ Rn;
(C) The function K2(·, ·, x) : Ω × Ω → Rn×m is Lebesgue measurable for every

fixed x ∈ Rn, K2(·, ·, 0) ∈ L2(Ω × Ω;Rn×m), and there exists l2(·, ·) ∈
L∞(Ω ×Ω;R) such that for a.a. (ξ, s) ∈ Ω ×Ω, the inequality∥∥K2(ξ, s, x1)−K2(ξ, s, x2)

∥∥ 6 l2(ξ, s)‖x1 − x2‖

is satisfied for every x1 ∈ Rn and x2 ∈ Rn;
(D) The inequality 6[h20+λ

2h21+λ
2r2h22µ(Ω)] < 1 is satisfied, where h0 = ‖l0(·)‖∞,

h1 = ‖l1(·, ·)‖2 = (
∫
Ω

∫
Ω
l1(ξ, s)

2 dsdξ)1/2, h2 = ‖l2(·, ·)‖∞.

Let us define a trajectory of system (1) generated by an admissible control function
u(·) ∈ Ur. A function x(·) ∈ L2(Ω;Rn) satisfying the integral equation (1) for a.a.
ξ ∈ Ω is said to be a trajectory of system (1) generated by the admissible control
function u(·) ∈ Ur. The set of trajectories of system (1) generated by all admissible
control functions u(·) ∈ Ur is denoted by Xr and is called briefly the set of trajectories
of system (1).

Now we will formulate some auxiliary propositions, which will be used in following
arguments.

Proposition 1. The inequalities∥∥f(ξ, x)∥∥ 6 h0‖x‖+
∥∥f(ξ, 0)∥∥,∥∥K1(ξ, s, x)

∥∥ 6 l1(ξ, s)‖x‖+
∥∥K1(ξ, s, 0)

∥∥,∥∥K2(ξ, s, x)
∥∥ 6 h2‖x‖+

∥∥K2(ξ, s, 0)
∥∥

are satisfied for every x ∈ Rn and a.a. (ξ, s) ∈ Ω ×Ω.

The proof of the proposition follows from conditions (A), (B) and (C).

Proposition 2. For every a1, a2, . . . , an ∈ R, the following inequality is satisfied:

(a1 + a2 + . . .+ an)
2 6 n

(
a21 + a22 + · · ·+ a2n

)
.
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3 Existence and uniqueness of trajectory

Denote

f∗ =

∫
Ω

∥∥f(ξ, 0)∥∥2 dξ,
ki =

∫
Ω

∫
Ω

∥∥Ki(ξ, s, 0)
∥∥2 dsdξ, i = 1, 2.

(2)

Proposition 3. Every admissible control function u(·) ∈ Ur generates unique trajectory
of system (1).

Proof. Let us choose an arbitrary u∗(·) ∈ Ur. Define a map x(·) → F (x(·))|(·), x(·) ∈
L2(Ω;Rn), setting

F
(
x(·)

)∣∣(ξ) = f
(
ξ, x(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x(s)

)
+K2

(
ξ, s, x(s)

)
u∗(s)

]
ds. (3)

According to conditions (A), (B) and (C), the function f(·, x) is measurable for every
fixed x ∈ Rn, for a.a. ξ ∈ Ω, the function f(ξ, ·) is continuous, the functions Ki(·, ·, x)
(i = 1, 2) are measurable for every fixed x ∈ Rn, for a.a. (ξ, s) ∈ Ω × Ω, the functions
Ki(ξ, s, ·, ) (i = 1, 2) are continuous. Then we obtain that for every x(·) ∈ L2(Ω;Rn),
the function ξ → F (x(·))|(ξ), ξ ∈ Ω, is Lebesgue measurable (see [24, p. 71]).

Now we will prove that the inclusion F (x(·))|(·) ∈ L2(Ω;Rn) is satisfied for every
x(·) ∈ L2(Ω;Rn). Taking into consideration that u∗(·) ∈ Ur, from Proposition 1, (3) and
Hölder’s inequality it follows that∥∥F (x(·))∣∣(ξ)∥∥

6 h0
∥∥x(ξ)∥∥+ ∥∥f(ξ, 0)∥∥+ λ

∫
Ω

[
l1(ξ, s)

∥∥x(s)∥∥+ ∥∥K1(ξ, s, 0)
∥∥]ds

+ λ

∫
Ω

[
h2
∥∥x(s)∥∥+ ∥∥K2(ξ, s, 0)

∥∥]∥∥u∗(s)∥∥ds
6 h0

∥∥x(ξ)∥∥+ ∥∥f(ξ, 0)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2(∫
Ω

∥∥x(s)∥∥2 ds)1/2

+ λµ(Ω)1/2
(∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 ds)1/2

+ λh2r

(∫
Ω

∥∥x(s)∥∥2 ds)1/2

+ λr

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2
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= h0
∥∥x(ξ)∥∥+ ∥∥f(ξ, 0)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥x(·)∥∥
2

+ λµ(Ω)1/2
(∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 ds)1/2

+ λh2r
∥∥x(·)∥∥

2
+ λr

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2

(4)

for a.a. ξ ∈ Ω. (4) and Proposition 2 imply

∥∥F (x(·))∣∣(ξ)∥∥2 6 6

[
h20
∥∥x(ξ)∥∥2 + ∥∥f(ξ, 0)∥∥2 + λ2

∫
Ω

l1(ξ, s)
2 ds ·

∥∥x(·)∥∥2
2

+ λ2µ(Ω)

∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 ds+ λ2h22r

2
∥∥x(·)∥∥2

2

+ λ2r2
∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds]

for a.a. ξ ∈ Ω, and hence∫
Ω

∥∥F (x(·))∣∣(ξ)∥∥2 dξ
6 6

[
h20

∫
Ω

∥∥x(ξ)∥∥2 dξ + ∫
Ω

∥∥f(ξ, 0)∥∥2 dξ + λ2
∫
Ω

∫
Ω

l1(ξ, s)
2 dsdξ ·

∥∥x(·)∥∥2
2

+ λ2µ(Ω)

∫
Ω

∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 dsdξ + λ2h22r

2µ(Ω)
∥∥x(·)∥∥2

2

+ λ2r2
∫
Ω

∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 dsdξ].

The last inequality and (2) yield∥∥F (x(·))∣∣(·)∥∥
2
6
√
6
[
h20
∥∥x(·)∥∥2

2
+ f∗ + λ2h21

∥∥x(·)∥∥2
2

+ λ2h22r
2µ(Ω)

∥∥x(·)∥∥2
2
+ λ2µ(Ω)k1 + λ2r2k2

]1/2
. (5)

Since x(·) ∈ L2(Ω;Rn), then we have from (5) that ‖F (x(·))|(·)‖2 < +∞ and
consequently F (x(·))|(·) ∈ L2(Ω;Rn).

Now let us prove that the map F (x(·))|(·) : L2(Ω;Rn)→ L2(Ω;Rn) is contractive.

Nonlinear Anal. Model. Control, 23(3):423–436
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Let us choose arbitrary x1(·)∈L2(Ω;Rn) and x2(·) ∈ L2(Ω;Rn). Since u∗(·)∈Ur,
then from conditions (A), (B), (C) and Hölder’s inequality it follows that∥∥F (x1(·))∣∣(ξ)− F (x2(·))∣∣(ξ)∥∥

6 h0
∥∥x1(ξ)− x2(ξ)∥∥+ λ

∫
Ω

l1(ξ, s)
∥∥x1(s)− x2(s)∥∥ds

+ λ

∫
Ω

h2
∥∥x1(s)− x2(s)∥∥∥∥u∗(s)∥∥ds

6 h0
∥∥x1(ξ)− x2(ξ)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2(∫
Ω

∥∥x1(s)− x2(s)∥∥2 ds)1/2

+ λh2r

(∫
Ω

∥∥x1(s)− x2(s)∥∥2 ds)1/2

= h0
∥∥x1(ξ)− x2(ξ)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥x1(·)− x2(·)∥∥2
+ λh2r

∥∥x1(·)− x2(·)∥∥2
for a.a. ξ ∈ Ω.

Proposition 2 yields∥∥F (x1(·))∣∣(ξ)− F (x2(·))∣∣(ξ)∥∥2
6 3

[
h20
∥∥x1(ξ)− x2(ξ)∥∥2 + λ2

∫
Ω

l1(ξ, s)
2 ds ·

∥∥x1(·)− x2(·)∥∥22
+ λ2h22r

2 ·
∥∥x1(·)− x2(·)∥∥22]

for a.a. ξ ∈ Ω.
Integrating the last inequality, we get∥∥F (x1(·))∣∣(·)− F (x2(·))∣∣(·)∥∥22

6 3

[
h20
∥∥x1(·)− x2(·)∥∥22 + λ2

∥∥x1(·)− x2(·)∥∥22 ∫
Ω

∫
Ω

l1(ξ, s)
2 dsdξ

+ λ2h22r
2µ(Ω)

∥∥x1(·)− x2(·)∥∥22]
= 3
[
h20 + λ2h21 + λ2h22r

2µ(Ω)
]∥∥x1(·)− x2(·)∥∥22,
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and hence ∥∥F (x1(·))∣∣(·)− F (x2(·))∣∣(·)∥∥2
6
√
3
[
h20 + λ2h21 + λ2h22r

2µ(Ω)
]1/2 ∥∥x1(·)− x2(·)∥∥2. (6)

From inequality (6) and condition (D) it follows that the map F (x(·))|(·) :
L2(Ω;Rn) → L2(Ω;Rn) is contractive. Since L2(Ω;Rn) is complete metric space,
then according to the Banach fixed-point theorem, it has a unique fixed point x∗(·) ∈
L2(Ω;Rn), which is unique trajectory of the equation

x∗(ξ) = f
(
ξ, x∗(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x∗(s)

)
+K2

(
ξ, s, x∗(s)

)
u∗(s)

]
ds.

4 Boundedness of the set of trajectories

Denote

k∗ =

(
6[f∗ + λ2µ(Ω)k1 + λ2r2k2]

1− 6[h20 + λ2h21 + λ2h22r
2µ(Ω)]

)1/2

, (7)

where f∗, k1 and k2 are defined by relation (2).
The following proposition specifies boundedness of the set of trajectories of sys-

tem (1) in the space L2(Ω;Rn).

Proposition 4. For every x(·) ∈ Xr the inequality ‖x(·)‖2 6 k∗ holds, where k∗ > 0 is
defined by relation (7).

Proof. Let us choose an arbitrary x(·) ∈ Xr. Then there exists an admissible control
function u(·) ∈ Ur such that

x(ξ) = f
(
ξ, x(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x(s)

)
+K2

(
ξ, s, x(s)

)
u(s)

]
ds (8)

for a.a. ξ ∈ Ω.
Similarly to (4), from (8), Proposition 1 and Hölder’s inequality we have that

∥∥x(ξ)∥∥ 6 h0
∥∥x(ξ)∥∥+ ∥∥f(ξ, 0)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥x(·)∥∥
2

+ λµ(Ω)1/2
(∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 ds)1/2

+ λh2r
∥∥x(·)∥∥

2

+ λr

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2

(9)

Nonlinear Anal. Model. Control, 23(3):423–436
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for a.a. ξ ∈ Ω. From (9) and Proposition 2 we obtain that

∥∥x(ξ)∥∥2 6 6

[
h20
∥∥x(ξ)∥∥2 + ∥∥f(ξ, 0)∥∥2

+ λ2µ(Ω)

∫
Ω

∥∥K1(ξ, s, 0)
∥∥2 ds+ λ2r2

∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds

+ λ2
∫
Ω

l1(ξ, s)
2 ds

∥∥x(·)∥∥2
2
+ λ2h22r

2
∥∥x(·)∥∥2

2

]

for a.a. ξ ∈ Ω. Integrating the last inequality, we have from (2) that∥∥x(·)∥∥2
2
6 6
[
f∗ + λ2µ(Ω)k1 + λ2r2k2

]
+ 6
[
h20 + λ2h21 + λ2h22r

2µ(Ω)
]∥∥x(·)∥∥2

2
. (10)

According to condition (D), we have that 6[h20 + λ2h21 + λ2h22r
2µ(Ω)] < 1. Finally,

from (7) and (10) we get that ‖x(·)‖2 6 k∗. Since x(·) ∈ Xr is arbitrarily chosen, the
proof of the proposition is completed.

5 Distance between trajectories

The following proposition gives us an evaluation between trajectories of system (1) gen-
erated by different admissible control functions. Denote

γ∗ =

(
5λ2h22k

2
∗µ(Ω) + 5λ2k2

1− 5[h20 + λ2h21 + λ2h22r
2µ(Ω)]

)1/2

. (11)

Proposition 5. Let x1(·) ∈ Xr and x2(·) ∈ Xr be the trajectories of system (1) generated
by the admissible control functions u1(·) ∈ Ur and u2(·) ∈ Ur, respectively. Then∥∥x2(·)− x1(·)∥∥2 6 γ∗

∥∥u2(·)− u1(·)∥∥2.
Proof. Since x1(·) ∈ Xr and x2(·) ∈ Xr are the trajectories of system (1) generated by
the admissible control functions u1(·) ∈ Ur and u2(·) ∈ Ur, respectively, we have

x1(ξ) = f
(
ξ, x1(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x1(s)

)
+K2

(
ξ, s, x1(s)

)
u1(s)

]
ds, (12)

x2(ξ) = f
(
ξ, x2(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x2(s)

)
+K2

(
ξ, s, x2(s)

)
u2(s)

]
ds (13)
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for a.a. ξ ∈ Ω. Since u1(·) ∈ Ur, u2(·) ∈ Ur, then (12), (13), conditions (A), (B), (C),
Hölder’s inequality and Proposition 1 imply∥∥x2(ξ)− x1(ξ)∥∥

6
∥∥f(ξ, x2(ξ))− f(ξ, x1(ξ))∥∥
+ λ

∫
Ω

∥∥K1

(
ξ, s, x2(s)

)
−K1

(
ξ, s, x1(s)

)∥∥ds
+ λ

∫
Ω

∥∥K2

(
ξ, s, x2(s)

)
−K2

(
ξ, s, x1(s)

)∥∥ ∥∥u2(s)∥∥ds
+ λ

∫
Ω

∥∥K2

(
ξ, s, x1(s)

)∥∥ ∥∥u2(s)− u1(s)∥∥ds
6 h0

∥∥x2(ξ)− x1(ξ)∥∥+ λ

∫
Ω

l1(ξ, s)
∥∥x2(s)− x1(s)∥∥ds

+ λh2

∫
Ω

∥∥x2(s)− x1(s)∥∥∥∥u2(s)∥∥ds
+ λ

∫
Ω

[
h2
∥∥x1(s)∥∥+ ∥∥K2(ξ, s, 0)

∥∥] ∥∥u2(s)− u1(s)∥∥ds
6 h0

∥∥x2(ξ)− x1(ξ)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥x2(·)− x1(·)∥∥2
+ λh2r

∥∥x2(·)− x1(·)∥∥2 + λh2
∥∥x1(·)∥∥2 ∥∥u2(·)− u1(·)∥∥2

+ λ

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2∥∥u2(·)− u1(·)∥∥2

for a.a. ξ ∈ Ω. The last inequality, Proposition 2 and Proposition 4 yield

∥∥x2(ξ)− x1(ξ)∥∥2
6 5

[
h20
∥∥x2(ξ)− x1(ξ)∥∥2 + λ2

∫
Ω

l1(ξ, s)
2 ds ·

∥∥x2(·)− x1(·)∥∥22
+ λ2h22r

2
∥∥x2(·)− x1(·)∥∥22 + λ2h22k

2
∗
∥∥u2(·)− u1(·)∥∥22

+ λ2
∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds · ∥∥u2(·)− u1(·)∥∥22] (14)

for a.a. ξ ∈ Ω, where k∗ is defined by relation (7).
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Integrating inequality (14), we have from (2) that∥∥x2(·)− x1(·)∥∥22
6 5
[
h20
∥∥x2(·)− x1(·)∥∥22 + λ2h21

∥∥x2(·)− x1(·)∥∥22
+ λ2h22r

2µ(Ω)
∥∥x2(·)− x1(·)∥∥22 + λ2h22k

2
∗µ(Ω)

∥∥u2(·)− u1(·)∥∥22
+ λ2k2

∥∥u2(·)− u1(·)∥∥22]. (15)

From condition (D), (11) and (15) we conclude that∥∥x2(·)− x1(·)∥∥2
6

(
5λ2h22k

2
∗µ(Ω) + 5λ2k2

1− 5[h20 + λ2h21 + λ2h22r
2µ(Ω)]

)1/2∥∥u2(·)− u1(·)∥∥2
= γ∗

∥∥u2(·)− u1(·)∥∥2.
6 Compactness of the set of trajectories and existence of optimal

trajectories

Theorem 1. The set of trajectories Xr of system (1) is a compact subset of the space
L2(Ω;Rn).
Proof. Let {xk(·)}∞k=1 be a given sequence such that xk(·) ∈ Xr for every k =, 1, 2, . . . .
Let us prove that the sequence {xk(·)}∞k=1 has a subsequence converging in Xr.

By virtue of definition of the set Xr, there exists uk(·) ∈ Ur such that

xk(ξ) = f
(
ξ, xk(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, xk(s)

)
+K2

(
ξ, s, xk(s)

)
uk(s)

]
ds (16)

for a.a. ξ ∈ Ω. Since Ur is a weak compact subset of the space L2(Ω;Rm), then, without
loss of generality, one can assume that the sequence {uk(·)}∞k=1 weakly converges to
a u∗(·) in the space L2(Ω;Rm), where u∗(·) ∈ Ur. Let x∗(·) be the trajectory of
system (1) generated by the admissible control function u∗(·) ∈ Ur. Then x∗(·) ∈ Xr

and

x∗(ξ) = f
(
ξ, x∗(ξ)

)
+ λ

∫
Ω

[
K1

(
ξ, s, x∗(s)

)
+K2

(
ξ, s, x∗(s)

)
u∗(s)

]
ds (17)

for a.a. ξ ∈ Ω. Taking into consideration that uk(·) ∈ Ur for every k = 1, 2, . . . , from
(16), (17), conditions (A), (B), (C) and Hölder’s inequality we obtain that∥∥xk(ξ)− x∗(ξ)∥∥

6
∥∥f(ξ, xk(ξ))− f(ξ, x∗(ξ))∥∥+ λ

∫
Ω

∥∥K1

(
ξ, s, xk(s)

)
−K1

(
ξ, s, x∗(s)

)∥∥ ds
+ λ

∫
Ω

∥∥K2

(
ξ, s, xk(s)

)
−K2

(
ξ, s, x∗(s)

)∥∥∥∥uk(s)∥∥ds
https://www.mii.vu.lt/NA



On the compactness of the set of L2 trajectories of the control system 433

+ λ

∥∥∥∥∫
Ω

K2

(
ξ, s, x∗(s)

)[
uk(s)− u∗(s)

]
ds

∥∥∥∥
6 h0

∥∥xk(ξ)− x∗(ξ)∥∥+ λ

∫
Ω

l1(ξ, s)
∥∥xk(s)− x∗(s)∥∥ds

+ λh2

∫
Ω

∥∥xk(s)− x∗(s)∥∥∥∥uk(s)∥∥ ds
+ λ

∥∥∥∥∫
Ω

K2

(
ξ, s, x∗(s)

)[
uk(s)− u∗(s)

]
ds

∥∥∥∥
6 h0

∥∥xk(ξ)− x∗(ξ)∥∥+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥xk(·)− x∗(·)∥∥2
+ λh2r

∥∥xk(·)− x∗(·)∥∥2
+ λ

∥∥∥∥∫
Ω

K2

(
ξ, s, x∗(s)

)[
uk(s)− u∗(s)

]
ds

∥∥∥∥ (18)

for a.a. ξ ∈ Ω.
Denote z∗(ξ, s) = K2(ξ, s, x∗(s)). Since x∗(·) ∈ L2(Ω;Rn), then from condi-

tion (C) and Proposition 1 it follows that z∗(·, ·) ∈ L2(Ω × Ω;Rn×m). Now let us
denote

ψk(ξ) =

∥∥∥∥∫
Ω

K2

(
ξ, s, x∗(s)

)[
uk(s)− u∗(s)

]
ds

∥∥∥∥.
Since the sequence {uk(·)}∞k=1 weakly converges to a u∗(·) in the space L2(Ω;Rn),

then we have that ψk(ξ)→ 0 as k →∞ for a.a. ξ ∈ Ω, and hence ψ2
k(ξ)→ 0 as k →∞

for a.a. ξ ∈ Ω.
Let ‖x∗(·)‖2 = α∗. According to the Proposition 4, we have that α∗ 6 k∗, where

k∗ is defined by (7). Since u∗(·) ∈ Ur, uk(·) ∈ Ur for every k = 1, 2, . . . , then from
Proposition 1 and Hölder’s inequality we have that

ψk(ξ) 6
∫
Ω

[
h2
∥∥x∗(s)∥∥+ ∥∥K2(ξ, s, 0)

∥∥][∥∥uk(s)∥∥+ ∥∥u∗(s)∥∥] ds
6 h2

∫
Ω

∥∥x∗(s)∥∥∥∥uk(s)∥∥ds+ h2

∫
Ω

∥∥x∗(s)∥∥∥∥u∗(s)∥∥ ds
+

∫
Ω

∥∥K2(ξ, s, 0)
∥∥∥∥uk(s)∥∥ ds+ ∫

Ω

∥∥K2(ξ, s, 0)
∥∥∥∥u∗(s)∥∥ds

6 h2
∥∥x∗(·)∥∥2∥∥uk(·)∥∥2 + h2

∥∥x∗(·)∥∥2∥∥u∗(·)∥∥2
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+

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2∥∥uk(·)∥∥2

+

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2∥∥u∗(·)∥∥2

6 2rh2α∗ + 2r

(∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds)1/2

,

and hence [
ψk(ξ)

]2
6 8r2h22α

2
∗ + 8r2

∫
Ω

∥∥K2(ξ, s, 0)
∥∥2 ds

for a.a. ξ ∈ Ω.
The function ξ → 8r2h22α

2
∗ + 8r2

∫
Ω
‖K2(ξ, s, 0)‖2 ds, ξ ∈ Ω, is integrable. Thus,

from Lebesgue convergence theorem we conclude that∫
Ω

[
ψk(ξ)

]2
dξ → 0 as k →∞. (19)

From (18) it follows that∥∥xk(ξ)− x∗(ξ)∥∥ 6 h0
∥∥xk(ξ)− x∗(ξ)∥∥

+ λ

(∫
Ω

l1(ξ, s)
2 ds

)1/2∥∥xk(·)− x∗(·)∥∥2
+ λh2r

∥∥xk(·)− x∗(·)∥∥2 + λψk(ξ) (20)

for a.a. ξ ∈ Ω. (20), and Proposition 2 yield∥∥xk(ξ)− x∗(ξ)∥∥2 6 4h20
∥∥xk(ξ)− x∗(ξ)∥∥2

+ 4λ2
∫
Ω

l1(ξ, s)
2 ds ·

∥∥xk(·)− x∗(·)∥∥22
+ 4λ2h22r

2
∥∥xk(·)− x∗(·)∥∥22 + 4λ2

[
ψk(ξ)

]2
for a.a. ξ ∈ Ω.

Integrating the last inequality, we get∥∥xk(·)− x∗(·)∥∥22 6 4h20
∥∥xk(·)− x∗(·)∥∥22 + 4λ2h21

∥∥xk(·)− x∗(·)∥∥22
+ 4λ2h22r

2µ(Ω)
∥∥xk(·)− x∗(·)∥∥22

+ 4λ2
∫
Ω

[
ψk(ξ)

]2
dξ. (21)
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Using condition (D), we have from (21) that

∥∥xk(·)− x∗(·)∥∥2 6
2λ(
∫
Ω
[ψk(ξ)]

2dξ)1/2

[1− (4h20 + 4λ2h21 + 4λ2h22r
2µ(Ω))]1/2

. (22)

(19) implies that for given ε > 0, there exists K(ε) such that the inequality∫
Ω

[
ψk(ξ)

]2
dξ 6

1− (4h20 + 4λ2h21 + 4λ2h22r
2µ(Ω))

4λ2
ε2 (23)

is satisfied for every k > K(ε). (22) and (23) yield that for given ε > 0, there existsK(ε)
such that ∥∥xk(·)− x∗(·)∥∥2 6 ε

for every k > K(ε). This means that xk(·) → x∗(·) in the space L2(Ω;Rn) as k → ∞,
where x∗(·) ∈ Xr.

Let J(·) : L2(Ω;Rn) → R be a lower semicontinuous functional. Consider optimal
control problem

J
(
x(·)

)
→ inf, x(·) ∈ Xr. (24)

The trajectory x∗(·) ∈ Xr is called an optimal one iff J(x∗(·)) 6 J(x(·)) for every
x(·) ∈ Xr.

Proposition 6. Problem (24) has an optimal trajectory.

The proof of the proposition immediately follows from compactness of the set of
trajectories Xr and lower semicontinuity of the functional J(·).
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