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Abstract. A model for the numerical simulation of the action of microbioreactor acting in the
continuous flow mode was developed. The microbioreactor system was mathematically modelled
by a two-compartment model based on transient reaction-diffusion equations containing a non-
linear term related to the Michaelis–Menten kinetics of the enzymatic reaction. The effectiveness
of microbioreactor and the process duration were numerically and partially analytically analysed
at transition and steady-state conditions in a wide range of model parameters. The computational
simulation was carried out using the finite difference technique. The performed calculations showed
nonlinear effects of the internal and external diffusion limitations on the effectiveness and process
duration.
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1 Introduction

Bioactive materials like enzymes as process catalysts have been widely used in chemical,
environmental, food and pharmaceutical industries [20, 40, 45]. Immobilized enzymes
have been recently preferred over dissolved enzymes in stirred reactor systems [26].
Stirred tank bioreactors have been widely used since they favour a good distribution of
substrate over the enzyme [27]. When immobilized enzyme is attached to an impermeable
solid support, the substrate is carried to the active sites of catalyst through the external
diffusion layer. However, the enzyme is rather often entrapped within a porous ceramic
or silica particles [2, 7]. In such cases, the substrate must also diffuse through the porous
media to reach the enzyme [20]. Thus, the intraparticle diffusion resistance should be
considered in conjugation with the external mass transfer resistance.
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The problem to measure key physical and biochemical parameters is among the main
drawbacks in biotechnological process control [20,26,45]. Multiple physical experiments
is one way to identify and improve characteristics of the microreactor. Another way is to
model and simulate the processes within microreactors using state-of-the-art techniques
of computational modelling [4].

Mathematical models act as an important tool in various bioreactor applications in-
cluding protein synthesis and bioethanol production [16,25,38]. These models are useful
for planning efficient process control strategies and predicting the production perfor-
mance. The simulation approach allows to optimize the microreactor configuration with
substantially reduced time and cost [6, 35].

When modelling microbioreactors where the intraparticle and external diffusion re-
sistance is considered, multi-compartment models are required to achieve a sufficient
accuracy of the model [8, 41, 44]. Nevertheless, mono compartment models, in which
the internal mass transport by diffusion and substrate conversion is considered, are still
used in different applications due to the model simplicity [6,7]. Furthermore, the substrate
conversion is often studied only in the case were the enzyme kinetics approaches either
first or zero-order kinetics [20, 30, 38].

The external diffusion is usually modelled by mass flux boundary condition involving
the mass transfer rate of the boundary layer in the presence of diffusive and convective
flows [1, 16, 34]. Adequate mass transfer is required in order to successfully model bio-
process experiments [40]. However, the mass transfer coefficient can only be estimated
on the basis of rather sophisticated measurements [38].

The goal of this work was to investigate in detail the influence of the physical and ki-
netic parameters on the effectiveness of the bioreactor system based on a porous spherical
mircrobioreactor acting in the continuous flow mode. The microreactor system was math-
ematically modelled by a two-compartment model based on transient reaction-diffusion
equations containing a nonlinear term related to the Michaelis–Menten kinetics of the
enzymatic reaction [4, 41]. As the external diffusion was modelled by a diffusion shell
surrounding the microreactor, the mathematical model explicitly includes no mass transfer
rate.

The effectiveness of the microbioreactor and the process duration were numerically
and partially analytically analysed at transition and steady-state conditions in a wide
range of model parameters. The computational simulation was carried out using the finite
difference technique [15]. The performed calculations showed nonlinear effects of the
internal and external diffusion limitations on the microreactor effectiveness and process
duration. Particularly, it was determined that increasing the effectiveness by decreasing
the internal diffusion limitation is restricted when a short processing time is of crucial
importance.

2 Mathematical model

We consider a porous spherical microreactor (MR) placed in a buffer solution containing
a substrate. The model of the bioreactor system involves three regions: an enzyme-loaded
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Figure 1. Schematic view of the cross section of a modelled unit cell: biocatalytic microreactor and surrounding
shell.

porous microparticle (microreactor), where the enzymatic reaction as well as the mass
transport by diffusion take place, a diffusion limiting shell, where only the diffusion takes
place, and a convective region, where the substrate concentration remains constant due to
continuous flow.

In the enzyme-loaded MR, we consider the enzyme-catalyzed reaction

S
E−→ P, (1)

where the substrate (S) binds to the enzyme (E) and is converted to the product (P) [18,
20]. The principal structure of the unit cell is presented in Fig. 1.

At the quasi-steady-state conditions, the kinetics of most enzyme reactions, including
reaction (1), are reasonably well represented by the Michaelis–Menten equation

v(s) =
vmaxs

kM + s
,

where v is the volumetric reaction rate expressed as a function of the substrate concentra-
tion s, vmax is the maximal enzymatic rate, and kM is the Michaelis constant [20,41,45].

2.1 Governing equations

The dynamics of the MR system includes changes over time of the substrate consumption
as well as the product production. Since the reaction product is produced at the same
rate as the substrate is consumed, the dynamics of the MR operation can be qualitatively
expressed by dynamics only of the substrate concentration [12, 20]. Assuming the sym-
metrical geometry of the spherical MR and homogenized distribution of the immobilized
enzyme inside the MR, the mathematical model can be described in one-dimensional
domain using the radial distance (0 < r < r0, t > 0),

∂sm
∂t

= dm∆sm − v(sm), (2)
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where sm = sm(r, t) is the concentration of the substrate in the MR, ∆ is the Laplace
operator, r0 is the radius of the MR, dm is the effective diffusion coefficient [11, 41].

Assuming the solution is permanently stirred and applying the Nernst approach, a thin
spherical shell (the Nernst diffusion layer) adjacent to the MR surface remains stagnant
with time (r0 < r < r1, t > 0),

∂sd
∂t

= dd∆sd, (3)

where sd = sd(r, t) is the concentration of the substrate in the diffusion shell, dd is the
corresponding diffusion coefficient, and h = r1 − r0 is the thickness of the spherical
diffusion shell [11, 15, 45].

2.2 Initial and boundary conditions

It was assumed that, initially (t = 0), the MR is uniformly loaded with the enzyme and is
free of the substrate,

sm(r, 0) = 0, 0 6 r 6 r0. (4)

The reaction starts when the MR is poured into the container containing some sub-
strate distributed uniformly outside the MR,

sd(r, 0) = s0, r0 6 r 6 r1, (5)

where s0 is the substrate concentration in the bulk.
Due to the symmetry, the zero-flux boundary condition is defined for the centre of the

spherical microreactor (t > 0),

dm
∂sm
∂r

∣∣∣∣
r=0

= 0. (6)

Away from the diffusion shell (r > r1), the solution is uniform throughout the outside
of the shell and remains constant (t > 0) [19],

sd(r1, t) = s0. (7)

The formal partition coefficient φ is used in the matching conditions to describe the
specificity in the concentration distribution of the substrate between two neighboring
regions (t > 0),

dm
∂sm
∂r

∣∣∣∣
r=r0

= dd
∂sd
∂r

∣∣∣∣
r=r0

, (8)

sm(r0, t) = φsd(r0, t). (9)

The partition coefficient φ is less than unity as the averaged concentration of the
substrate in the MR becomes less than the concentration in the bulk solution due to the
insoluble MR carrier [17, 44].

We assume that the system approaches a steady-state as t→∞,

sm,s(r) = lim
t→∞

sm(r, t), sd,s(r) = lim
t→∞

sd(r, t).
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2.3 Dimensionless model

In order to reduce the number of model parameters, a dimensionless model was derived
by introducing the following dimensionless variables [44]:

R =
r

r0
, R1 =

r1
r0
, H =

r1 − r0
r0

, T =
dmt

r20
, θ =

dd
dm

,

Sm =
sm
kM

, Sd =
sd
kM

, S0 =
s0
kM

, Sm,s =
sm,s
kM

, Sd,s =
sd,s
kM

.

The governing equations (2) and (3) in the dimensionless form are then expressed as
follows (T > 0):

∂Sm
∂T

= ∆Sm − σ2 Sm
1 + Sm

, R ∈ (0, 1),

∂Sd
∂T

= θ∆Sd, R ∈ (1, R1),

(10)

where dimensionless factor σ2 is known as the dimensionless diffusion module or the
Damköhler number or Thiele modulus [22, 31, 41],

σ2 =
vmaxr

2
0

kMdm
. (11)

The initial conditions (4) and (5) are transformed to the following conditions:

Sm(R, 0) = 0, R ∈ [0, 1],
(12)

Sd (R, 0) = S0, R ∈ [1, R1].

The boundary conditions (6)–(9) are rewritten as follows (T > 0):

∂Sm
∂R

∣∣∣∣
R=0

= 0, Sd(R1, T ) = S0,

∂Sm
∂R

∣∣∣∣
R=1

= θ
∂Sd
∂R

∣∣∣∣
R=1

, Sm(1, T ) = φSd(1, T ).

(13)

3 Characteristics of microbioreactor action

The effectiveness factors characterise the interaction between diffusion and reactions in
porous catalytic pellets, microreactors and solid fuel particles [12, 19]. Reactants have to
diffuse through the external diffusion layer and pores of the support for the reaction to
take place, and therefore, the actual rate can be limited by the rate at which the diffusing
reactants reach the catalyst. Typically designers seek for bioreactors acting in the reaction-
limited regime since, in this case, reaction and diffusion occur on different time scales and
one is in the best possible position to measure reaction [21].
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Since the effectiveness of a bioreactor can be defined with respect to the concentration
at the catalyst surface or with respect to the bulk concentration, the internal and external
effectiveness factors are often used in the biochemical engineering [19,20]. Additionally,
the effectiveness factor due to partitioning is also used when taking into consideration the
partitioning effect [46].

The effectiveness factors are usually defined for the stationary mode of biocatalytic
systems [12, 20, 23]. An analysis of the transient effectiveness factors, in opposition to
the conventional steady-state approach, is recommended only in the cases where strong
adsorption of reactant molecules, previous to surface reaction, exists [13]. On the other
hand, although the transient effectiveness factors in porous catalyst particles can be con-
sidered [13], after very short time, the substrate concentration inside the particles becomes
constant, and the effectiveness of reactor system in the beginning of the process is not
important for overall effectiveness of the system acting in the flow mode [20].

The internal effectiveness factor ηi for the MR can be defined as the ratio of the actual
volume-averaged rate of the reaction over the whole MR to the rate of the reaction at the
inner surface of the MR [11, 18, 20],

ηi =
(4π

∫ r0
0
v(sm,s(r))r

2 dr)/(4πr30/3)

v(sm,s(r0))
=

3
∫ r0
0
v(sm,s(r))r

2 dr

r30v(sm,s(r0))
. (14)

The factor ηi can be also expressed in terms of the dimensionless model,

ηi = 3
1 + Sm,s(1)

Sm,s(1)

1∫
0

Sm,s(R)

1 + Sm,s(R)
R2 dR. (15)

For ηi near unity, the entire volume of the MR is reacting at the same rate as at the
inner surface because the substrate concentration decrease in the MR is insignificant. For
ηi near zero, the almost all substrate reacts at the surface of the MR, and the reaction rate
decreases in comparison to the rate at the inner surface at the same substrate concentra-
tion [20].

The external effectiveness factor ηe is defined as the ratio of the reaction rate that
would occur if the substrate concentration over the whole microreactor equal the concen-
tration at the outer surface of the MR to that which would be obtained if the concentration
everywhere in the MR equal to the concentration in the bulk [20, 46],

ηe =
v(sd,s(r0))

v(s0)
=

(1 + S0)Sd,s(1)

(1 + Sd,s(1))S0
. (16)

The external effectiveness factor is a measure of the influence of the external mass
transfer resistance on the rate of the observed reaction. If it is significantly less then unity,
the mass transfer resistance is restricting the supply of the substrate to the MR surface and
is thus limiting the catalytic activity of the enzyme, whereas the reaction is not limited by
the external mass transfer if the factor equals unity [20].
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The influence of partitioning can be expressed in terms of an effectiveness factor as
follows:

ηp =
v(sm,s(r0))

v(sd,s(r0))
=

(1 + Sd,s(1))Sm,s(1)

(1 + Sm,s(1))Sd,s(1)
. (17)

Taking into consideration the matching conditions (8) and (9), the factor ηp reads

ηp =
(1 + Sd,s(1))φ

1 + φSd,s(1)
=
φ+ Sm,s(1)

1 + Sm,s(1)
. (18)

The overall effectiveness factor ηo can be calculated from the internal and external
effectiveness factors as well as from the effectiveness factor due to partitioning [46],

ηo = ηiηeηp = 3
1 + S0

S0

1∫
0

Sm,s(R)

1 + Sm,s(R)
R2 dR. (19)

Summarising definitions (14)–(19), the overall (total) effectiveness factor ηo can be
defined also as the ratio of the average reaction rate actually observed in the MR to the
rate evaluated at the bulk concentrations of the substrate [41, 46].

The process duration is another important characteristic of biotechnological processes
[23]. A minimization of time-cost is often sought by designers of biotechnological pro-
cesses [42]. The holding time th and the corresponding dimensionless time Th required
for complete enzymatic conversion of whole amount of the substrate initially added to the
reactor system (spherical diffusion shell) were accepted as a measure of time-cost of the
bioreactor operation,

th =

{
t:

t∫
0

r0∫
0

v
(
sm(r, t)

)
r2 dr dt =

(r31 − r30)s0
3

}
, Th =

dmth
r20

.

4 Solving the model

The nonlinear initial boundary value problem (2)–(9) can be analytically solved only for
specific values of the model parameters [4, 20, 41]. Therefore, the problem was solved
numerically, using the finite difference technique [15]. In the space direction r, both
segments [0, r0] and [r0, r1] were divided into the same number N = 120 of small
intervals. A uniform discrete grid was also introduced in the time direction t. An explicit
finite difference scheme has been built as a result of the difference approximation [15].
Although explicit difference schemes have the strict stability limitations, these schemes
have a convenient algorithm of the calculation and are simple for programming [14, 15].
To make the difference scheme stable, the time step size τ was chosen from the sufficient
stability condition

τ 6 min

(
min{h2m, h2d}

2 max{dm, dd}
,
Km

2Vmax

)
,
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where hm and hd are step sizes for the MR and diffusion shell, respectively [9]. The
simulator has been programmed by the authors in the C++ programming language [36].

In the numerical simulation, the steady-state time tss was assumed as the time when
the normalised change of the substrate concentration remains very small during a rela-
tively long term,

tss = min
t>0

{
t:

t

s0

∣∣∣∣d( 3
r30

∫ r0
0
sm(r, t)r2 dr + 3

r31−r30

∫ r1
r0
sd(r, t)r

2 dr)

2dt

∣∣∣∣ < ε

}
,

sm,s(r) ≈ sm(r, tss), r ∈ [0, r0], sd,s(r) ≈ sd(r, tss), r ∈ [r0, r1].

In calculations, the decay rate ε = 10−3 was used.
The numerical solution of problem (2)–(9) was validated by using exact analytical

solutions known for special cases of the model parameters when the nonlinear model
approaches its linear counterpart [12, 20, 27, 43]. The relative difference between the
analytical and computational steady-state concentrations sm,s and sd,s was less than 1%
for different values of the model parameters, vmax, h and s0.

In all the numerical experiments, the following typical values of the model parameters
were kept constant [3, 18, 20]:

dd = 600
µm2

s
, dm = 200

µm2

s
,

kM = 100 µM, r0 = 250 µm, φ = 0.6.

(20)

Figure 2 shows the dynamics of the substrate concentration calculated for moderate
concentration of the substrate (s0 = kM , S0 = 1), the diffusion shell thickness h of
60 µm and the following two values of the maximal enzymatic rate vmax: 1 and 10 µM/s.
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Figure 2. Profiles of the substrate concentration at different time (t) points calculated at s0 = 100 µM,
h = 60 µm and two values of vmax: 1 (a) and 10 (b) µM/s. The other parameters are as defined in (20).
Numbers on arrows indicate time in seconds.

https://www.mii.vu.lt/NA



Modelling the enzyme catalysed substrate conversion 445

Applying the model parameter values defined in (20), the maximal enzymatic rates
vmax = 1µM/s (Fig. 2(a)) and vmax = 10µM/s (Fig. 2(b)) correspond to the following
two approximate values of the diffusion module σ: 1.8 and 5.6. Since the substrate
concentration (s0 and S0) and the Biot number β = 15.5 were the same in both nu-
merical experiments, Fig. 2 illustrates mainly the effect of the diffusion module σ on the
concentration within the MR as well as on the effectiveness of the MR.

For model parameter values S0 = 1, β = 15.5 and σ = 1.8 (Fig. 2(a)) used in
the simulations, the calculated effectiveness factors are as follows: ηi = 0.92, ηe = 0.99,
ηp = 0.75, ηo = 0.68, while at greater value of σ = 5.6 (Fig. 2(b)): ηi = 0.55, ηe = 0.93,
ηp = 0.74, ηo = 0.38, i.e. the greater value of σ corresponds to lower effectiveness of the
MR. On the other hand, the numerical experiments showed that increasing in the diffusion
module σ leads to decreasing the holding time, Th = 0.85 (th = 266 s) at σ = 1.8 and
Th = 0.146 (th = 45 s) at σ = 5.6. Below, these effects are investigated in details.

In most numerical experiments carried out in this work, the holding time th was
significantly greater than the steady-state time tss. When the steady-state is reached, the
substrate concentration sm(r, t) as well as the enzyme reaction rate v(sm(r, t)) stays
unchanged with time, v(sm(r, t)) = v(sm,s(r)) for t > tss. Because of this, the time th
can be rather precisely evaluated from the concentrations calculated until steady-state is
reached only if th > tss,

th ≈

{
t:

tss∫
0

r0∫
0

v
(
sm(r, t)

)
r2 dr dt+ (t− tss)

r0∫
0

v
(
sm,s(r)

)
r2 dr =

(r31 − r30)s0
3

}

= tss +

(
(r31 − r30)s0

3
−

tss∫
0

r0∫
0

v
(
sm(r, t)

)
r2 dr dt

)/ r0∫
0

v
(
sm,s(r)

)
r2 dr.

4.1 First-order steady-state solution

At low concentration of the substrate (s0 � kM ), the Michaelis–Menten kinetics ap-
proaches the first-order kinetics, v(sm) ≈ vmaxsm/kM . Then, assuming the steady-state
approximation, the governing equations (2) and (3) reduce to the following equations:

dm
∂

∂r

(
r2
∂sm,s
∂r

)
=
vmaxsm,s
kM

r2,
∂

∂r

(
r2
∂sd,s
∂r

)
= 0. (21)

The linear boundary value problem (21), (6)–(9) can be easily solved [12],

sm,s(r) =
φs0r1
r

θr0 sinh σr
r0

θr1 sinhσ + φ(r1 − r0)(σ coshσ − sinhσ)
, 0 6 r 6 r0, (22)

sd,s(r) =
s0r1
r

θr sinhσ + φ(r − r0)(σ coshσ − sinhσ)

θr1 sinhσ + φ(r1 − r0)(σ coshσ − sinhσ)
, r0 6 r 6 r1. (23)

Nonlinear Anal. Model. Control, 23(3):437–456
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Analytical expressions (22)–(23), obtained for the substrate concentration at the steady-
state, can be applied to evaluating the effectiveness factors,

ηi =
3

σ2
(σ cothσ − 1), (24)

ηe =
β

β + φ(σ cothσ − 1)
, (25)

ηp = φ,

ηo =
3βφ(σ cothσ − 1)

σ2(β + φ(σ cothσ − 1))
, (26)

where

β =
θr1

r1 − r0
=

ddr1
dm(r1 − r0)

=
dd(r0 + h)

dmh
. (27)

The dimensionless factor β can be considered as the effective Biot number or dimen-
sionless mass transfer coefficient that quantifies the relative preponderance of internal or
external diffusion [4]. Expression (27) of the Biot number β was deduced by substituting
expressions (22) and (23) into the boundary condition (8) and rewriting it in the dimen-
sionless form as the flux condition [33],

∂Sm,s
∂R

∣∣∣∣
R=1

= β
(
1− Sd,s(1)

)
.

The Biot number is usually defined as a function of the mass transfer coefficient,
characteristic length and mass diffusivity [4]. The mass transfer coefficient is dependent
on the system geometry, the physical properties of medium and flow dynamics, and it is
hard to evaluate the mass transfer resistance between biocatalytic reactors and liquids [3,
18,38]. That is why the effectiveness factors are sometimes estimated without the external
mass transfer resistance [34, 46]. The Biot number β defined in (27) depends only on the
geometry of the diffusion shell and diffusivity of the substrate.

A low Biot number means the strong external mass transfer resistance, and hence,
both internal and external mass transfer resistances are important for the determination
of substrate conversion. As the Biot number increases, the importance of the external
mass transfer resistance decreases [1]. Since r0 6 r1, the effective Biot number β ranges
from θ = dd/dm (r1 � r0, h � r0) to ∞ (r1 → r0, h → 0), and since dm 6 dd,
the Biot number β > 1 [46]. As the thickness h of the external diffusion shell depends
upon the nature and intensity of the stirring of the buffer solution, the less intense stirring
corresponds to lower β (greater h), and more intense stirring corresponds to greater β
(lower h). The diffusion module and the Biot number are widely used in analysis and
design of different bioreactors [16, 30, 43].

Expression (24) of the internal effectiveness factor is invariant to the external mass
transfer and is equivalent to another already known expression defined in terms of the
Thiele modulus [20, 27, 43]. The dependence of the external effectiveness factor only
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on the diffusion module and Biot number defined through the external mass transfer
coefficient is also known [3]. Expression (25) of the external effectiveness factor ηe
involves the Biot number β defined through the diffusion coefficients and the geometry
of the diffusion shell.

Both internal and external effectiveness factors are monotonous decreasing functions
of the diffusion module σ, ηi → 0 and ηe → 0 as σ → ∞, and ηi → 1 and ηe → 1 as
σ → 0. In addition, the external effectiveness factor is an increasing function of the Biot
number, ηe → 1 as β →∞, and ηe → 0 as β → 1. Since β decreases with increasing the
thickness h = r1 − r0 of the external diffusion layer, the external effectiveness factor ηe
monotonously decreases with increasing the thickness h.

After introducing the Biot number β, expression (22) of the substrate concentration
inside the MR reduces as follows:

sm,s(r) =
φs0
r

βr0 sinh σr
r0

β sinhσ + φ(σ coshσ − sinhσ)
, 0 6 r 6 r0. (28)

Accordingly, the dimensionless substrate concentration Sm,s depends on the dimension-
less concentration S0, diffusion module σ, Biot number β, partition coefficient φ and
space coordinate R, and Sd,s additionally depends on the dimensionless radius R1,

Sm,s(R) =
φS0

R

β sinh(σR)

β sinhσ + φ(σ coshσ − sinhσ)
, 0 6 R 6 1,

Sd,s(R) =
S0

R

βR sinhσ + φR1(σ coshσ − sinhσ) R−1R1−1
β sinhσ + φ(σ coshσ − sinhσ)

, 1 6 R 6 R1.

When the external mass transfer by diffusion is ignored (h → 0, β → ∞), expres-
sions (22) and (28) reduce to a known formulae [12, 20, 27, 43].

4.2 Zero-order steady-state solution

At high concentration of the substrate (s0 � kM ), the Michaelis–Menten kinetics ap-
proaches the zero-order kinetics, v(sm) ≈ vmax. At the steady-state, the governing equa-
tions (2) and (3) reduce to the following system:

dm
∂

∂r

(
r2
∂sm,s
∂r

)
= vmaxr

2,
∂

∂r

(
r2
∂sd,s
∂r

)
= 0. (29)

Solving boundary value problem (29), (6)–(9) gives the following expressions:

sm,s(r) = φs0 −
vmax

6dm

(
r20 − r2 +

2φr20
β

)
, 0 6 r 6 r0, (30)

sd,s(r) = s0 −
vmaxr

3
0

3dd

(
1

r
− 1

r1

)
, r0 6 r 6 r1.
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Since the reaction rate in the governing equation (29) is independent of the substrate
concentration, its solution can produce a negative concentration of the substrate. The
maximal MR radius r0, for which expression (30) can be used, is

rmax =

√
6dmφs0

vmax(1 + 2φ
β )

.

Since in the case of zero-order reactions the reaction rate is independent of the sub-
strate concentration, the effectiveness factors approaches their maximal values, ηi = ηe =
ηp = 1, ηo = 1, if only r0 6 rmax.

The derived expression (30) generalises a known expression of the substrate con-
centration inside the spherical bioreactor when the external mass transfer is ignored and
r20 6 6dmφs0/vmax [20].

4.3 Nonlinear steady-state solution

Over the last two decades, some nonlinear reaction-diffusion equations have been analyt-
ically solved by applying the homotopy perturbation method (HPM) [24]. This method,
which is a combination of homotopy in topology and classic perturbation techniques,
provides a convenient way to obtain approximate solutions for a wide variety of prob-
lems arising in different fields, including reaction-diffusion equation involving Michaelis–
Menten kinetics [29, 39]. However, often accurate analytical solutions obtained by the
HPM are not expressed in the closed form and the accuracy of the constructed closed-
forms of analytical expressions of the substrate concentration is not satisfactory [37].
Nevertheless, a variety of applications show the usefulness of HPM in solving reaction-
diffusion equations [5].

An application of the HPM to the stationary case of the nonlinear reaction-diffusion
problem (2)–(9) results in the following approximate analytical expressions of the sub-
strate concentration inside (sm,H ) and outside (sd,H ) the MR:

sm,s(r) ≈ sm,H(r)

= s0φ−
Pσ2φs0

2

(
1− r2

r20
+

2φ

β
+

3P 2σ2

20

(
8
φ

β

(
1 + 5

φ

β

)
− 3

(
1− r4

r40

)
+ 10

(
1 + 2

φ

β

)(
1− r2

r20

)))
, (31)

sd,s(r) ≈ sd,H(r)

= s0 −
Pσ2φs0r0

θ

(
1

r
− 1

r1

)(
1 +

3P 2σ2

5

(
1 + 5

φ

β

))
, (32)

where P = kM/(3(φs0 + kM )) = 1/(3(φS0 + 1)).
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The substrate concentrations (31) and (32) in the dimensionless form are expressed in
a slightly more closed form,

Sm,s(R) ≈ Sm,H(R)

= φ− Pσ2φ

2

(
1−R2 +

2φ

β
+

3P 2σ2

20

(
8
φ

β

(
1 + 5

φ

β

)
− 3
(
1−R4

)
+ 10

(
1 + 2

φ

β

)(
1−R2

)))
, (33)

Sd,s(R) ≈ Sd,H(r)

= 1− Pσ2φ

θ

(
1

R
− 1

R1

)(
1 +

3P 2σ2

5

(
1 + 5

φ

β

))
. (34)

Although the form of expressions (31)–(33) is rather complicated, but, nevertheless,
their accuracy is not good enough. The expressions of the substrate concentration obtained
by HPM are of satisfactory accuracy when the enzyme kinetics controls the MR action,
i.e. when σ < 1, regardless of the Biot number β and the substrate concentration S0.
However, these expressions are practically useless for the systems when the MR acts un-
der diffusion control, especially at low values of β. Nevertheless, since typically designers
seek for bioreactors acting in the reaction-limited regime (σ � 1) [21], the expressions
of the substrate concentration obtained by HPM have a practical value.

Having the analytical expressions (31)–(33), all the effectiveness factors can be also
analytically expressed. However, due to limited use of the substrate expressions and their
not closed form, the analytical expressions of the effectiveness factors are not presented
in this paper. The numerical solution of the problem is more accurate than the solution
obtained by HPM, and because of this, the influence of the model parameter to the
effectiveness factors was mainly investigated by numerical simulation of the MR action.

5 Simulation results and discussion

To investigate the effects of the internal and external mass transport by diffusion on
the effectiveness of the MR as well as on the duration of the substrate conversion, the
MR action was numerically calculated for different values of the model parameters. The
overall effectiveness factor ηo was used as the main measure of the MR effectiveness and
the dimensionless holding time Th as a measure of the process duration.

5.1 Impact on effectiveness

To investigate the impact of the diffusion limitations on the MR effectiveness, the fac-
tor ηo was numerically calculated for different values of the diffusion module σ, the Biot
number β and the dimensionless substrate concentration S0. Figure 3 shows the factor ηo
versus σ and β.
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Figure 3. The overall effectiveness factor ηo vs. the diffusion module σ and Biot number β at the dimensionless
substrate concentration S0 = 1.

As one can see in Fig. 3, the overall effectiveness factor ηo increases with decreasing
the diffusion module σ and approaches to a constant value, which is approximately the
same for all values of the Biot number β.

In the case of low substrate concentration (S0 � 1) and small values of σ, since
coth(σ) ≈ (1/σ + σ/3), according to (26), the factor ηo approaches to φ for all possible
values of β, i.e. ηo ≈ φ for S0 � 1 and σ < 1. Figure 3 shows that ηo approaches the
maximum that is slightly higher than φ, ηo → 0.75 > φ = 0.6. This is due to not a low
substrate concentration (S0 = 1) used in the simulation of the results depicted in Fig. 3.
On the other hand, it was already shown that at very high concentrations (S0 � 1) of
the substrate, the effectiveness factor ηo approaches to unity. Figure 3 also shows that the
impact of the Biot number β on the factor ηo is notable only when σ > 1, i.e. when the
MR action is under diffusion control. The effect of β increases with increasing σ.

To determine the influence of the substrate concentration to the effectiveness of MR,
the overall effectiveness factor ηo was calculated for very different values of the substrate
concentration. Figure 4(a) shows the factor ηo versus the dimensionless concentration S0

and diffusion module σ at a mean value of the Biot number, β = 10, and Fig. 4(b) shows
ηo versus S0 and β at a mean value of the diffusion module σ = 1.

Figures 3 and 4 show that the MR effectiveness can be notably increased by increasing
the substrate concentration (S0) as well as by decreasing the diffusion module σ, i.e. by
decreasing the intraparticle diffusion resistance. The effectiveness can be also but slightly
increased by increasing the Biot number β, i.e. by decreasing the external diffusion
resistance. In the case of low substrate concentration (S0 � 1), the fact that ηo is
a monotonic increasing function of β can be also noticed from (26).

Figures 3 and 4(a) particularly demonstrate that the MR effectiveness ηo is a mono-
tonic decreasing function of the diffusion module σ and practically stagnates at its max-
imum value when σ < 1, i.e. ηo is practically invariant to σ when the enzyme kinetics
controls the MR action. Having a MR, which action is controlled by the enzyme kinetics
σ < 1, its effectiveness can not be further increased by decreasing the internal diffusion
resistance.
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(a) (b)

Figure 4. The overall effectiveness factor ηo vs. the dimensionless concentration S0 changing the diffusion
module σ at the Biot number β = 10 (a) and changing the Biot number β at σ = 1 (b).

Increasing the internal effectiveness factor ηi with decreasing the diffusion module σ
(Thiele module or Damköhler number) has been already reported for the first-order en-
zyme kinetics (S0 � 1) [18, 43]. The dependence of the external effectiveness factor ηe
on the Biot number β defined through the external mass transfer coefficient is also already
known [3]. Figures 3 and 4 show the overall effectiveness factor versus very wide ranges
of three parameters, σ, β and S0. Figure 4 exclusively shows how the MR effectiveness
changes when the enzyme kinetics changes from first-order (S0 � 1) through Michaelis–
Menten to zero-order (S0 � 1) kinetics.

5.2 Impact on process duration

To determine the influence of the diffusion limitations and the initial substrate concentra-
tion to the process duration, the MR action was simulated and the dimensionless holding
time Th was calculated by changing values of the diffusion module σ, the Biot number β
and the dimensionless substrate concentration S0. Figure 5 shows calculated values of the
time Th versus σ and β. The dependence of Th on the substrate concentration is presented
in Fig. 6.

As one can see in Fig. 5, the time Th increases with decreasing both the diffusion
module σ and the Biot number β. Figure 5 also shows that the impact of the Biot number
β on the time Th is notable only when σ > 1, i.e. when the MR action is under diffusion
control.

To determine the influence of the substrate concentration to the process duration, the
MR action was simulated and the dimensionless time Th was calculated for very different
values of the substrate concentration. Figure 6(a) shows the time Th versus the dimension-
less concentration S0 and diffusion module σ at a mean value of the Biot number, β = 10,
and Fig. 4(b) shows Th versus S0 and β at a mean value of the diffusion module σ = 1.

One can see in Fig. 6 a nonlinear increase in the time Th with increasing the substrate
concentration S0. The time Th is particularly high at low values of the diffusion module σ,
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Figure 5. The dimensionless holding time Th vs. the diffusion module σ and Biot number β at the
dimensionless concentration S0 = 1.

(a) (b)

Figure 6. The dimensionless holding time Th vs. the dimensionless concentration S0 changing the diffusion
module σ at the Biot number β = 10 (a) and changing the Biot number β at σ = 1 (b).

i.e. when the enzyme kinetics controls the MR action. So, the increasing MR effectiveness
by the decreasing internal diffusion limitation (decreasing σ) as well as by increasing the
substrate concentration is restricted when a short processing time is of crucial importance.
The impact of the external diffusion resistance (β) on the time Th is rather slight.

The complex nature of bioprocesses and microreactors involves consideration of the
simultaneous optimization of several objectives some of which are conflicting, i.e. if one
of them is improved, the others get worse [32]. The multi-objective optimization together
with the multi-dimensional visualization can be used for finding a certain number of trade-
off solutions and making decisions when designing microbioreactors [10, 28].

Very recently, when analyzing the stirred catalytic basket bioreactor for the produc-
tion of bioethanol, it was observed that the time of the glucose consumption increases
by increasing the glucose concentration in the bioreactor medium [25]. It was also ob-
served that the time for consumption of glucose decreases with increase in stirrer speed.
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Particularly, when using stirrer speed of 200 rpm and free cells as catalysts, the glucose
consumption time was nearly 20 h, while at 500 rpm, the consumption time was about two
times less [25]. Since the thickness of the Nernst diffusion layer for a flat surface decreases
about

√
2.5 times when the stirrer speed increases 2.5 times and the radius of free cells is

relatively small, the Biot number β then decreases about
√

2.5 ≈ 1.6 [11]. One can see in
Fig. 5 similar decrease (about 2 times) in the holding time Th when decreasing the Biot
number in 1.6 times for small values of β. Figure 6 shows that the time Th increases with
increasing the substrate concentration as it was observed in [25].

Figure 6 shows how the MR holding time changes when the enzyme kinetics changes
from first-order (S0 � 1) through Michaelis–Menten to zero-order (S0 � 1) kinetics.

6 Conclusions

The two-compartment mathematical model (2)–(9) and the corresponding dimensionless
model (10)–(13) of a porous spherical microbioreactor acting in the continuous flow can
be successfully used to investigate the dependence of the internal and external diffusion
limitations on the bioreactor effectiveness and the process duration as well as to optimize
the MR configuration (Fig. 1).

Approximate analytic solutions (31)–(34) of the nonlinear initial boundary value prob-
lem, obtained by the homotopy perturbation method (HPM), are of satisfactory accuracy
when the enzyme kinetics controls the MR action, i.e. when σ < 1. Since MR design-
ers usually seek for bioreactors acting in the reaction-limited regime, the approximate
analytic solutions have a practical value.

The overall effectiveness factor ηo of MR monotonously increases with increasing
the substrate concentration (S0) as well as by decreasing the diffusion module σ. The
effectiveness can be also but slightly increased by increasing the Biot number β (Figs. 3
and 4).

Increasing the MR effectiveness by decreasing the internal diffusion limitation (de-
creasing σ) as well as by increasing the substrate concentration (S0) is restricted when
a short processing time is of crucial importance (Figs. 5 and 6). Therefore, the multi-
objective optimization together with the multi-dimensional visualization could be used for
finding the trade-off solutions and making decisions when designing microbioreactors.
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