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Abstract. In the present analysis, the influence of thermal radiation, chemical reaction and thermal-
diffusion on hydromagnetic pulsating flow of Casson fluid in a porous channel is investigated. The
fluid is injected from the lower wall and sucked out from the upper wall with the same velocity.
The governing flow equations are solved analytically by employing the perturbation technique. The
influence of various emerging parameters on flow variables has been discussed. The obtained results
show that the temperature distribution increases when there is an increase in heat source, whereas
there is a decrease in temperature with an increase in radiation parameter. The concentration
distribution decreases with an increase in chemical reaction parameter, while it increases for a given
increase in Soret number. Further, the results reveal that, for both the Newtonian and non-Newtonian
cases, Nusselt number distribution decreases at the upper wall with increasing Hartmann number
and radiation parameter. The mass transfer rate decreases at the upper wall with increasing chemical
reaction parameter and Soret number.

Keywords: pulsating flow, Casson fluid, porous channel, thermal radiation, Soret number, heat
source/sink.

1 Introduction

Studies related to pulsating flow in a porous channel or pipe have attracted several re-
searchers due to their applications in technological as well as biological flows such as
transpiration cooling, gaseous diffusion, circulatory system and respiratory system, flow
of blood, the process of dialysis of blood in an artificial kidney [18, 32, 41, 47]. Rad-
hakrishnamacharya and Maiti [33] made an investigation of heat transfer to pulsatile
flow in a porous channel. In their investigation, the fluid is injected through one wall

c© Vilnius University, 2018

mailto:srinivas.s@vitap.ac.in


214 S. Srinivas et al.

and sucked out through the opposite wall at the same rate. Bestman [7] discussed that
a combined forced and free convection flow through an inclined porous channel when
a pulsatile pressure is applied across its ends. Datta et al. [10] studied the unsteady heat
transfer pulsatile flow of a dusty fluid in a porous channel by employing the perturbation
technique. Vajravelu et al. [46] has analyzed the pulsatile flow of viscous fluid between
two permeable beds. Shit and Roy [38] appraised the flow and heat transfer characteristics
of pulsating flow of magneto-micropolar fluid through a stenosed artery.

In 1959, Casson first introduced Casson fluid to analyze the flow behaviour of pigment-
oil of printing ink, which shows yield stress in constitutive equation. Based on rheological
characteristics, the Casson fluid is classified as the most popular non-Newtonian fluid.
The Casson fluid model can be chosen to analyze the rheological behaviour of ingredients
like tomato sauce, soup, honey, jelly and human blood [9,21–23,26]. Since the blood con-
tains several substances such as fibrinogen, protein, globulin in aqueous base plasma and
human red blood cells, Casson fluid can be preferred to analyze the flow characteristics
of blood. Sankar [36] studied the pulsatile flow of blood through a catheterized artery by
considering blood as Casson fluid. Abolbashari et al. [1] analytically analyzed the flow,
heat and mass transfer characteristics of Casson nanofluid flow over a stretching surface.
Sivaraj and Benazir [40] studied the unsteady hydromagnetic mixed convection flow of
Casson fluid in a porous asymmetric wavy channel.

Studies pertaining to magnetohydrodynamic flow of non-Newtonian fluid in a porous
medium have gained much attention of many researchers due to its applications in the
geothermal sources investigation, the optimization of solidification processes of metals
and metal alloys, and nuclear fuel debris treatment [3, 11, 20, 29]. Ali et al. [3] analyzed
the hydromagnetic effects on blood flow in a horizontal circular tube by considering blood
as Casson fluid. Khan et al. [15] examined the unsteady squeezing hydromagnetic flow of
a Casson fluid between parallel plates. Vajravelu et al. [45] studied the mixed convective
flow of a Casson fluid over a vertical stretching sheet by using optimal homotopy analysis
method. Rashidi et al. [34] investigated laminar-free convective flow of a two-dimensional
electrically conducting viscoelastic fluid over a moving stretching surface in the presence
of a porous medium. Attia and Sayed-Ahmed [4] analyzed the unsteady magnetohydro-
dynamic flow of Casson fluid between two parallel non-conducting porous plates. The
transient squeezing flow of a magneto-micropolar biofluid in a noncompressible porous
medium intercalated between two parallel plates in the presence of a uniform strength
transverse magnetic field is investigated by Beg et al. [5]. The MHD boundary layer flow
of a Casson fluid over an exponentially permeable shrinking sheet has been investigated
by Nadeem et al. [25]. The problem of heat transfer to hydromagnetic pulsatile flow of
Oldroyd fluid was studied by Srinivas et al. [42]. Prasad et al. [30] examined the flow and
heat transfer of Casson nanofluid over a stretching sheet with variable thickness in the
presence of a magnetic field.

Thermal radiation plays an imperative role in many engineering processes, which
operate at high temperature such as gas turbines, nuclear plants and various propulsion
devices. It is interesting to note that the thermal regulation in human blood flow by means
of thermal radiation is most important in many medical treatments such as muscle spasm,
chronic wide-spread pain, myalgia and thermal therapeutic [13, 17, 23, 39, 43]. Sinha
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and Shit [39] investigated the problem of electromagnetohydrodynamic flow and transfer
of blood in a capillary with thermal radiation. Palani and Abbas [27] explored the free
convection MHD flow from a impulsively saturated vertical plate with thermal radiation.
The effect of thermal radiation and viscous dissipation on a combined free and forced
convective flow in a vertical channel is investigated by Prasad et al. [28]. Beg et al. [6]
studied the combined heat and mass transfer by mixed magneto-convective flow of an
electrically conducting flow along a moving radiating vertical flat plate with hydrody-
namic slip and thermal convective boundary conditions. Mabood et al. [16] analyzed the
influence of variable fluid properties on MHD flow of Casson fluid over a moving surface
in the presence porous medium and radiation. Shehzad et al. [37] analytically studied
the slip and thermal radiation effects on Casson fluid over a stretching surface by using
homotopy analysis method.

The study related to heat and mass transfer with chemical reaction is of great practical
importance in many engineering and industrial processes. Possible applications can be
found in many industries like electric power industry, chemical industry and food pro-
cessing chemical industry and so on. In many chemical engineering processes, a chemical
reaction between a foreign mass and the fluid does occur. These processes occur in numer-
ous industrial applications such as the polymer production, the manufacturing of ceramics
or glassware, the food processing [8, 12, 23, 35, 44]. Afify and Elgazery [2] studied the
chemical reaction effect on MHD stagnation point flow towards a stretching sheet with
suction or injection. Mythili et al. [24] carried out a numerical study to analyse the
chemical reaction, cross diffusion effects on Casson fluid over a cone and flat plate. Hayat
et al. [14] discussed the chemical reaction, Soret and Dufour effects on peristaltic flow
of Casson fluid in a two-dimensional asymmetric channel. Prasad et al. [31] studied the
effects of applied magnetic field, thermal and species concentration on flow, heat and mass
transfer of Casson fluid over a vertical permeable stretching sheet. Recently, Malathy et
al. [19] examined the chemical reaction and thermal radiation effects on MHD pulsating
flow of an Oldroyd-B fluid in channel with slip and convective boundary conditions.

The literature reveals that no study related to MHD pulsatile flow of Casson fluid
in a porous channel with thermal radiation and chemical reaction has been explored so
far. The main aim of the present investigation is to explore the influence of thermal
radiation, chemical reaction, Soret and Joule’s heating effects on MHD pulsating flow
of Casson fluid in a porous channel with porous medium. The dimensionless governing
flow equations are solved analytically by using perturbation technique. The influence of
various parameters on flow variables has been discussed.

2 Mathematical formulation

Consider the pulsatile flow of an incompressible Casson fluid in a porous channel under
the influence of uniform transverse applied magnetic field. The flow is driven by an
unsteady pressure gradient [33],

−1

ρ

∂p∗

∂x∗
= A

{
1 + ε exp(iωt∗)

}
,
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Figure 1. Schematic diagram of the model.

where ρ is density of the fluid, p∗ is pressure, A is a known constant, ε � 1 is a suitable
chosen positive quantity, ω is the frequency and t∗ is time. As shown in Fig. 1, a Cartesian
coordinate system is taken in such a way that the x∗-axis is taken along lower wall and
the y∗-axis perpendicular to it. The lower wall maintains temperature T0 and a concen-
tration C0 and the upper wall maintains temperature T1 (T1 > T0) and concentration C1

(C1 > C0). A uniform magnetic field B0 is imposed along the direction normal to the
flow. The fluid is injected into the channel from the lower wall with a velocity v0 and
is sucked out through the upper wall with the same velocity. Rheological equation for
Casson fluid is defined as follows [9, 21, 22, 26]:

τij =

{
(µB + Py∗/

√
2πc)2eij , πc > π,

(µB + Py∗/
√
2π)2eij , π > πc,

where τij is the (i, j)th component of the stress tensor, π = eijeij with eij being the
(i, j)th component of the deformation rate, π depicts the product of the component of
the deformation rate with itself, πc is the critical value of this product based on the non-
Newtonian model, µB is the plastic dynamic viscosity of the non-Newtonian fluid, Py∗ is
the yield stress of the fluid. The problem’s governing equations as follows [9, 21, 22, 25,
26, 33, 41]:

∂u∗

∂t∗
+ v0

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
1 +

1

β

)
∂2u∗

∂y∗2
− σB2

0

ρ
u∗ − µΦ

ρk
u∗, (1)

0 = −1

ρ

∂p∗

∂y∗
, (2)

∂T ∗

∂t∗
+ v0

∂T ∗

∂y∗
=

κ

ρCp

∂2T ∗

∂y∗2
+

µ

ρCp

(
1 +

1

β

)(
∂u∗

∂y∗

)2

+
σB2

0

ρCp
u∗2

− 1

ρCp

∂qr
∂y∗

+
Q0

ρCp
(T ∗ − T0), (3)
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∂C∗

∂t∗
+ v0

∂C∗

∂y∗
= D

∂2C∗

∂y∗2
+
DkT
Tm

∂2T ∗

∂y∗2
− k1C∗. (4)

The boundary conditions for the present analysis are

u∗ = 0, T ∗ = T0, C∗ = C0 at y∗ = 0,

u∗ = 0, T ∗ = T1, C∗ = C1 at y∗ = h,

where u∗ is dimensional velocity in x∗ direction, Φ and k are the porosity and per-
meability of porous medium, µ is the dynamic viscosity, σ is electrical conductivity,
β = µB

√
2πc/Py∗ is the Casson fluid parameter, ν is the kinematic viscosity, Cp is

the specific heat at constant pressure, Q0 is the coefficient of heat source/sink, qr is the
radiative heat flux, κ is the thermal conductivity, k1 is the first-order chemical reaction rate
(k1 < 0 for generative reaction, k1 > 0 for destructive reaction, k1 = 0 for no reaction),
Tm is the mean temperature of the fluid, D is the coefficient of mass diffusivity, kT is
the thermal diffusion ratio, T ∗, C∗ are the temperature and concentration of the fluid. By
using Rosseland approximation for radiative heat flux, qr is defined as [13, 16, 17, 43]

qr = − 4σ∗

3K∗
∂T ∗4

∂y∗
, (5)

where K∗ is the Rosseland mean absorption coefficient, σ∗ is the Stefan–Boltzmann
constant.

We presume that the temperature variation within the flow are sufficiently small such
that T ∗4 may be expanded in a Taylor’s series. Expanding T ∗4 about T0 and neglecting
higher-order terms we obtain

T ∗4 ∼= 4T 3
0 T
∗ − 3T 4

0 . (6)

Substituting Eqs. (5) and (6) into Eq. (3), we obtain

∂T ∗

∂t∗
+ v0

∂T ∗

∂y∗
=

κ

ρCp

∂2T ∗

∂y∗2
+

µ

ρCp

(
1 +

1

β

)(
∂u∗

∂y∗

)2

+
σB2

0

ρCp
u∗2

+
1

ρCp

16σ∗T 3
0

3K∗
∂2T ∗

∂y∗2
+

Q0

ρCp
(T ∗ − T0). (7)

We introduce the following dimensionless variables [10, 33]:

x =
x∗

h
, y =

y∗

h
, t = t∗ω, u =

u∗ω

A
,

p =
p∗

ρAh
, θ =

T ∗ − T0
T1 − T0

, φ =
C∗ − C0

C1 − C0
.
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By using the above dimensionless variables, Eqs. (1), (7) and (4) become

H2 ∂u

∂t
+R

∂u

∂y
= −H2 ∂p

∂x
+

(
1 +

1

β

)(
∂2u

∂y2

)
−
(
M2 +

1

Da

)
u, (8)

H2 ∂θ

∂t
+R

∂θ

∂y
=

1

Pr

(
1 +

4

3
Rd

)
∂2θ

∂y2
+

(
1 +

1

β

)
Ec

(
∂u

∂y

)2

+ EcM2u2 +Qθ, (9)

H2 ∂φ

∂t
+R

∂φ

∂y
=

1

Sc

∂2φ

∂y2
+ Sr

∂2θ

∂y2
− γφ−K1, (10)

where Da = k/Φh2 is the Darcy number of the porous media, M = B0h
√
σ/
√
µ is the

Hartmann number, H = h
√
ω/
√
ν is the frequency parameter, R = v0h/ν is cross flow

Reynolds number,Q = Q0h
2/(ρCpν) is heat source/sink parameter (i.e., positive for heat

source and negative for heat sink), Ec = (A/ω)2/(Cp(T1 − T0)) is the Eckert number,
Rd = 4σ∗T 3

0 /(κK
∗) is the radiation parameter, Pr = µCp/κ is the Prandtl number,

Sc = ν/D is the Schmidt number, Sr = DKT (T1 − T0)/(Tmν(C1 − C0)) is the Soret
number, γ = k1h

2/ν is the chemical reaction parameter, which is positive for destructive
chemical reaction and negative for generative reaction and K1 = k1C0h

2/(ν(C1−C0)).
So, the new boundary conditions are

u = 0, θ = 0, φ = 0 at y = 0,

u = 0, θ = 1, φ = 1 at y = 1.

3 Method of solution

The velocity u, temperature θ and concentration φ can be assumed to have the form

u = u0(y) + εu1(y) exp(it) + ε2u2(y) exp(2it), (11)

θ = θ0(y) + εθ1(y) exp(it) + ε2θ2(y) exp(2it), (12)

φ = φ0(y) + εφ1(y) exp(it) + ε2φ2(y) exp(2it). (13)

Now substitute Eqs. (11)–(13) into Eqs. (8)–(10) and then equating the coefficients of
various powers of ε, we get(

1 +
1

β

)
u′′0 −Ru′0 −

(
M2 +

1

Da

)
u0 +H2 = 0, (14)(

1 +
1

β

)
u′′1 −Ru′1 −

(
M2 +

1

Da
+ iH2

)
u1 +H2 = 0, (15)(

1 +
1

β

)
u′′2 −Ru′2 −

(
M2 +

1

Da
+ 2iH2

)
u2 +H2 = 0, (16)(

1 +
4

3
Rd

)
θ′′0 − PrRθ′0 +

(
1 +

1

β

)
EcPru′20 +M2EcPru20 +QPrθ0 = 0, (17)

https://www.mii.vu.lt/NA



Pulsating flow of Casson fluid in a porous channel 219

(
1 +

4

3
Rd

)
θ′′1 − PrRθ′1 − iH2Prθ1 + 2

(
1 +

1

β

)
EcPru′0u

′
1

+ 2M2EcPru0u1 +QPrθ1 = 0, (18)(
1 +

4

3
Rd

)
θ′′2 − PrRθ′2 − 2iH2Prθ2 +

(
1 +

1

β

)
EcPru′21

+M2EcPru21 +QPrθ2 = 0, (19)

φ′′0 −RScφ′0 − γScφ0 + ScSrθ′′0 −K1Sc = 0, (20)

φ′′1 −RScφ′1 −
(
iH2Sc + γSc

)
φ1 + ScSrθ′′1 = 0, (21)

φ′′2 −RScφ′2 −
(
2iH2Sc + γSc

)
φ2 + ScSrθ′′2 = 0. (22)

The corresponding boundary conditions are

u0(0) = 0, u0(1) = 0, u1(0) = 0, u1(1) = 0; u2(0) = 0, u2(1) = 0;

θ0(0) = 0, θ0(1) = 1, θ1(0) = 0, θ1(1) = 0, θ2(0) = 0, θ2(1) = 0; (23)
φ0(0) = 0, φ0(1) = 1, φ1(0) = 0, φ1(1) = 0, φ2(0) = 0, φ2(1) = 0.

By solving Eqs. (14)–(22) with the corresponding boundary conditions (23), we get

u0 = A1e
m1y +A2e

m2y +A3,

u1 = A4e
m3y +A5e

m4y +A6,

u2 = A7e
m5y +A8e

m6y,

θ0 =A9e
m7y +A10e

m8y +A11e
2m1y +A12e

2m2y +A13e
m1y +A14e

m2y

+A15e
(m1+m2)y +A16,

θ1 =A17e
m9y +A18e

m10y +A19e
(m1+m3)y +A20e

(m1+m4)y +A21e
(m2+m3)y

+A22e
(m2+m4)y +A23e

m1y +A24e
m2y +A25e

m3y +A26e
m4y +A27,

θ2 =A28e
m11y +A29e

m12y +A30e
2m3y +A31e

2m4y +A32e
(m3+m4)y

+A33e
(m1+m3)y +A34e

(m1+m4)y +A35e
(m2+m3)y +A36e

(m2+m4)y

+A37e
(m1+m5)y +A38e

(m1+m6)y +A39e
(m2+m5)y +A40e

(m2+m6)y

+A41e
m3y +A42e

m4y +A43e
m5y +A44e

m6y +A45,

φ0 =A46e
m13y +A47e

m14y +A48e
m7y +A49e

m8y +A50e
2m1y +A51e

2m2y

+A52e
m1y +A53e

m2y +A54e
(m1+m2)y +A55,

φ1 =A56e
m15y +A57e

m16y +A58e
m9y +A59e

m10y +A60e
(m1+m3)y

+A61e
(m1+m4)y +A62e

(m2+m3)y +A63e
(m2+m4)y +A64e

m1y

+A65e
m2y +A66e

m3y +A67e
m4y,
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φ2 =A68e
m17y +A69e

m18y +A70e
m11y +A71e

m12y +A72e
2m3y +A73e

2m4y

+A74e
(m3+m4)y +A75e

(m1+m3)y +A76e
(m1+m4)y +A77e

(m2+m3)y

+A78e
(m2+m4)y +A79e

(m1+m5)y +A80e
(m1+m6)y +A81e

(m2+m5)y

+A82e
(m2+m6)y +A83e

m3y +A84e
m4y +A85e

m5y +A86e
m6y,

where m’s and A’s are constants given in Appendix.
Further, the dimensionless Nusselt and Sherwood numbers at the walls are given by

Nu = −(∂θ/∂y)y=0,1 = −(θ′0 + εθ′1e
it + ε2θ′2e

2it)y=0,1 and Sh = −(∂φ/∂y)y=0,1 =
−(φ′0 + εφ′1e

it + ε2φ′2e
2it)y=0,1.

4 Results and discussion

This section describes the influence of various physical parameters on the non-dimensional
velocity, temperature, concentration, Nusselt number and sherwood number distributions
graphically in Figs. 2–13.

In the present analysis, θs, φs,ut, θt, φt represent steady temperature, steady con-
centration, unsteady velocity, unsteady temperature, unsteady concentration, respectively.
Figure 2 presents the effects of Casson fluid parameter (β), Darcy number (Da), frequency
parameter (H), Hartmann number (M ) on the velocity distribution. From Figs. 2(a) and
2(c), it is notice that the velocity increases with an increase in Casson fluid parameter and
frequency parameter. Figure 2(b) elucidates the variation of velocity for different values
of Darcy number. It is noticed that the velocity is an increasing function of Da . Because
the linear porous drag force, called the Darcian drag force, is inversely proportional to
Darcy number (see the last term of Eq. (8), i.e., −u/Da). An increase in permeability of
porous regions, will increase Da , which will act as the Darcian drag force. Hence, there
is an increase in u with increase in Da . Figure 2(d) shows that for a given increase in M ,
there is a decrease in velocity. This is due to fact that the retarding forces (called Lorentz
forces) generated by the applied magnetic field act as resistive drag forces opposite to the
flow direction, which results a decrease in velocity. The effect of t on unsteady velocity
distribution is shown in Fig. 3. One can noticed that the unsteady velocity profiles oscillate
with increasing t.

Figures 4(a) and 4(b) shows the influence of the cross flow Reynolds number R and
heat source/sink parameter Q on the temperature distribution. Figure 4(a) depicts that the
temperature distribution decreases with an increase ofR. From Fig. 4(b) one can observed
that there is a rise in temperature with an increase of heat source, while it is decreases with
an increase of heat sink. The effects of radiation parameter (Rd ) Hartmann number (M )
and Eckert number (Ec) on steady and unsteady temperature distributions are shown in
Figs. 5–7. Figure 5 describes the variation of steady and unsteady temperature profiles for
different values of radiation parameter. It is noticed that the steady temperature decreases
for a given increase in radiation parameter (see Fig. 5(a)). From Fig. 5(b) one can see
that the unsteady temperature oscillating with increasing Rd and the maximum is shifted
to the near the walls. From Fig. 6(a) it is clear that the steady temperature decreases for
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Figure 2. Velocity distribution for ε = 0.01, t = π/4, R = 1: (a) effect of β when Da = 0.1, H = 3,
M = 0.5; (b) effect ofH when β = 2, Da = 0.1,M = 0.5; (c) effect of Da when β = 2,H = 3,M = 0.5;
(d) effect of M when β = 2, Da = 0.1, H = 3.
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Figure 3. Effect of t on unsteady velocity distribution when ε = 0.01, β = 2, H = 3, R = 1, M = 0.5,
Da = 0.1.

given increase in M towards the lower wall, while it increases towards the upper wall.
From Fig. 6(b) one can infer that the unsteady temperature oscillates with increase M .
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Figure 5. Effect of Rd on temperature distribution when ε = 0.01, β = 2, t = π/4, H = 3, M = 0.5,
Pr = 21, Ec = 1, Da = 0.1, R = 1, Q = 0.5.

Figure 7 presents the effect of Eckert number on steady and unsteady temperature
distributions. From Fig. 7(a) one can noticed that the steady temperature increases with
increasing Ec. This increase in temperature may be due to heat created by viscous dis-
tribution. From Fig. 7(b) it is observed that the unsteady temperature exhibits oscillating
character with increasing Ec and the maximum is shifted to the boundary layers near the
walls. The influence of time on unsteady temperature distribution is shown in Fig. 8. It is
observed that the unsteady temperature profiles oscillate with increasing t.

Figures 9–11 show the effects of the chemical reaction parameter (γ), Schmidt num-
ber (Sc) and Soret number on steady and unsteady concentration distribution φ. Fig-
ure 9 depicts the influence of γ on steady and unsteady concentration distributions. It
is observed that the steady and unsteady concentration distributions decrease with an
increase of destructive chemical reaction (γ > 0). This is due to fact that increasing
destructive chemical reaction there is a decrease in the concentration boundary layer
because the destructive chemical reaction reduces the solutal boundary layer thickness
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Figure 6. Effect of M on temperature distribution when ε = 0.01, β = 2, t = π/4, H = 3, Ec = 1,
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Figure 10. Effect of Sc on concentration distribution when ε = 0.01, β = 2, Ec = 0.1, H = 3, M = 0.5,
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Figure 11. Effect of Sr on concentration distribution when ε = 0.01, β = 2, Ec = 0.1, H = 3, M = 0.5,
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Figure 13. Sherwood number distribution for ε = 0.01, β = 2, M = 0.5, t = π/4, H = 3, Q = 0.5,
Ec = 1, Da = 0.1, K1 = 0.001, γ = 1: (a) effect of Sc when Sr = 2; (b) effect of Sr when Sc = 0.62.

and increases the mass transfer. Further, the unsteady concentration exhibits oscillating
character. The opposite behaviour can be observed for the case of generative chemical
reaction. Figure 10(a) shows that the steady concentration distribution decreases for given
increase in Sc. From Fig. 10(b) one can see that the unsteady concentration profiles
exhibits oscillation character. From Fig. 11(a), it is seen that there is a rise in steady
concentration with an increase of Sr . Figure 11(b) presents the oscillating character of
unsteady concentration distribution by varying Sr .

Figure 12 elucidates the effects of Rd and Q on Nusselt number distribution (Nu)
against R. From Fig. 12(a) it is noticed that for a given increase in Radiation parameter,
Nu increases at the lower wall, while it decreases at the upper wall. From Fig. 12(b)
one can infer that, at the upper wall Nu increases with increasing heat source, while it
decreases at the lower wall. The behaviour is reversed for the case of heat sink. The effects
of Sc and Sr on Sherwood number distribution (Sh) against R is shown in Fig. 13. From
Fig. 13(a), one can be noticed that Sh is an increasing function of Sc at the lower wall,
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Table 1. Comparison of Nusselt number for Newtonian and non-Newtonian cases when ε = 0.01,
t = π/4, H = 3, Ec = 1, Pr = 21, Da = 0.1.

Parameter Values Nu = −(∂θ/∂y)y=0 Nu = −(∂θ/∂y)y=1

Newtonian Non-Newtonian Newtonian Non-Newtonian
M 0 −2.7033 −2.6361 3.1771 2.7457

2 −2.2726 −2.2307 3.5754 2.7261
4 −1.5615 −1.5380 2.6740 1.8116

R 0 −7.6829 −7.1678 6.1846 5.6695
1 −2.2726 −2.2307 3.5754 2.7261
2 −1.1585 −1.2067 −1.9577 −2.8056

Q 0 −2.5506 −2.4868 1.6763 1.2142
0.5 −2.6712 −2.6064 3.2306 2.7556
1 −2.8333 −2.7671 5.4356 4.9425

Rd 0 −4.2702 −4.1034 19.2777 17.4188
1 −3.3850 −3.2904 6.2590 5.4984
2 −2.8333 −2.7671 3.2306 2.7556

Table 2. Comparison of Sherwood number for Newtonian and non-Newtonian cases when ε =
0.01, M = 0.5, t = π/4, H = 3, Q = 0.5, Ec = 1, Da = 0.1, K1 = 0.001, Rd = 2.

Parameter Values Sh = −(∂φ/∂y)y=0 Sh = −(∂φ/∂y)y=1

Newtonian Non-Newtonian Newtonian Non-Newtonian
Sc 0.22 −0.3248 −0.3373 −3.2051 −2.8299

0.62 0.7586 0.7495 −7.2520 −6.1884
1 1.6468 1.6638 −11.1336 −9.4111
2 3.5253 3.6642 −21.4679 −18.0043

γ 0 −0.3507 −0.3646 −3.1424 −2.7645
0.5 −0.3376 −0.3508 −3.2051 −2.7974
1.5 −0.3124 −0.3241 −3.2357 −2.8619

Sr 0 −0.8620 −0.8620 −1.1863 −1.1863
1 −0.5934 −0.5996 −2.1957 −2.0081
2 −0.3248 −0.3373 −3.2051 −2.8299

while it is a decreasing function at the upper wall. From Fig. 13(b), the similar behaviour
can be observed by varying Sr .

Tables 1 and 2 show the variations of Nu and Sh for both the Newtonian and non-
Newtonian cases. From Table 1 it is observed that for both the Newtonian and non-
Newtonian cases, the Nusselt number distribution decreases at the upper wall with in-
creasing M , R and Rd , while it decreases with increasing Q. However, this behaviour
is reversed at lower wall. Table 2 depicts that the Sherwood number distribution is an
increasing function of Sc, γ, and Sr for both the Newtonian and non-Newtonian cases at
lower wall, while it is decreasing function at upper wall.

5 Conclusion

The present study deals with hydromagnetic pulsating flow of Casson fluid in a porous
channel with thermal radiation and chemical reaction in the presence of heat source/sink.
The problem considered is important as flow of Casson fluids (blood, drilling muds,
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clay coating, certain oils, greases and many impulsions) in porous channel are used in
modelling biological and industrial research. The governing flow equations are solved
analytically by employing perturbation technique. The main findings of the present study
are given below:

• The velocity distribution increases with increasing Casson fluid parameter, fre-
quency parameter and Darcy number, while it decreases with increasing Hartmann
number.

• The temperature increases with increasing heat source whereas it decreases with
increasing heat sink.

• The steady temperature distribution is an increasing function of Ec, while it is
a decreasing function of Rd .

• The concentration distribution decreases with increasing destructive chemical reac-
tion and Schmidt number, while it increases with increasing Soret number.

• Nusselt number at upper wall increases with increasing heat source, while it de-
creases with increasing Rd . But this behaviour is reversed at the lower wall.

• Sherwood number at lower wall is a increasing function of Sc and Sr whereas it is
a decreasing function at the upper wall.

• By taking M = 0, as a limiting case, the results corresponding to the problem for
the hydrodynamic case can be captured.

• The results of Radhakrishnamacharya and Maiti [33] (i.e., for the case of Newtonian
fluid) can be captured from the present analysis by taking β → ∞, M = Q =
Rd = γ = Sr = Sc = 0 in the absence of mass (concentration) diffusion.
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(m2+m4)2 −B12(m2+m4)−B15
;

A79 = −
ScSrA37(m1 +m5)2

(m1+m5)2 −B12(m1+m5)−B15
; A80 = −

ScSrA38(m1 +m6)2

(m1+m6)2 −B12(m1+m6)−B15
;

A81 = −
ScSrA39(m2 +m5)2

(m2+m5)2 −B12(m2+m5)−B15
; A82 = −

ScSrA40(m2 +m6)2

(m2+m6)2 −B12(m2+m6)−B15
;

A83 = −
ScSrA41m2

3

m2
3 −B12m3 −B15

; A84 = −
ScSrA42m2

4

m2
4 −B12m4 −B15

;

A85 = −
ScSrA43m2

5

m2
5 −B12m5 −B15

; A86 = −
ScSrA44m2

6

m2
6 −B12m6 −B15

;

A68 = −(A69 +A70 +A71 +A72 +A73 +A74 +A75 +A76 +A77

+A78 +A79 +A80 +A81 +A82 +A83 +A84 +A85 +A86);

A69 =
1

em18 − em17

(
A70

(
em17 − em11

)
+A71

(
em17 − em12

)
+A72

(
em17 − e2m3

)
+A73

(
em17 − e2m4

)
+A74

(
em17 − e(m3+m4)

)
+A75

(
em17 − e(m1+m3)

)
+A76

(
em17 − e(m1+m4)

)
+A77

(
em17 − e(m2+m3)

)
+A78

(
em17 − e(m2+m4)

)
+A79

(
em17 − e(m1+m5)

)
+A80

(
em17 − e(m1+m6)

)
+A81

(
em17 − e(m2+m5)

)
+A82

(
em17 − e(m2+m6)

)
+A83

(
em17 − em3

)
+A84

(
em17 − em4

)
+A85

(
em17 − em5

)
+A86

(
em17 − em6 )

)
.
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