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Abstract. In this paper, we shall study the optimal control of the initial-boundary value problem
of a higher-order nonlinear parabolic equation describing crystal surface growth. The existence
and uniqueness of weak solutions to the problem are given. According to the variational method,
optimal control theories and distributed parameter system control theories, we can deduce that the
norm of the solution is related to the control item and initial value in the special Hilbert space.
The optimal control of the problem is given, the existence of optimal solution is proved and the
optimality system is established.
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1 Introduction

The field of optimal control was born in the 1950s with the discovery of the maximum
principle as a result of a competition in military affairs in the early days of the cold war.
It lies at the forefront of the creative interplay of mathematics, engineering and computer
science. Modern optimal control theories and applied models are not only represented by
ODE, but also by PDE, especially nonlinear parabolic equation.

In past decades, many papers have already been published to study the control prob-
lems of nonlinear parabolic equations. In [17], Yong and Zheng considered the feedback
stabilization and optimal control of the Cahn–Hilliard equation in a bounded domain with
smooth boundary. In the papers wrote by Ryu and Yagi [13, 14], the optimal control
problems of Keller–Segel equations and adsorbate-induced phase transition model were
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considered. Their techniques are based on the energy estimates and the compact method.
They established various a priori estimates for the solutions of equations to show that the
classical compact method described systematically by Lions (see [8]) is available. Re-
cently, by using an approximate problems, Zheng [21] derived the optimality conditions
for an optimal control of multidimensional modified Swift–Hohenberg equation. There is
much literature concerned with the optimal control problem for parabolic equations. For
more recent result, we refer the reader to [1, 15, 20] and the references therein.

In the study of molecular beam epitaxy, the hight H(x, t) of the surface above the
substrate plane satisfies a continuity equation

∂

∂t
H +∇ · Jsurface{H} = F, (1)

where F is the incident mass flux out of the molecular beam. In general, the systematic
current Jsurface depends on the whole surface configuration. Keeping only the most im-
portant terms in a gradient expansion, subtracting the mean height H = Fu and using
appropriately rescaled units of height, distance and time [12], equation (1) attains the
dimensionless form

∂u

∂t
= −∆2u−∇ ·

[
f
(
∇u2

)
∇u
]
. (2)

In equation (2), the linear term describes relaxation through adatom diffusion driven by
the surface free energy [9], while the second nonlinear term models the nonequilibrium
current [6]. Assuming in-plane symmetry, it follows that the nonequilibrium current is
(anti)parallel to the local tilt ∇u with a magnitude f(∇u2) depending only on the mag-
nitude of the title. Within a Burton–Cabrera–Frank-type theory [7], for small tilts, the
current is proportional to |∇u|, and the opposite limit is proportional to |∇u|−1. This
suggests the interpolation formula f(s2) = 1/(1 + s2) (see [5,11]). Hence, we obtain the
following equation:

∂u

∂t
+ a∆2u+ µ∇ ·

(
∇u

1 + |∇u|2

)
= 0, (x, t) ∈ Ω × (0, T ), (3)

where a and µ are positive constants, Ω ⊂ R2 is a bounded domain.
During the past years, some investigations of equation (3) were studied. It was Rost

and Krug [11] who studied the unstable epitaxy on singular surfaces using equation (3)
with a prescribed slope dependent surface current. In their paper, they derived scaling
relations for the late stage of growth, where power law coarsening of the mound mor-
phology is observed. In [10], in the limit of weak desorption, Pierre-Louis et al. de-
rived equation (3) for a vicinal surface growing in the step flow mode. This limit turned
out to be singular, and nonlinearities of arbitrary order need to be taken into account.
Fujimura and Yagi [2, 3] studied the well-posedness of the solution for equation (3).
In their papers, the uniqueness local solutions and the global solutions were obtained.
A dynamical system determined from the initial-boundary value problem of the model
equation was constructed, and the asymptotic behavior of trajectories of the dynamical
system was also considered. In [4], Grasselli, Mola and Yagi proved that equation (3)
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possesses a global as well as an exponential attractor. In addition, if the boundary is
smooth enough, they showed that every trajectory converges to a single equilibrium by
means of a suitable Lojasiewicz–Simon inequality. Recently, Zhao and Liu [19] studied
the long time behavior of equation (3) with periodic boundary conditions. Based on the
iteration technique for regularity estimates and the classical existence theorem of global
attractors, they proved that the equation possesses a global attractor on some affine space
of Hk (0 6 k < +∞). Latterly, in [18], Zhao and Cao studied the optimal control
problem for equation (3) in 1D case.

In this article, we consider the optimal control problem for two-dimensional equa-
tion (3) together with the initial and boundary conditions. Suppose that T > 0, Q0 ⊆
Q = Ω × (0, T ), C ∈ L(W (0, T ;V ), S) is an operator, which is called the observer,
S is a real Hilbert space of observations. We are concerned with the distributed optimal
control problem

min J(u,w) =
1

2
‖Cu− zd‖2S +

δ

2
‖w‖2L2(Q0), (4)

subject to the

∂u

∂t
+ a∆2u+ µ∇ ·

(
∇u

1 + |∇u|2

)
= Bw, (x, t) ∈ Ω × (0, T ),

∂u

∂n

∣∣∣∣
∂Ω

=
∂∆u

∂n

∣∣∣∣
∂Ω

= 0, u(x, 0) = u0(x) ∀x ∈ Ω.
(5)

The control target is to match the given desired state zd in L2-sense by adjusting the body
force w in a control volume Q0 ⊆ Q = Ω × (0, T ) in the L2-sense.

Now, we introduce some notations that will be used throughout this paper. Let V =
H2
E(Ω) = {y: y ∈ H2(Ω), ∂y/∂n|∂Ω = 0},H = L2(Ω), let V ∗ andH∗ be dual spaces

of V and H . Then we obtain

V ↪→ H = H∗ ↪→ V ∗.

Clearly, each embedding is dense.
The extension operator B ∈ L(L2(Q0), L2(0, T ;H)), which is called the controller,

is introduced as

Bq =

{
q, q ∈ Q0,

0, q ∈ Q \Q0.

We supply H with the inner product (·, ·) and the norm ‖·‖, and define the spaces

W (0, T ;X) =
{
y: y ∈ L2(0, T ;X), yt ∈ L2(0, T ;X∗)

}
,

W (0, T ;X,Z) =
{
y: y ∈ L∞(0, T ;X), yt ∈ L2(0, T ;Z)

}
,

and
W (0, T ;X,Z) =

{
y: y ∈ L2(0, T ;X), yt ∈ L2(0, T ;Z)

}
,

which are Hilbert spaces endowed with common inner product.
In the following, the letters c, ci (i = 1, 2, . . . ) will always denote positive constants

different in various occurrences.
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2 Existence and uniqueness of the weak solutions

In this section, we prove the existence and uniqueness of weak solution for problem (5),
where Bw ∈ L2(0, T ;H) and a control w ∈ L2(Q0).

Definition 1. For all η ∈ V , t ∈ (0, T ), a function u(x, t) ∈W (0, T ;V ) is called a weak
solution to problem (5) if(

d

dt
u, η

)
+ a(∆u,∆η)− µ

(
∇u

1 + |∇u|2
,∇η

)
= (Bw, η) ∀η ∈ V.

We shall give Theorem 1 on the existence and uniqueness of weak solution to prob-
lem (5) and prove it.

Theorem 1. Assume that u0 ∈ V , Bw ∈ L2(0, T ;H), then problem (5) admits a unique
weak solution u(x, t) ∈W (0, T ;V ).

Proof. Galerkin method is applied to the proof.
Denote A = a∆2 as a differential operator, let {yi}∞i=1 denote the eigenfunctions of

the operator A. For n ∈ N, define

Vn = span{y1, y2, . . . , yn} ⊂ V.

Suppose un(x, t) =
∑n
j=1 unj(t)yj(x) require un(0, ·) → u0 in H holds true. By

analyzing the limiting behavior of sequences of smooth function {un}, we can prove
the existence of a weak solution to problem (5).

Performing the Galerkin procedure for problem (5), we obtain(
unt + a∆2un + µ∇ ·

(
∇un

1 + |∇un|2

)
, yj

)
= (Bw, yj),(

un(·, 0), yj
)

=
(
un0(·), yj

)
, j = 1, 2, . . . , N.

(6)

Obviously, the equation of (6) is an ordinary differential equation, and according to
ODE theory, there exists a unique solution to the equation of (6) in the interval [0, tn).
What we should do is to show that the solution is uniformly bounded when tn → T . We
also need to show that the times tn are not decaying to 0 as n→∞. Therefore, we shall
prove the existence of solution in the following steps.

Step 1. Multiplying the equation of (6) by un, integrating with respect to x over Ω,
we deduce that

1

2

d

dt
‖un‖2 + a‖∆un‖2 = µ

∫
Ω

|∇un|2

1 + |∇un|2
dx+

∫
Ω

unBw dx.

Noticing that

µ

∫
Ω

∇u2
n

1 + |∇un|2
dx 6 µ|Ω|,

∫
Ω

unBw dx 6 ‖un‖‖Bw‖ 6
1

2
‖un‖2 +

1

2
‖Bw‖2.
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Summing up, we immediately get

d

dt
‖un‖2 + 2a‖∆un‖2 6 ‖un‖2 + ‖Bw‖2 + 2µ|Ω|. (7)

Since Bw ∈ L2(0, T ;H) is the control item, we can assume that ‖Bw‖ 6 M , where
M is a positive constant. Then we have

d

dt
‖un‖2 + 2a‖∆un‖2 6 ‖un‖2 +M2 + 2µ|Ω|.

Using Gronwall’s inequality, we obtain

‖un‖2 6 et‖un,0‖2 +M2 + 2µ|Ω|
6 eT ‖un,0‖2 +M2 + 2µ|Ω| = c21 ∀t ∈ [0, T ]. (8)

Step 2. Multiplying the equation of (6) by ∆un, integrating with respect to x over Ω,
we deduce that

1

2

d

dt
‖∇un‖2 + a‖∇∆un‖2 + µ

∫
Ω

∇un
1 + |∇un|2

∇∆un dx = −
∫
Ω

∆unBw dx. (9)

Noticing that

‖∆un‖2 6
1

a
‖∇un‖2 +

a

4
‖∇∆un‖2

and ∫
Ω

(
∇un

1 + |∇un|2

)2

dx 6
∫
Ω

|∇un|2 dx = ‖∇un‖2.

It then follows from (9) that

1

2

d

dt
‖∇un‖2 + a‖∇∆un‖2

6
a

4
‖∇∆un‖2 +

µ2

a

∫
Ω

(
∇un

1 + |∇un|2

)2

dx+ ‖∆un‖2 +
1

4
‖Bw‖2

6
a

4
‖∇∆un‖2 +

µ2

a
‖∇un‖2 +

a

4
‖∇∆un‖2 +

1

a
‖∇un‖2 +

1

4
‖Bw‖2,

that is,
d

dt
‖∇un‖2 + a‖∇∆un‖2 6

2(µ2 + 1)

a
‖∇un‖2 +

1

2
‖Bw‖2. (10)

Since ‖Bw‖ 6M , using Gronwall’s inequality, we obtain

‖∇un‖2 6 e2(µ2+1)t/a
∥∥∇un(0)

∥∥2
+

aM2

4µ2 + 4
6 c22 ∀t ∈ [0, T ]. (11)
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Step 3. Multiplying the equation of (5) by ∆2un, integrating with respect to x overΩ,
we deduce that

1

2

d

dt
‖∆un‖2 + a

∥∥∆2un
∥∥2

+ µ

∫
Ω

∇ ·
(

∇un
1 + |∇un|2

)
∆2un dx =

∫
Ω

∆2unBw dx.

Noticing that∫
Ω

∇ ·
(

∇un
1 + |∇un|2

)
∆2un dx =

∫
Ω

∆un∆2un
1 + |∇un|2

dx−
∫
Ω

2|∇un|2∆un∆2un
(1 + |∇un|2)2

dx.

Hence,

1

2

d

dt
‖∆un‖2 + a

∥∥∆2un
∥∥2

= µ

∫
Ω

2|∇un|2∆un∆2un
(1 + |∇un|2)2

dx− µ
∫
Ω

∆un∆2un
1 + |∇un|2

dx+

∫
Ω

∆2unBw dx

6 µ sup
x∈Ω̄

2|∇un|2

(1 + |∇un|2)2
· ‖∆un‖

∥∥∆2un
∥∥

+ µ sup
x∈Ω̄

1

1 + |∇un|2
· ‖∆un‖

∥∥∆2un
∥∥+ ‖Bw‖

∥∥∆2un
∥∥

6
3µ

2
‖∆un‖

∥∥∆2un
∥∥+ ‖Bw‖

∥∥∆2un
∥∥

6
a

2

∥∥∆2un
∥∥2

+
9µ2

4a
‖∆un‖2 +

1

a
‖Bw‖2.

Therefore, we have

d

dt
‖∆un‖2 + a

∥∥∆2un
∥∥2

6
9µ2

2a
‖∆un‖2 +

2

a
‖Bw‖2. (12)

Since ‖Bw‖ 6M , using Gronwall’s inequality, we obtain

‖∆un‖2 6 e9µ2t/(2a)
∥∥∆un(0)

∥∥2
+

4

9µ2
M2

6 e9µ2T/(2a)
∥∥∆un(0)

∥∥2
+

4

9µ2
M2 = c23,

where t ∈ [0, T ]. Adding (8) and (11) together gives

‖un‖2L2(0,T ;V ) =

T∫
0

(
‖un‖2 + ‖∇un‖2 + ‖∆un‖2

)
dt 6 c4. (13)

Then the uniform L2(0, T ;V ) bounded on a sequence {un} is proved.
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Step 4. We prove a uniform L2(0, T ;V ∗) bound on a sequence {un,t}. Noticing that

−
(
∆2un, η

)
6
∣∣(∆un,∆η)

∣∣ 6 ‖∆un‖‖∆η‖ 6 ‖∆un‖‖η‖V ,(
∇ ·
[

∇un
1 + |∇un|2

]
, η

)
= −

(
∇un

1 + |∇un|2
,∇η

)
6 ‖∇un‖‖∇η‖ 6 ‖∇un‖‖η‖V ,

(Bw, η) 6 ‖Bw‖‖η‖ 6 ‖Bw‖‖η‖V .

Therefore, by (11), we have

‖un,t‖V ∗

6 a
∥∥∆2un

∥∥
V ∗

+ µ

∥∥∥∥∇ · ( ∇un
1 + |∇un|2

)∥∥∥∥
V ∗

+ ‖Bw‖V ∗

6 c

(
sup
|(∆2un, η)V ∗, V |

‖η‖V
+ sup

|(∇·[ ∇un

1+|∇un|2 ]x, η)V ∗, V |
‖η‖V

+ sup
|(Bw, η)V ∗, V |
‖η‖V

)
6 c
(
‖∆un‖+ ‖∇un‖+ ‖Bw‖

)
6 c(c2 + c3 +M).

Hence, we get

‖un,t‖2L2(0,T ;V ∗) =

T∫
0

‖un,t‖2V ∗ dt 6
[
c(c2 + c3 +M)

]2
T = c5.

Step 5. Integrating (10) and (12) with respect to [0, T ], we derive that

‖∇∆un‖2L2(0,T ;H) +
∥∥∆2un

∥∥2

L2(0,T ;H)
6 c6, (14)

combining (13) and (14) together, we deduce that

‖un‖L2(0,T ;H4) 6 c7.

It then follows from Aubin–Lions lemma that

W (0, T ;V, V ∗) ↪→ C
(
0, T ;H1

)
,

W (0, T ;V, V ∗) ↪→ C(0, T ;H),

and
W
(
0, T ;H4, V ∗

)
↪→ L2(0, T ;V )

are compact. Therefore, there exist u ∈ C(0, T ;H1) and u ∈ L2(0, T ;H2) such that, up
to a subsequence,

un → u strongly in C
(
0, T ;H1

)
,

un → u strongly in L2
(
0, T ;H2

)
.

(15)

By Sobolev’s embedding theorem, we get

H2(Ω) ↪→ L∞(Ω), H2(Ω) ↪→W 1,4(Ω).
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It then follows from (15) that

‖un − u‖C(0,T ;H1) → 0, ‖∆un −∆u‖L2(0,T ;H2) → 0.

According to the previous subsequences {un}, we conclude that∇· [∇un/(1 + |∇un|2)]
weakly converges to ∇ · [∇u/(1 + |∇u|2)] in L2(0, T ;H). In fact, setting ϕ(s) = s/
(1 + s2), we have

ϕ′(s) =
1− s2

(1 + s2)2
6

1

(1 + s2)2
6 1

and

ϕ′′(s) =
−2s

(1 + s2)2
− 4− 4s4

(1 + s2)4
6

1

1 + s2
+

4

(1 + s2)4
+

4s4

(1 + s2)4

6 1 + 4 +
1

4
=

21

4
.

Hence, for any w ∈ L2(0, T ;H), by differential mean value theorems, we have∣∣∣∣∣
T∫

0

(
∇ϕ(∇un)−∇ϕ(∇u), w

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

(
ϕ′(∇un)∆un − ϕ′(∇u)∆u,w

)
dt

∣∣∣∣∣
6

∣∣∣∣∣
T∫

0

(
ϕ′(∇un)∆un − ϕ′(∇u)∆un, w

)
dt

∣∣∣∣∣+

∣∣∣∣∣
T∫

0

(
ϕ′(∇u)∆un − ϕ′(∇u)∆u,w

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

(
ϕ′′
(
θ∇un + (1− θ)∇u

)
(∇un −∇u)∆un, w

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
T∫

0

(
ϕ′(∇u)∆un − ϕ′(∇u)∆u,w

)
dt

∣∣∣∣∣
6

T∫
0

∥∥ϕ′′(θ∇un + (1− θ)∇u
)∥∥
∞‖∇un −∇u‖‖∆un‖∞‖w‖ dt

+

T∫
0

∥∥ϕ′(∇u)
∥∥
∞‖∆un −∆u‖‖w‖dt

6
21

4
‖∇un −∇u‖C(0,T ;H)‖∆un‖L2(0,T ;H2)‖w‖L2(0,T ;H)

+ ‖∆un −∆u‖L2(0,T ;H)‖w‖L2(0,T ;H)

6 C
(
‖un − u‖C(0,T ;H1) + ‖∆un −∆u‖L2(0,T ;H)

)
‖w‖L2(0,T ;H), (16)

where θ ∈ (0, 1). By (16), we know that there exists a subsequence {un(x, t)} such that
∇ · [∇un/(1 + |∇un|2)] weakly converges to∇ · [∇u/(1 + |∇u|2)]. On the other hand,
the subsequence {un,t} weakly converges to {ut} in L2(0, T ;V ∗).
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Based on the above discussion, we conclude that there exists a function u(x, t) ∈
W (0, T ;V ), which satisfies (7).

Now, we prove the uniqueness of the solutions for problem (5). Suppose that there is
another solution ũ ∈W (0, T ;V ). Let v = u− ũ. Then v satisfies

vt + a∆2v + µ∇ ·
(

∇u
1 + |∇u|2

− ∇ũ
1 + |∇ũ|2

)
= 0, (x, t) ∈ Ω × (0, T ),

∂v

∂n
=
∂∆v

∂n
= 0, x ∈ ∂Ω, v(x, 0) = v0(x) = 0, x ∈ Ω.

Taking the scalar product with v under the duality between V and V ∗, we obtain

1

2

d

dt
‖v‖2 + a‖∆v‖2 − 2k‖∇v‖2 = µ

(
∇u

1 + |∇u|2
− ∇ũ

1 + |∇ũ|2
,∇v

)
.

Note that

µ

(
∇u

1 + |∇u|2
− ∇ũ

1 + |∇ũ|2
,∇v

)
= µ

(
(1−∇u∇ũ)∇v

(1 + |∇u|2)(1 + |∇ũ|2)

)
= µ

(
1

(1 + |∇u|2)(1 + |∇ũ|2)
, |∇v|2

)
− µ

(
∇u∇ũ

(1 + |∇u|2)(1 + |∇ũ|2)
, |∇v|2

)
6 µ‖∇v‖2 + µ

∥∥∥∥ ∇u
1 + |∇u|2

∥∥∥∥
∞

∥∥∥∥ ∇ũ
1 + |∇ũ|2

∥∥∥∥
∞
‖∇v‖2

6
5

4
µ‖∇v‖2 6 a‖∆v‖2 +

5µ2

64a
‖v‖2.

Summing up, we deduce that

d

dt
‖v‖2 6

5µ2

32a
‖v‖2.

Using Gronwall’s inequality, we get

‖v‖2 6 e5µ2t/(32a)‖v0‖2.

Therefore, v = 0. The uniqueness of solutions is proved. We complete the proof of
Theorem 1.

For the relation among the norm of weak solution, initial value and control item,
basing on the above discussion, we obtain the following theorem immediately.

Corollary 1. Assume that Bw ∈ L2(0, T ;H), u0 ∈ V , then there exists positive con-
stants C ′ and C ′′ such that

‖u‖2W (0,T ;V ) 6 C ′
(
‖u0‖2V + ‖w‖2L2(Q0)

)
+ C ′′.
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3 Optimal control problem

In this section, we consider the optimal control problem associated with problem (5)
and prove the existence of optimal solution. By virtue of Theorem 1, we can define the
solution map w → u(w) of L2(Q0) into W (0, T ;V ). The solution u is called the state of
the control system (5). The observation of the state is assumed to be given by Cu.

Let X = W (0, T ;V ) × L2(Q0) and Y = L2(0, T ;V ) × H . We define an operator
e = e(e1, e2) : X → Y , where

e1 = G =
(
∆2
)−1
[
∂u

∂t
+ a∆2u+ µ∇ ·

(
∇u

1 + |∇u|2

)
−Bw

]
,

e2 = u(x, 0)− u0.

Here ∆2 is an operator from V to V ∗. Then we write (4) in the following form:

min J(u,w) subject to e(u,w) = 0.

Theorem 2. Assume that Bw ∈ L2(0, T ;H), u0 ∈ V , then there exists an optimal
control solution (u∗, w∗) to problem (5).

Proof. Suppose (u,w) satisfies the equation e(u,w) = 0. In view of (4), we get

J(u,w) >
δ

2
‖w‖2L2(Q0).

By Corollary 1, we obtain

‖u‖W (0,T ;V ) →∞ yields ‖w‖L2(Q0) →∞.

Therefore,
J(u,w)→∞ when ‖(u,w)‖X →∞. (17)

As the norm is weakly lower semi-continuous, we achieve that J is weakly lower semi-
continuous. Since for all (u,w) ∈ X , J(u,w) > 0, there exists λ > 0 defined by

λ = inf
{
J(u,w)

∣∣ (u,w) ∈ X, e(u,w) = 0
}
,

which means the existence of a minimizing sequence {(un, wn)}n∈N in X such that

λ = lim
n→∞

J(un, wn) and e
(
un, wn

)
= 0 ∀n ∈ N.

From (17) there exists an element (u∗, w∗) ∈ X such that when n→∞,

un → u∗ weakly, u ∈W (0, T ;V ), (18)

wn → w∗ weakly, w ∈ L2(Q0).

Using (18), we get

lim
n→∞

T∫
0

(
unt (x, t)− u∗t , ψ(t)

)
V ∗, V

dt = 0 ∀ψ ∈ L2(0, T ;V ).

Since W (0, T ;V ) is continuously embedded into L2(0, T ;L∞), we have un → u∗

strongly in L2(0, T ;L∞). On the other hand, we know that un ∈ L∞(0, T ;V ) and
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un,t ∈ L2(0, T ;V ∗). Hence, by [16, Lemma 4] we have un → u∗ strongly in C(0, T ;H)
as n→∞.

As the sequence {un}n∈N converges weakly, then ‖un‖W (0,T ;V ) is bounded, and
‖un‖L2(0,T ;L∞) is also bounded based on the embedding theorem. Because un → u∗ in
L2(0, T ;L∞) as n→∞, we know that ‖u∗‖L2(0,T ;L∞) is bounded too.

Using (18), we deduce that∣∣∣∣∣
T∫

0

∫
Ω

[
∇ ·
(

∇un

1 + |∇un|2

)
−∇ ·

(
∇u∗

1 + |∇u∗|2

)]
η dxdt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

∫
Ω

(
∇un

1 + |∇un|2
− ∇u∗

1 + |∇u∗|2

)
∇η dxdt

∣∣∣∣∣
=

∣∣∣∣∣
T∫

0

∫
Ω

(1−∇un∇u∗)(∇un −∇u∗)
(1 + |∇un|2)(1 + |∇u∗|2)

∇η dxdt

∣∣∣∣∣
6

∣∣∣∣∣
T∫

0

∫
Ω

∇un −∇u∗

(1 + |∇un|2)(1 + |∇u∗|2)
∇η dxdt

∣∣∣∣∣
+

∣∣∣∣∣
T∫

0

∫
Ω

∇un

1 + |∇un|2
∇u∗

1 + |∇u∗|2
(
∇un −∇u∗

)
∇η dxdt

∣∣∣∣∣
6 c

T∫
0

‖∇un −∇u∗‖H‖∇η‖H dt 6 c‖∇un −∇u∗‖L2(0,T ;H)‖∇η‖L2(0,T ;H)

→ 0, n→∞, ∀η ∈ L2(0, T ;V ).

Hence, we have u = u(w) and therefore

J(u,w) 6 lim
n→∞

J
(
un, wn

)
= λ.

In view of the above discussion, we get

e1(u∗, w∗) = 0 ∀n ∈ N.

Noticing that u∗ ∈W (0, T ;V ), we derive that u∗(0) ∈ H . Since un → u∗ weakly in
W (0, T ;V ), we can infer that un(0)→ u∗(0) weakly when n→∞. Thus, we obtain(

un(0)− u∗(0), η
)
→ 0, n→∞, ∀η ∈ H,

which means e2(u∗, w∗) = 0. Therefore, we obtain

e(u∗, w∗) = 0 in Y.

So, there exists an optimal solution (u∗, w∗) to problem (5). Then the proof of Theorem 2
is completed.
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4 Optimality conditions

It is well known that the optimality conditions for w is given by the variational inequality

J ′(u,w)(v − w) > 0 ∀v ∈ L2(Q0), (19)

where J ′(u,w) denotes the Gateaux derivative of J(u, v) at v = w.
The following lemma is essential in deriving necessary optimality conditions.

Lemma 1. The map v → u(v) of L2(Q0) into W (0, T ;V ) is weakly Gateaux differ-
entiable at v = w and such the Gateaux derivative of u(v) at v = w in the direction
v − w ∈ L2(Q0), say z = Du(w)(v − w), is a unique weak solution of the following
problem:

zt + a∆2z + µ∇ ·
(

(1− |∇u|2)

(1 + |∇u|2)2
∇z
)

= B(v − w),

0 < t 6 T, x ∈ Ω,
∂z

∂n

∣∣∣∣
∂Ω

=
∂∆z

∂n

∣∣∣∣
∂Ω

= 0, z(0) = 0, x ∈ Ω.

(20)

Proof. Let 0 6 h 6 1, uh and u be the solutions of (5) corresponding to w + h(v − w)
and w, respectively. We prove the lemma in the following two steps:

Step 1. We prove uh → u strongly in C(0, T ;H1(Ω)) as h → 0. Let q = uh − u,
then

dq

dt
+ a∆q + µ∇ ·

(
∇uh

1 + |∇uh|2
− ∇u

1 + |∇u|2

)
= hB(v − w),

0 < t 6 T, x ∈ Ω,
∂q

∂n

∣∣∣∣
∂Ω

=
∂∆q

∂n

∣∣∣∣
∂Ω

= 0, q(0) = 0, x ∈ Ω.

(21)

Taking the scalar product of (21) with q, we have

1

2

d

dt
‖q‖2 + a‖∆q‖2

= µ

(
∇uh

1 + |∇uh|2
− ∇u

1 + |∇u|2
, ∇q

)
+
(
hB(v − w), q

)
= µ

(
1−∇u∇uh

(1 + |∇uh|2)(1 + |∇u|2)
∇q, ∇q

)
+
(
hB(v − w), q

)
6 µ‖∇q‖2 + µ

∥∥∥∥ ∇u
1 + |∇u|2

∇uh
1 + |∇uh|2

∥∥∥∥
∞
‖∇q‖2 + h

∥∥B(v − w)
∥∥‖q‖

6 c0‖∇q‖2 + h
∥∥B(v − w)

∥∥‖q‖
6
a

2
‖∆q‖2 +

(
c20
2a

+
1

4

)
‖q‖2 + h2

∥∥B(v − w)
∥∥2
.
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Hence,
d

dt
‖q‖2 + a‖∆q‖2 6

(
c20
a

+
1

2

)
‖q‖2 + 2h2

∥∥B(v − w)
∥∥2
.

Using Gronwall’s inequality, it is easy to see that ‖q‖2 → 0 as h → 0. Then uh → u
strongly in C(0, T ;H) as h→ 0.

Taking the scalar product of (21) with −∆q, we have

1

2

d

dt
‖∇q‖2 + a‖∇∆q‖2

= −µ
(

∇uh
1 + |∇uh|2

− ∇u
1 + |∇u|2

, ∇∆q

)
−
(
hB(v − w), ∆q

)
6 c′‖∇q‖‖∇∆q‖+ h

∥∥B(v − w)
∥∥‖∆q‖

6
a

2
‖∇∆q‖2 + c′′‖∇q‖2 + h2

∥∥B(v − w)
∥∥2
.

Hence,
d

dt
‖∇q‖2 + a‖∇∆q‖2 6 2c′′‖∇q‖2 + 2h2

∥∥B(v − w)
∥∥2
.

Using Gronwall’s inequality, it is easy to see that ‖∇q‖2→ 0 as h→ 0. Then∇uh→ ∇u
strongly in C(0, T ;H) as h→ 0.

Hence, uh → u strongly in C(0, T ;H1(Ω)) as h→ 0.

Step 2. We prove that (uh − u)/h → z strongly in W (0, T ;V ). Rewrite (21) in the
following form:

d

dt

(
uh − u
h

)
+ a∆2

(
uh − u
h

)
+
µ

h
∇ ·
(

∇uh
1 + |∇uh|2

− ∇u
1 + |∇u|2

)
= B(v − w), 0 < t 6 T,

∂

∂n

(
uh − u
h

)
∂Ω

=
∂

∂n

(
∆
uh − u
h

)
∂Ω

= 0,
uh − u
h

(0) = 0, x ∈ Ω.

(22)

We can easily verify that the above problem possesses a unique weak solution in
W (0, T ;V ). On the other hand, it is easy to check that the linear problem (20) possesses
a unique weak solution z ∈W (0, T ;V ). Let r = (uh − u)/h− z, thus r satisfies

d

dt
r + a∆2r + µ

[
1

h
∇ ·
(

∇uh
1 + |∇uh|2

− ∇u
1 + |∇ − u|2

)
−∇ ·

(
(1− |∇u|2)∇z
(1 + |∇u|2)2

)]
= 0, 0 < t 6 T,

∂r

∂n

∣∣∣∣
∂Ω

=
∂∆r

∂n

∣∣∣∣
∂Ω

= 0, r(0) = 0, x ∈ Ω.

(23)
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Taking the scalar product of (23) with r, we get

1

2

d

dt
‖r‖2 + a‖∆r‖2

= µ

(
1

h

(
∇uh

1 + |∇uh|2
− ∇u

1 + |∇u|2

)
− (1− |∇u|2)∇z

(1 + |∇u|2)2
, ∇r

)
= µ

([
1

1 + |∇u+ θ(∇uh −∇u)|2
− 2|∇u+ θ(∇uh −∇u)|2

(1 + |∇u+ θ(∇uh −∇u)|2)2

]
∇uh −∇u

h

− (1− |∇u|2)∇z
(1 + |∇u|2)2

, ∇r
)

6 µ

∥∥∥∥[ 1

1 + |∇u+ θ(∇uh −∇u)|2
− 2|∇u+ θ(∇uh −∇u)|2

(1 + |∇u+ θ(∇uh −∇u)|2)2

]
∇uh −∇u

h

− (1− |∇u|2)∇z
(1 + |∇u|2)2

∥∥∥∥‖∇r‖,
where θ ∈ (0, 1). Noticing that uh → u strongly in C(0, T ;H1) as h→ 0, then∥∥∥∥[ 1

1 + |∇u+ θ(∇uh −∇u)|2
− 2|∇u+ θ(∇uh −∇u)|2

(1 + |∇u+ θ(∇uh −∇u)|2)2

]
∇uh −∇u

h

− (1− |∇u|2)∇z
(1 + |∇u|2)2

∥∥∥∥‖∇r‖ → ∥∥∥∥ (1− |∇u|2)

(1 + |∇u|2)2

(
∇uh −∇u

h
−∇z

)∥∥∥∥‖∇r‖
6 c0‖∇r‖2 6

a

2
‖∆r‖2 +

c20
2a
‖r‖2 as h→ 0.

Therefore,
d

dt
‖r‖2 + a‖∆r‖2 6

c20
a
‖r‖2.

Using Gronwall’s inequality, it is easy to check that (uh − u)/h is strongly convergent
to z in W (0, T ;V ).

Then Lemma 1 is proved.

As in [8], we denote Λ = canonical isomorphism of S onto S∗, where S∗ is the dual
space of S. By calculating the Gateaux derivative of (17) via Lemma 1, we see that the
cost J(v) is weakly Gateaux differentiable at w in the direction v − w. Then (19) can be
rewritten as (

C∗Λ
(
Cu(w)− zd

)
, z
)
W (V )∗,W (V )

+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0), (24)

where z is the solution of (20).
Now we study the necessary conditions of optimality. To avoid the complexity of ob-

servation states, we consider the two types of distributive and terminal value observations.
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Case 1: C ∈ L(L2(0, T ;V );S).
In this case, C∗ ∈ L(S∗;L2(0, T ;V ∗)) and (24) may be written as

T∫
0

(
C∗Λ

(
Cu(w)− zd

)
, z
)
V ∗, V

dt+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0). (25)

We introduce the adjoint state p(v) by

− d

dt
p(v) + a∆2p(v) + µ∇ ·

(
(1− |∇u|2)∇p
(1 + |∇u|2)2

)
= C∗Λ

(
Cu(v)− zd

)
in (0, T ),

∂p

∂n

∣∣∣∣
∂Ω

=
∂∆p

∂n

∣∣∣∣
∂Ω

= 0, p(x, T ; v) = 0.

(26)

According to Theorem 1, the above problem admits a unique solution (after changing t
into T − t).

Multiplying both sides of (26) (with v = w) by z, using Lemma 1, we get

T∫
0

(
− d

dt
p(w), z

)
V ∗, V

dt =

T∫
0

(
p(w),

d

dt
z

)
dt,

T∫
0

(
∆2p(w), z

)
V ∗, V

dt =

T∫
0

(
p(w),∆2z

)
dt

and
T∫

0

(
∇ · (1− |∇u|2)∇p(w)

(1 + |∇u|2)2
, z

)
V ∗, V

dt =

T∫
0

(
p(w),∇ ·

(
(1− |∇u|2)∇z
(1 + |∇u|2)2

))
dt.

Then we obtain

T∫
0

(
C∗Λ

(
Cu(w)− zd

)
, z
)
V ∗, V

dt

=

T∫
0

(
p(w), zt + a∆2z + µ∇ ·

(
(1− |∇u|2)∇z
(1 + |∇u|2)2

))
dt

=

T∫
0

(
p(w), Bv −Bw

)
dt =

(
B∗p(w), v − w

)
.
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Hence, (25) may be written as

T∫
0

1∫
0

B∗p(w)(v − w) dxdt+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0). (27)

Therefore, we have proved the following theorem:

Theorem 3. We assume that all conditions of Theorem 2 hold. Let us suppose that C ∈
L(L2(0, T ;V );S). The optimal controlw is characterized by the system of two PDEs and
an inequality: (5), (26) and (27).

Case 2: C ∈ L(H;S).
In this case, we observe Cu(v) = Du(T ; v), D ∈ L(H;H). The associated cost

function is expressed as

J(u, v) =
∥∥Du(T ; v)− z

∥∥2

S
+
δ

2
‖v‖2L2(Q0) ∀v ∈ L2(Q0). (28)

Then, for all v ∈ L2(Q0), the optimal control w for (28) is characterized by

(
Du(T ;w)− z, Du(T ; v)−Du(T ;w)

)
V ∗, V

+
δ

2
(w, v − w)L2(Q0) > 0. (29)

We introduce the adjoint state p(v) by

− d

dt
p(v) + a∆2p(v) + µ∇ ·

(
(1− |∇u|2)∇p
(1 + |∇u|2)2

)
= 0 in (0, T ),

∂p

∂n

∣∣∣∣
∂Ω

=
∂∆p

∂n

∣∣∣∣
∂Ω

= 0, p(T ; v) = D∗
(
Du(T ; v)− zd

)
.

(30)

According to Theorem 1, the above problem admits a unique solution (after changing t
into T − t).

Let us set v = w in the above equations and scalar multiply both side of the first
equation of (30) by u(v) − u(w) and integrate from 0 to T . A simple calculation shows
that (29) is equivalent to

T∫
0

1∫
0

B∗p(w)(v − w) dxdt+
δ

2
(w, v − w)L2(Q0) > 0 ∀v ∈ L2(Q0). (31)

Then we have the following theorem:

Theorem 4. We assume that all conditions of Theorem 2 hold. Let us suppose that D ∈
L(H;H). The optimal control w is characterized by the system of two PDEs and an
inequality: (5), (30) and (31).
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