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Abstract. The main goal of this paper is to improve the existing methods and tools used for
solving penalized quantile regression problems. We modified the quantile regression method by
implementing the extreme learning machine (ELM) algorithm and features of locally weighted
regression. Also, we used different penalty functions. A modified method was used for the one-
step-ahead prediction of the composite indicator (CI) of the Lithuanian economy. Our analysis
showed that the prediction error of the modified locally weighted quantile regression is smaller in
comparison to the other quantile regression.

Keywords: quantile regression, penalty function, extreme learning machine, locally weighted
regression, composite indicators.

1 Introduction

Linear regression methods are well known as classical methods; the ordinary least square
(OLS) method allows us to assess the linear relationship of variables. This method finds
the conditional mean of the response variable. On the other hand, the OLS method is very
sensitive to outliers; hence, it provides unstable estimates. Also applicable is the LADR
(least absolute deviation regression), which evaluates the median of the response variable.
The median is more robust to outliers; hence, this method is more robust to outliers as
well. LADR was summarized in [4] when developing the quantile regression. In this way,
the conditional quantile of any order was obtained; practically, this fact characterizes the
conditional distribution of a response variable. Over the past thirty-five years, quantile
regression has become a very important and widely used technique to analyze the whole
conditional distribution of a response variable. Such methods are more robust to outliers
than that of the linear regression.

The first step of any regression modeling is the selection of variables. In practical
problems, there are situations where quite a few variables are important. Usually, most
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of them are included in the model, and only then are the most important ones chosen.
Insignificant variables should not be included in the model since they complicate in-
terpretation of results and reduce the accuracy of predictions. In order to automate this
process, the regularization of the method is often applied. Many versions of regularization
are proposed. The L1 regularization is used in the LASSO (least absolute shrinking
and selection operator) method [11]. Later, the LASSO method was improved into the
adaptive LASSO method [13]. The nonconcave penalized least squares regression was
introduced [2]. This method selects the significant variables and evaluates the estimates
of coefficients simultaneously. An example of such a function is SCAD (smoothly clipped
absolute deviation) regularization. Also, logarithmic and exponential regularizations were
introduced. Later, the MCP (minimax concave penalty) function was developed [12]. In
most cases, these above-mentioned penalty functions were used in solving linear regres-
sion problems, yet almost analogous methods can be used in quantile regression methods.

This work is an extension of previous work, where the ELM algorithm was combined
with the locally weighted regression for the one-step-ahead prediction of the compos-
ite indicator (CI) of the Lithuanian economy [8]. An analysis of results showed that
the combined method gives a smaller prediction error in comparison to the Levenberg–
Marquard, ELM methods or AR(p) process. Also, the analysis of the results based on
various accuracy measures suggested that the proposed method may be used for data
of rather small sample size and during periods when dynamics of time series may have
unexpected changes like during the economical crises and later periods (2008–2010). In
spite of the acceptable results, as mentioned in the beginning of the paper, it is known that
the OLS method is sensitive to outliers. Hence, the quantile regression was chosen as an
alternative (that is, more robust to outliers) for the one-step-ahead prediction of CI.

In practical examples, we will use the CI of the Lithuanian economy that was devel-
oped under the methodology described in [7]. The methodology for constructing the CI is
based on factor analysis. In this paper, the practical problems of quantile regression are
solved using the R package rqPen [9]. In this package, different regularization functions
are implemented: LASSO, SCAD, and MCP. This tool enables us to solve quantile
regression problems using these above-mentioned regularization functions.

The general objective of this research is to modify the existing quantile regression:
(i) to develop the locally weighted quantile regression using different regularization func-
tions and the ELM method for the modification of input data; (ii) to check the impact of
different regularization functions on the predicted results of CI’s.

The structure of this paper is as follows: In Section 1, methodological notes are intro-
duced. The practical implementation of the methods is described in Section 3. Section 4
describes the results, and Section 5 gives concluding remarks.

2 Methodology

In this section, we define our main terms and introduce the methods used in this paper:
the quantile regression with regularization, regularization functions, the locally weighted
quantile regression, and the locally weighted quantile regression with the ELM modifica-
tion.
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2.1 Quantile regression with regularization

Suppose we have the random variables (r.v.) Y and X . Also suppose the Y ’s distribution
function with the condition that X = x is FY (y | X = x) = P(Y 6 y | X = x). Then
Y ’s τ ∈ [0, 1] order quantile with condition X = x is defined as a number:

QY |X(τ) = F−1Y (τ | X = x) = inf
{
y: FY (y | X = x) > τ

}
.

Function fτ (x) is called the τ th order (where 0 < τ < 1) quantile function if: P(Y <
fτ (x) | X) = τ .

We define the r = y − fτ (x | β), then the “check” function:

ρτ (r) =

{
τr if r > 0,

−(1− τ)r otherwise.
(1)

Such a “check” function (1) can be used for the evaluation of the quantiles of r.v.
Suppose that Y is r.v. with distribution function FY (y) = P(Y 6 y). Then the

quantile of τ order is equal

QY (τ) = argmin
u

E
(
ρτ (Y − u)

)
.

Having the realization y1 . . . , yN of r.v. Y , we evaluate the estimate of τ order quantile
of r.v. Y :

Q̂Y (τ) = argmin
u

{
1

N

N∑
i=1

ρτ (yi − u)

}

= argmin
u

{
1

N

N∑
i=1

(
τ(yi − u)I(yi > u) + (1− τ)(u− yi)I(yi 6 u)

)}
= argmin

u
Ê
(
ρτ (Y − u)

)
.

Moving to the quantile regression, suppose the argument u is dependent on the r.v. X ,
i.e., u = fτ (X). Then we find the Y ’s conditional quantile QY |X(τ) of order τ .

Analogically, if we have realizations {(xi, yi), i = 1, . . . , N}, where xi = (xi1,
. . . , xip), we can solve the regression problem between Y and X using the “check”
function (1). In this case, we will get the estimate Q̂Y |X(τ) of τ order conditional quantile
of the response variable. In another way, we have this minimization problem:

min
fτ

N∑
i=1

ρτ
(
yi − fτ (xi | β)

)
. (2)

When similar minimization problems are solved, regularization method is often used.
Often, the regularization functions L1 and L2 are used. Then we obtain the LASSO and
ridge regression.
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Hence, in order to get better results for the quantile regression problem, we shall add
the penalty function J(fτ ):

min
fτ

N∑
i=1

ρτ
(
yi − fτ (xi | β)

)
+ λJ(fτ ), (3)

here β = (β1, . . . ,βp), and the regularization parameter λ is carefully chosen.

2.2 Regularization functions

The regularization technique permits us to choose only significant variables for the re-
gression; also, it helps us avoid overfitting. In this paper, we analyzed three different
techniques: LASSO, SCAD, MPC.

LASSO method was defined in order to improve the OLS method [11]. Formerly,
two main approaches were employed: ridge regression and the exclusion of insignificant
variables from the model. Ridge regression gives fewer estimates of stabler coefficients.
The second approach rejects irrelevant covariates and makes the results easier to interpret.
LASSO combines features of both methods; hence, this method has its drawbacks. The
LASSO regularization function shall be defined:

J(fτ ) = λJ(β) = λ

p∑
j=1

|βj |,

here
∑p
j=1 |βj | 6 t, t is a parameter that controls the shrinkage of coefficients.

SCAD function was defined in [2]. This regularization function is symmetric and
nonconcaved on the interval (0,∞):

pλ(βj) =


λ|βj | if |βj | 6 λ,

−( |βj |
2−2aλ|βj |+λ2

2(a−1) ) if λ < |βj | 6 aλ,
(a+1)λ2

2 if |βj | > aλ.

Hence, the SCAD regularization function is differentiable in the interval (−∞, 0) ∪
(0,+∞), but its derivative outside of the interval [−aλ, aλ] is equal to zero. SCAD should
give unbiased estimates of coefficients and exclude insignificant variables.

In [2], there is a recommendation to use α = 3.7, while λ is often chosen by cross-
validation or other methods.

MCP function can be used in solving linear regression problems. The estimates ob-
tained using MCP are accurate and almost unbiased. This algorithm can be used in solving
the large dimension multiple regression [12]. MCP regularization can be defined:

p(t;λ) = λ

|t|∫
0

(
1− x

γλ

)
+

dx =

(
λ|t| − t2

2γ

)
I
(
|t| < λγ

)
+
λ2γ

2
I
(
|t| > λγ

)
,

here γ > 0 and λ > 0 are regularization parameters.
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Regularization function p(t;λ) with parameter t is nonincreasing in the interval
(−∞, 0) and nondecreasing in the interval (0,∞), its derivative p(t;λ)′t is continuous
in the above-mentioned intervals.

2.3 Locally weighted quantile regression

The goal of the regression is to evaluate the function m in E(Y | X) = m(X) having the
response variable Y and independent variable X .

In the linear dependency between Y and X and having realization of these random
variables {(xi, yi), i = 1, . . . , N}, the linear regression is defined as yi = βTxi+εi, here
β = (β1, . . . , βp)

T, xi = (xi1, . . . xip)
T and εi is error. In this case, yi = m(xi) + εi,

where m(xi) = β1xi1 + · · · + βpxip. Coefficients β1, . . . , βp will be evaluated solving
the minimization problem

min
β

N∑
i=1

(
yi − βTxi

)2
. (4)

In general, the results of such a minimization may be improved. The regression results
obtained are usually applied to evaluate the prediction regarding the latest values of the
independent variable ŷN+1 = βT(xN+1). If xN+1 is different from other xi, the βT

obtained may be insufficiently accurate.
Hence, in this paper, the locally weighted regression shall be used [5]. It modifies

expression (4), which gives weights to the errors ωi:

min
β

N∑
i=1

ωi
(
yi − βTxi

)2
.

For locally weighted regression, the weights ωi are determined depending on how
“close” xi is to the new query xq (further xq = xN+1). Often, the Gaussian kernel
function K is used:

K(xi,xq) = exp

(
−‖xi − xq‖2

2σ2

)
,

‖xi − xq‖2 =
√

(xi − xq)2,

where σ2 ∈ R is arbitrary.
We select the ωi = K(xi,xq). K(xn,x

′) → 1 when ‖xn − x′‖ → 0, and
K(xn,x

′)→ 0 when ‖xn − x′‖ → ∞. Finally, we obtain this optimization problem:

min
β̃

N∑
i=1

K(xi,xq)
(
yi − β̃Txi

)2
, (5)
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here β̃ = (β̃1, . . . , β̃p)
T. The solution to this problem is similar not very different from

that of problem (4). Expression (5) is transformed:

min
β̃

N∑
i=1

(
K(xi,xq)

1/2yi −K(xi,xq)
1/2β̃Txi

)2
= min

β̃

N∑
i=1

(
K(xi,xq)

1/2yi −
p∑
j=1

β̃jK(xi,xq)
1/2xij

)2

= min
β̃

N∑
i=1

(
zi −

p∑
j=1

β̃jξij

)2

,

here zi = K(xi,xq)
1/2yi and ξij = K(xi,xq)

1/2xij , i = 1, . . . , N , j = 1, . . . , p.
Analogically, we solve the quantile regression problem. Suppose, we have a quantile

regression without regularization:

min
fτ

N∑
i=1

ωiρτ
(
yi − fτ (xi | β)

)
= min

fτ

N∑
i=1

K(xi,xq)ρτ
(
yi − fτ (xi | β)

)
. (6)

After certain transformations, we note: fτ (xi |β) = β1xi1 + · · · + βpxip = βTxi,
ỹi = K(xi,xq)yi, x̃i = K(xi,xq)xi. In the case of a linear regression where ωi =
K(xi,xq), we find that the solution of (6) is equivalent to the problem:

min
β

N∑
i=1

ρτ
(
ỹi − βTx̃i

)
. (7)

Hence, the locally weighted regression method is reduced to problem (7). This modi-
fication gives a more accurate estimate of β; in this way, we get a more accurate prediction
of the response variable.

2.4 Locally weighted quantile regression with ELM modification

ELM is a widely used method based on the idea of a single hidden layer of feed-forward
neural networks (SLFNs) [3, 10].

In our case, ELM is used for the modification of independent variables. Data xi will
be changed to a linear transformation with random weights [3], and the activation function
(sigmoid function) will be chosen. Let us define the linear quantile regression problem:

min
β

N∑
i=1

ρτ
(
yi − βTxi

)
.

Hence, once we have xi, the new pseudovariables zi are created:

zij = ϕ
(
ωT
j xi

)
, j = 1, . . . ,m, (8)
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here ωj = (ω1j , . . . , ωpj)
T are randomly generated weights by ELM, ϕ is a sigmoid

function that ϕ(u) = ϕ1(u) or ϕ(u) = ϕ2(u), where ϕ1 and ϕ2 are defined:

ϕ1 : R→ [0,M ] such that ϕ1(u) =M/(1 + e−hu), here h > 0 is a parameter.
ϕ2 : R→ [−M,M ] such that ϕ2(u) =M(eu − e−u)/(eu + e−u).

We have modified data zi = (zi1, . . . , zim), i = 1, . . . , N . Now, we have the m new
covariates composed of previous p covariates. The number m is arbitrary. Exactly these
new data will be used in further analysis.

The following formula defines the modified quantile regression:

min
β

N∑
i=1

ρτ
(
ỹi − βTx̃i

)
+ λJ(β), (9)

here, the response variable is unchanged:

ỹi = K(xi,xq)yi. (10)

However, we have a new expression of independent variables:

x̃i = K(xi,xq)zi, (11)

here zi is defined as (8). In this way (only data transformation), the local quantile re-
gression with ELM modified covariates is obtained. The assessment of this method is the
same as for the initial quantile regression (2).

3 Practical implementation

In this section, previously described methods will be applied for data analysis. The regres-
sion will be constructed in two ways: the general quantile regression and locally weighted
quantile regression with ELM modified covariates (further – the modified method).

Practical modeling is concentrated on three different values of the order τ (τ =
0.05, 0.5, 0.95). When the variant is τ = 0.5, we deal with the conditional median of
the response variable. As we know, the median and mean are the same for the r.v. with
a symmetric density function. The quantile of the τ = 0.5 order is the most likely value of
the response variable. An interpretation of the quantiles of order τ = 0.05 and τ = 0.95
gives the confidence interval of the response variable (in this case, 90 per cent).

Recently, new indicators (indexes) have been constructed that reflect the changes in
economy more precisely than the gross domestic product [8]. Usually, this type of indica-
tor is constructed as a combination of different indicators from various fields. Statistical
data are selected regarding economic theory and additional methods (correlation, causal-
ity analysis, etc.). Weights are chosen using mathematical methods or including additional
sources of information. In this way, so-called CI’s are constructed. The advantage of the
CI mainly depends on the chosen methodology and on selected statistical data that reflect
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the general tendencies of a specific field. In summary, the CI is defined as a mathematical
function:

CI = f(X,ω),

here, X is a set of variables that compile CI, ω – weights that are assigned to every
variable.

In this paper, we will use the methodology for constructing the CI presented in [8].
For the analysis and prediction, we extended the time period (1998–2014) and reduced
the number of variables to k = 12. Economical indicators of monthly and quarterly
periodicity were used: statistical data of industry, construction, domestic trade, foreign
trade, services, the producer price index. We will briefly describe the steps followed in
constructing the CI. First of all, a preliminary analysis was applied (outliers were detected,
missing values were assigned), and all data were seasonally adjusted. Data of quarterly
periodicity were transformed into monthly periodicity. The range of all indicators was
transformed into the range [0, 1]. Using the factor analysis method, we left only the
most important indicators for further analysis. The weights of individual indicators were
obtained by using the Nicoletti method [6] from the rotated factor loading matrix.

Hence, we have data {(xt, yt), t = 1, . . . , 204}, where xt = (xt,1, . . . xt,12) is the
t value of the covariate, and yt is the t value of CI. Here we changed the index i to t in
order to highlight the importance of time in the time series as the order of data.

In modeling economic indicators, lags of covariates are usually also included in the
models. We suppose that

yt = f(xt,xt−1, . . . ,xt−d) + εt.

In this case, we say that y depends on the last d values of x. In modeling CI, we deal
with four different cases. We will use linear dependency and different lags (d = 1, 2, 3, 4):

yt = β0 +

d∑
j=1

βjxt−j + εt. (12)

We solve problems (12) and obtain the general quantile regression

min
β

N∑
t=1

ρτ

(
yt − β0 −

d∑
j=1

βjxt−j

)
+ λJ(β) (13)

and the modified quantile regression method

min
β

N∑
t=1

ρτ
(
ỹt − βTx̃t

)
+ λJ(β). (14)

ỹt, x̃t and the components are defined in (8), (10), and (11). Here β = (β0, . . . , βd)
T, and

J(β) – one of the regularization functions (LASSO, SCAD, or MCP). In methods (13)
and (14) with d = 1, 2, 3, 4, CI is evaluated without considering the recent values of the
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covariates. Then the modified quantile regression will be constructed “around” the recent
value of the covariate xt, which will be used in forecasting.

Twelve different models are constructed using the general (3) and modified (9) quan-
tile regression by following these steps:

(i) Data points are chosen: 104 6 n 6 204.
(ii) The lag d (d = 1, 2, 3, 4) and the regularization function J(β) are fixed.

(iii) The τ order (τ = 0.05, 0.5, 0.95) of quantile is chosen.
(iv) The general (3) and the modified (9) quantile regression for the n first elements

of the sample are used (i.e., N = n), and xq = (xn, . . . ,xn−d).
(v) Having xq , we predict (one-step-ahead) the values of yn of the quantile of the

τ order using the general and modified methods.
(vi) These steps are repeated with τ = 0.05, τ = 0.5, and τ = 0.95. The estimates

of the general and modified regressions ŷ(0.05)n , ŷ(0.5)n , ŷ(0.95)n , ˆ̂y(0.05)n , ˆ̂y(0.5)n , and
ˆ̂y
(0.95)
n are obtained. The value in brackets stands for the order of the quantile.

This algorithm is repeated with every n from the interval [104, 204]. E.g., predictions
of the modified method: τ = 0.05: ŷ(0.05) = (ŷ

(0.05)
104 , . . . , ŷ

(0.05)
204 ), and predictions of the

general method are obtained, e.g., ˆ̂y(0.05) = (ˆ̂y
(0.05)
104 , . . . , ˆ̂y

(0.05)
204 ).

The following measures to verify the accuracy of the models were used:

• Mean absolute error: MAE(ŷ,y) =
∑T
i=1 |yi − ŷi|/T .

• Mean absolute percentage error: MAPE(ŷ,y) =
∑T
i=1 |(yi − ŷi)/yi|/T · 100.

• Root mean square error: RMSE(ŷ,y) = (
∑T
i=1(yi − ŷi)2)1/2.

• The measureM1: M1(ŷ, ˆ̂y,y) =
∑T
i=1 I(|ŷi−yi| < |ˆ̂yi−yi|)/T . In this case, the

M1(ŷ, ˆ̂y,y) indicates the share of all values, where the estimate ŷi is better than
the estimate ˆ̂yi in comparison to the original data yi.

• The measure M2: M2(ŷ, ˆ̂y,y) =
∑T
i=1 I(ŷi < yi < ˆ̂yi)/T . Here, the M2(ŷ, ˆ̂y,y)

indicates the share of all values, where the estimate ŷi falls within the interval
between ŷ and ˆ̂y.

In all formulas, T stands for the length of time series. In practice, we will use the M2

to find out how often the actual value falls within the confidence interval. E.g., for the 90
per cent confidence interval, the measure will be calculated: M2(y

(0.05),y(0.95),y), here
y(τ) stands for the quantile of the τ order.

4 Results

Finally, after we have performed the modeling with different d and all regularizations, the
set of vectors is obtained: ŷ(0.05), ŷ(0.5), ŷ(0.95), ˆ̂y(0.05), ˆ̂y(0.5), and ˆ̂y(0.95). In order to
analyze the accuracy of our predictions, the original data (y104, . . . , y204) are compared to
the estimates of quantiles. The prediction value should be around the mean or the median;
hence, the prediction of the median shall show the general view. In the case of 90 per
cent, the realization of the random variable (CI) should fall within the confidence interval

Nonlinear Anal. Model. Control, 23(1):19–30
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Figure 1. Data with four lags and MCP regularization. (Online version in colour.)

Table 1. Characteristics of accuracy (input data with three lags).

1:3 ‘LASSO’ 1:3 ‘SCAD’ 1:3 ‘MCP’
MAE(REZ_OLD) 0.024 0.024 0.024
MAE(REZ_NEW) 0.024 0.015 0.017
MAPE(REZ_OLD) 3.327 3.380 3.370
MAPE(REZ_NEW) 3.493 2.037 2.275
RMSE(REZ_OLD) 0.032 0.033 0.033
RMSE(REZ_NEW) 0.037 0.023 0.025
M1(REZ_NEW,REZ_OLD) 0.530 0.620 0.600
M2(REZ_OLD_lo, REZ_OLD_up) 0.490 0.560 0.560
M2(REZ_NEW_lo, REZ_NEW_up) 0.100 0.910 0.920

Table 2. Characteristics of accuracy (input data with four lags).

1:4 ‘LASSO’ 1:4 ‘SCAD’ 1:4 ‘MCP’
MAE(REZ_OLD) 0.026 0.027 0.027
MAE(REZ_NEW) 0.017 0.013 0.012
MAPE(REZ_OLD) 3.635 3.763 3.734
MAPE(REZ_NEW) 2.408 1.742 1.635
RMSE(REZ_OLD) 0.036 0.038 0.037
RMSE(REZ_NEW) 0.023 0.018 0.018
M1(REZ_NEW,REZ_OLD) 0.600 0.650 0.680
M2(REZ_OLD_lo, REZ_OLD_up) 0.510 0.460 0.460
M2(REZ_NEW_lo, REZ_NEW_up) 0.090 0.920 0.910

between the 0.05 and 0.95 quantiles. Hence, we will analyze how well the model was
able to assess the confidence interval of the response variable.

The example (d = 4 and MCP regularization) of modeling results is presented in
Fig. 1 and in Tables 1, 2. In the figure, the black line denotes the median of original data;
the red line denotes the median obtained by the general quantile method; the green line –
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by the modified method; the dashed red and green lines denote the 0.05 and 0.95 quantiles
by the general and modified methods, respectively.

If we observe only the graphical results, it is quite difficult to determine which method
is the better one. In different periods, one of the method gives more accurate predictions,
or predictions are quite similar.

In the tables, REZ_NEW stands for the estimate of the median obtained by the modi-
fied method, and REZ_OLD is the estimate of the median obtained by the general method,
REZ_OLD_lo, REZ_OLD_up, REZ_NEW_lo, REZ_NEW_up stand for the quantiles of
0.05 and 0.95, respectively. The notation “1:3” means that input data with the lags first,
second, and third were used in a particular model.

Better results were obtained by the modified method using input data with three or
four lags. MAE, MAPE, RMSE, and other statistics confirmed this fact. We noticed that
the widths of the confidence intervals obtained by both methods are similar, but in the
case of the modified method with SCAD and MCP regularizations, more than 90 per cent
of observed data fall within the constructed confidence interval. In the case of a general
method, only 46 per cent of data realizations fall within the interval. More results can be
found in [1].

The analysis showed that measures of accuracy are dependent on regularization and
the number of lags. The smallest errors of general method was obtained using LASSO
regularization, while in the case of the modified quantile regression, the best result was
obtained using four lags and MCP regularization. We see that different methods proceed
with different accuracy depending on the number of lags. However, the modified method
has this advantage: its confidence interval and estimate of the median are more accurate.

Also, the comparative analysis of obtained results and results of previous research [8]
was performed. In this paper and in [8], the CI is slightly different. Here the time period
is extended to 1998–2014 (in the previous research, 1998–2010), and the number of vari-
ables was reduced to k = 12 (previously, k = 28). The purpose and expected results of the
combined method of extreme learning machine and locally weighted regression [8] and
locally weighted quantile regression are unequal as well. Regardless of the differences we
compared some accuracy measures (RMSE and MAPE) of one-step-ahead predictions.
The analysis showed that RMSE and MAPE are slightly smaller of best models of locally
weighted quantile regression.

5 Conclusions

In this paper, the quantile regression with penalty function was extended by including
local weights and the ELM method for the modification of covariates. This developed
modified method was adopted for the one-step-ahead prediction of the CI of the Lithua-
nian economy. Our analysis indicated that the locally weighted quantile regression with
regularization obtains on average better results than the known quantile regression with
regularization: the new method enabled us to obtain more accurate conditional medians
and predictions of confidence intervals. The best results were obtained by methods with
SCAD and MCP regularizations.

Nonlinear Anal. Model. Control, 23(1):19–30
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