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Abstract. In this paper, we establish a new sufficient condition for the stability of impulsive
systems with impulse time window and bounded gain error. The proposed result is more general
and more applicable than some existing results. Finally, a numerical example is given to show the
effectiveness of our result.
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1 Introduction

In this paper, we mainly adopt the notation and terminology in [8]. Within the last three
decades, impulsive control theory had been intensively studied because impulsive control
can be applied in many fields, such as chaotic systems [9, 15, 24, 30, 34], HIV prevention
modles [5], complex dynamical systems [2–4,11,13,14,16,18,22,23,25,31,35–38]. The
nonlinear impulsive control systems with impulses at fixed times is given by

ẋ = Ax+ φ(x), t 6= τk,

∆x = U(k,x), t = τk, k = 1, 2, . . . ,

x(t0) = x0.

(1)
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where x ∈ Rn is the state variable, t0 < τ1 < τ2 < · · · , limk→∞ τk = ∞ denote the
moments when impulsive control occurs, A is an n × n constant matrix, φ : Rn → Rn
is a continuous nonlinear function satisfying φ(t, 0) = 0 and ‖φ(x)‖2 6 xTLx, where
L is a diagonal matrix, and U(k,x) is the impulsive control law. Many researchers have
studied impulsive control system (1) [1,17,32,33]. But we cannot guarantee the impulses
without any error due to the limit of equipment and technology.

Recently, Feng, Li, and Huang [8] discussed the following nonlinear impulsive control
systems with impulse time window:

ẋ(t) = Ax+ φ(x), mT 6 t < mT + τm,

x(t) = Jmx(t−), t = mT + τm,

ẋ(t) = Ax(t) + φ(x), mT + τm < t < (m+ 1)T,

(2)

where T > 0 denotes the control period, τm is unknown within impulse time window
(mT, (m + 1)T ), and Jm ∈ Rn×n is impulsive control gain. The impulsive effects can
be stochastically occurred in a impulse time window in system (2), which is more general
than ones impulses occurred at fixed times. Some results related to impulse time window
can be found in [6, 7, 12, 26–29, 39].

In many practical applications, the impulsive control gain Jm may also contain errors,
so we should take into account the influence of impulsive control gain errors on the
systems. In this paper, we consider a class of impulsive control systems with impulse
time window and bounded gain error as follows:

ẋ(t) = Ax+ φ(x), mT 6 t < mT + τm,

x(t) = (Jm +∆Jm)x(t−), t = mT + τm,

ẋ(t) = Ax(t) + φ(x), mT + τm < t < (m+ 1)T,

(3)

where∆Jm is gain error, which is often time-varying and bounded. As pointed out in [17],
we can assume that ∆Jm = mF (t)Jm, m > 0, and FT(t)F (t) 6 I .

The purpose of this paper is to find some conditions on control gain Jm and impulse
time window T such that the origin of impulsive control system (3) is asymptotically
stable. We establish a new sufficient condition for the stability of system (3). Compared
with the results shown in [8, 17, 19], our result is more general and more applicable.
Finally, a numerical example is given to show the effectiveness of our result.

2 Main results

In this section, we will give the main results. To do this, we need the following lemmas.

Lemma 1. (See [21].) Let x,y ∈ Rn and ε > 0. Then

2xTy 6 εxTx+
1

ε
yTy.
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Lemma 2. Let A,P,B ∈ Rn×n such that P is a symmetric and positive definite matrix
and µ > 0. Then

ATPB +BTPA 6 µATPA+
1

µ
BTPB.

Proof. Note that for any X ∈ Rn×n, the matrix XTX is positive semidefinite. It follows
that (

√
µP 1/2A− 1

√
µ
P 1/2B

)T(√
µP 1/2A− 1

√
µ
P 1/2B

)
> 0.

Small calculations show that the result holds. This completes the proof.

Lemma 3. (See [10].) Let H be a real symmetrical matrix, and λmax(H) > λmin(H)
be the largest and the smallest eigenvalues of H , respectively. Then for any x ∈ Rn, we
have

λmin(H)xTx 6 xTHx 6 λmax(H)xTx.

Theorem 1. Let P ∈ Rn×n be a symmetric and positive definite matrix. If there exit
g, µ, ε > 0 such that the following hold:

(i) PA+ATP + εP 2 + ε−1L− gP 6 0,
(ii) gT + lnλ < 0,

where λ = max{λm(1+µ+m2(1+1/µ))}, λm = λmax(P )×λmax(P
−1JT

mJm), then
the origin of system (3) is asymptotically stable.

Proof. Let us construct the following Lyapunov function:

V
(
x(t)

)
= xT(t)Px(t).

If mT 6 t < mT + τm, then by Lemma 1 and condition (i) we have

D+
(
V
(
x(t)

))
= 2xT(t)P

(
Ax(t) + φ

(
x(t)

))
= 2xT(t)PAx(t) + 2xT(t)Pφ(x)

= xT(t)
(
PA+ATP

)
x(t) + 2xTPφ(x)

6 xT(t)
(
PA+ATP

)
x(t) + εxTP 2x+

1

ε
φ
(
x(t)

)T
φ
(
x(t)

)
6 xT(t)

(
PA+ATP

)
x(t) + εxTP 2x(t) +

1

ε
xT(t)Lx(t)

= xT(t)

(
PA+ATP + εP 2 +

1

ε
L− gP

)
x(t) + gxT(t)Px(t)

6 gV
(
x(t)

)
,

which implies that
V
(
x(t)

)
6 V

(
x(mT )

)
eg(t−mT ). (4)

Similarly, if mT + τm < t < (m+ 1)T , we also have

D+
(
V
(
x(t)

))
6 gV

(
x(t)

)
,
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which implies that

V
(
x(t)

)
6 V

(
x(mT + τm)

)
eg(t−mT−τm). (5)

If t = mT + τm, then by Lemmas 2 and 3 we have

V
(
x(t)

)
=
(
(Jm +∆Jm)x(t−)

)T
P (Jm +∆Jm)x(t−)

= x(t−)T
(
JT
mP +∆JT

mP
)
(Jm +∆Jm)x(t−)

= x(t−)T
(
JT
mPJm + JT

mP∆Jm +∆JT
mPJm +∆JT

mP∆Jm
)
x(t−)

6 x(t−)T
(
(1 + µ)JT

mPJm +

(
1 +

1

µ

)
∆JT

mP∆Jm

)
x(t−)

6 λmax(P )x(t
−)T

(
(1 + µ)JT

mJm +

(
1 +

1

µ

)
∆JT

m∆Jm

)
x(t−)

6 λmax(P )x(t
−)T

(
(1 + µ)JT

mJm +m2

(
1 +

1

µ

)
JT
mF

T
t FtJm

)
x(t−)

6 λmax(P )x(t
−)T

(
(1 + µ)JT

mJm +m2

(
1 +

1

µ

)
JT
mJm

)
x(t−)

= λm

(
1 + µ+m2

(
1 +

1

µ

))
V
(
x(t−)

)
6 λV

(
x(t−)

)
. (6)

It follows from (5) and (6) that

V
(
x(t)

)
6 λV

(
x
(
(mT + τm)−

))
eg(t−mT−τm), (7)

where mT + τm 6 t < (m+ 1)T .
By using inequalities (4) and (7) we can derive the following results.
When m = 0, if t ∈ [0, τ0), then

V
(
x(t)

)
6 V (x0)e

gt

and so
V
(
x(τ−0 )

)
6 V

(
x0

)
egτ0 .

If t ∈ [τ0, T ), then

V
(
x(t)

)
6 λV

(
x(τ−0 )

)
eg(t−τ0) 6 λV (x0)e

gt

and so
V
(
x(T )

)
6 λV (x0)e

gT

When m = 1, if t ∈ [T, T + τ1), then

V
(
x(t)

)
6 V

(
x(T )

)
eg(t−T ) 6 λV (x0)e

gt

and so
V
(
x
(
(T + τ1)

−)) 6 λV (x0)e
g(T+τ1).
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If t ∈ [T + τ1, 2T ), then

V
(
x(t)

)
6 λV

(
x
(
(T + τ1)

−))eg(t−T−τ1) 6 λ2V (x0)e
gt

and so
V
(
x(2T )

)
6 λ2V (x0)e

2gT .

In general, when m = k, k = 0, 1, . . . , if t ∈ [kT, kT + τk), then we have

V
(
x(t)

)
6 λkV (x0)e

gt 6 λkV (x0)e
g(k+1)T

= V (x0)e
gT+kgT+k lnλ = V (x0)e

gT+k(gT+lnλ). (8)

If t ∈ [kT + τk, (k + 1)T ), we obtain

V
(
x(t)

)
6 λk+1V (x0)e

gt 6 λk+1V (x0)e
g(k+1)T

= V (x0)e
(k+1)gT+(k+1) lnλ = V (x0)e

(k+1)(gT+lnλ). (9)

It follows from (8), (9), and condition (ii) that

lim
t→∞

V
(
x(t)

)
= 0.

This completes the proof.

If we choose P = I in Theorem 1, then the condition of Theorem 1 can be simplified
as follows.

Corollary 1. If there exit g, µ, ε > 0 such that the following hold:

(i) A+AT + (ε− g)I + ε−1L 6 0,
(ii) gT + lnλ < 0,

where λ = max{λm(1 + µ +m2(1 + 1/µ))}, λm = λmax(J
T
mJm), then the origin of

system (3) is asymptotically stable.

The condition of Corollary 1 is similar to Theorem 1 shown in [19]. Since impulsive
effects can be stochastically occurred in a impulse time window in system (3), Corollary 1
is more general than Theorem 1 shown in [19].

Sometimes, for the sake of convenience, the impulsive control gain Jm is always
selected as a constant matrix J , then we have the following.

Corollary 2. Let P ∈ Rn×n be a symmetric and positive definite matrix. If there exit
g, µ, ε > 0 such that the following hold:

(i) PA+ATP + εP 2 + ε−1L− gP 6 0,
(ii) gT + lnλ < 0,

where λ = λmax(P )λmax(P
−1JTJ)(1 + µ+m2(1 + 1/µ)), then the origin of sys-

tem (3) is asymptotically stable.
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The condition of Corollary 2 is similar to Theorem 1 shown in [8]. Since we take into
account the influence of impulsive control gain errors on the systems, Corollary 2 is more
practical than Theorem 1 shown in [8].

In many practical applications, the parameters of impulsive control of nonlinear sys-
tems contain errors. In what follows, we will consider system (3) with parameter uncer-
tainty. The corresponding system can be described as

ẋ(t) = (A+∆A)x+ φ(x), mT 6 t < mT + τm,

x(t) = (Jm +∆Jm)x(t−), t = mT + τm,

ẋ(t) = Ax(t) + φ(x), mT + τm < t < (m+ 1)T,

(10)

where ∆A is the parametric uncertainty and has the following form: ∆A = GF (t)H ,
where FT(t)F (t) 6 I , while G and H are appropriate known matrices.

Theorem 2. Let P ∈ Rn×n be a symmetric and positive definite matrix. If there exit
g, µ, ε > 0 such that the following hold:

(i) PA+ATP + (1 + ε)P 2 + ε−1L+$I − gP 6 0,
(ii) gT + lnλ < 0,

where $ = λmax(G
TG)λmax(H

TH), λ = max{λm(1 + µ+m2(1 + 1/µ))}, λm =
λmax(P )λmax(P

−1JT
mJm), then the origin of system (10) is asymptotically stable.

Proof. Let us construct the following Lyapunov function:

V
(
x(t)

)
= xT(t)Px(t).

If mT 6 t < mT + τm, then by Lemma 1 and condition (i) we have

D+
(
V
(
x(t)

))
= 2xT(t)P

(
(A+∆A)x(t) + φ

(
x(t)

))
= 2xT(t)PAx(t) + 2xT(t)P∆Ax(t) + 2xT(t)Pφ(x)

= xT(t)
(
PA+ATP

)
x(t) + 2xT(t)P∆Ax(t) + 2xT(t)Pφ(x)

6 xT(t)
(
PA+ATP

)
x(t) + xTP 2x+ xT∆AT∆Ax

+ εxTP 2x+
1

ε
φ
(
x(t)

)T
φ
(
x(t)

)
= xT(t)

(
PA+ATP

)
x(t) + (1 + ε)xTP 2x+

1

ε
φ
(
x(t)

)T
φ
(
x(t)

)
+ xTHTFT(t)GTGF (t)Hx

6 xT(t)
(
PA+ATP

)
x(t) + (1 + ε)xTP 2x(t) +

1

ε
xT(t)Lx(t)

+ λmax

(
GTG

)
xTHTFT(t)F (t)Hx

6 xT(t)
(
PA+ATP

)
x(t) + (1 + ε)xTP 2x(t) +

1

ε
xT(t)Lx(t)

+ λmax

(
GTG

)
xTHTHx
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6 xT(t)
(
PA+ATP

)
x(t) + (1 + ε)xTP 2x(t) +

1

ε
xT(t)Lx(t)

+ λmax

(
GTG

)
λmax

(
HTH

)
xTx

= xT(t)

(
PA+ATP + (1 + ε)P 2 +

1

ε
L+$I − gP

)
x(t) + gV

(
x(t)

)
6 gV

(
x(t)

)
,

which implies that
V
(
x(t)

)
6 V

(
x(mT )

)
eg(t−mT ).

The rest of proof is same as that of Theorem 1, so we omit it here for simplicity. This
completes the proof.

3 A numerical example

In this section, we will illustrate the effectiveness of our result by showing simulation
results employing the Chua’s system. Throughout this section, we assume that x =
[x, y, z]T.

The original and dimensionless form of a Chua’s oscillator [20] is given by

ẋ = α
(
y − x− g(x)

)
, ẏ = x− y + z, ż = −βy, (11)

where α and β are parameters, and g(x) is the piecewise linear characteristics of the
Chua’s diode, which is defined by

g(x) = bx+ 0.5(a− b)
(
|x+ 1| − |x− 1|

)
,

where a < b < 0 are two constants.
By decomposing the linear and nonlinear parts of the system in (11), we rewrite it as

ẋ(t) = Ax+ φ(x),

where

A =

−α− αb α 0
1 −1 1
0 −β 0

 , φ(x) =

−0.5α(a− b)(|x+ 1| − |x− 1|)
0
0

 .
Simple calculations show that∥∥φ(x)∥∥2 = 0.25α2(a− b)2

[
(x+ 1)2 + (x− 1)2 − 2

∣∣(x+ 1)(x− 1)
∣∣]

= 0.5α2(a− b)2
(
x2 + 1− |x2 − 1|

)
=

{
α2(a− b)2, x2 > 1,

α2(a− b)2x2, x2 6 1

6 α2(a− b)2x2.

Thus, we can choose L = diag(α2(a− b)2, 0, 0).
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Figure 1. The chaotic phenomenon of Chua’s
oscillator with the initial condition x(0) =
(0.5, 0.3,−0.5)T.
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Figure 2. Time response curves of controlled
Chua’s system with the initial condition x(0) =
(0.5, 0.3,−0.5)T.

In this example, we set the system parameters as

α = 9.2156, β = 15.9946, a = −1.24905, b = −0.75735,

which make Chua’s circuit (11) chaotic. Figure 1 shows the chaotic phenomenon of
Chua’s oscillator with the initial condition x(0) = (0.5, 0.3,−0.5)T.

Meanwhile, we choose P = I , µ = ε = 1, and

Jm = J = diag(−0.5,−0.5,−0.5).

For the sake of simplicity, the impulsive control gain error ∆Jm is specified as

∆Jm = ∆J = 0.05 sin tJ,

and so λ = 0.5012. In order to satisfy condition (i) of Theorem 1, we can choose g = 31.
From the following inequality

gT + lnλ < 0

we have T < 0.0233. Thus, by Theorem 1 we know that the origin of system (3) is
asymptotically stable. The simulation results with T = 0.0200 are shown in Fig. 2.
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