
ISSN 1392-5113
https://doi.org/10.15388/NA.2018.1.7

Nonlinear Analysis: Modelling and Control, 2018, Vol. 23, No. 1, 82–102

Improved synchronization analysis of competitive neural
networks with time-varying delays

Adnène Arbia,b,c, Jinde Caod,e, Ahmed Alsaedif

aHigher Institute of Applied Sciences and Technology of Kairouan,
University of Kairouan,
3100 Kairouan, Tunisia
bTunisia Polytechnic School, University of Carthage,
El Khawarizmi Street, Carthage 2078, Tunisia
cFaculty of Sciences of Bizerta, University of Carthage,
BP W, Jarzouna 7021, Bizerta, Tunisia
adnen.arbi@enseignant.edunet.tn; adnen.arbi@gmail.com
dSchool of Mathematics,
Research Center for Complex Systems and Network Sciences,
Southeast University,
Nanjing 210996, China
jdcao@seu.edu.cn; jdcaoseu@gmail.com
eFaculty of Science, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
fDepartment of Mathematics, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
aalsaedi@hotmail.com

Received: April 6, 2017 / Revised: September 15, 2017 / Published online: December 14, 2017

Abstract. Synchronization and control are two very important aspects of any dynamical systems.
Among various kinds of nonlinear systems, competitive neural network holds a very important place
due to its application in diverse fields. The model is general enough to include, as subclass, the most
famous neural network models such as competitive neural networks, cellular neural networks and
Hopfield neural networks. In this paper, the problem of feedback controller design to guarantee
synchronization for competitive neural networks with time-varying delays is investigated. The goal
of this work is to derive an existent criterion of the controller for the exponential synchronization
between drive and response neutral-type competitive neural networks with time-varying delays. The
method used in this brief is based on feedback control gain matrix by using the Lyapunov stability
theory. The synchronization conditions are given in terms of LMIs. To the best of our knowledge, the
results presented here are novel and generalize some previous results. Some numerical simulations
are also represented graphically to validate the effectiveness and advantages of our theoretical
results.
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1 Introduction

Classical concepts of the synchronization phenomenon are based on the notions of close-
ness of the frequencies or phases of the subsystems generating periodic oscillations. Using
the traditional language of dynamical systems with continuous time, one can reveal hat
synchronization of periodic oscillations that may be represented as follows. While a stable
limit cycle is a geometrical image of such oscillations, an attracting two-dimensional (or
n-dimensional) torus is a geometrical image of the oscillations generated by two (or n)
uncoupled oscillators in a common phase space. As the parameter of coupling increases,
the motions of partial subsystems are no longer independent, and a stable limit cycle is
born on the torus that is still an attractor. This corresponds to the transition of the system
to synchronization. The analysis of periodic systems incorporating full-time information
leads to challenging control problems with a rich mathematical structure. Meanwhile,
as a typical complex system, delayed neural networks have been verified to exhibit some
complex and unpredictable behaviors such as periodic oscillations, bifurcation and chaotic
attractors. Since synchronization of neural networks has been shown to be an important
step toward both fundamental science and technological practice, much of the focus
has been received and numerous research results have been reported in the literature
[6, 12, 15, 26]. Many methods have been developed for synchronizing of chaos such as
LMI based approach [13], adaptive control [18], passivity feedback control [24].

On the other hand, many researches have been devoted to the dynamics of various
classes of neural networks (see [3, 7–10, 14, 27]). Furthermore, there is few works about
the so-called competitive neural networks proposed for the first time by Meyer-Baese et
al. (see [19,21,22,25]), who used them to model the dynamics of cortical cognitive maps
with unsupervised synaptic modifications. The model of competitive neural networks is
different from the traditional neural networks with first-order interactions. In [9], based
on Lyapunov functional method and Kronecker product technique, the authors proposed
some sufficient conditions for global synchronization of neutral-type neural networks
with constant and delayed coupling. In [10], there is proposed a simple adaptive coupling
enhancement algorithm for the synchronization of two coupled identical time-varying de-
layed neural networks based on the invariant principle of functional differential equations.

As a continuation of their previous published results, in this paper, we consider a target
model with two different state variables: the short-term memory (STM) variable de-
scribing the fast neural activity and the long-term memory (LTM) variable describing
the slow unsupervised synaptic modifications. In addition, it has been reported that if
the parameters and time delays are appropriately chosen, the delayed competitive neural
networks can exhibit complicated behaviors even with strange chaotic attractors. Based
on the aforementioned arguments, the study of delayed competitive neural networks and
its analogous equations have attracted worldwide interest (see [20]).

The remainder of this paper is organized as follows. In Section 2, we present the
synchronization problem for CNNs. In Section 3, we introduce preliminaries, notations
and hypotheses. The controller design will be proposed in Section 4. In Section 5, we will
introduce the new criteria proving the exponential synchronization of CNNs. At last, an
illustrative numerical example is given.
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2 Methodology and problem formulation

The competitive neural networks with time-varying delays in this brief are modeled as
follows:

STM: ẋi(t) = −αi(t)xi(t) +
n∑
j=1

Dij(t)fj
(
xj(t)

)
+Bi(t)

n∑
j=1

mij(t)yj

+

n∑
j=1

Dτ
ij(t)fj

(
xj
(
t− τij(t)

))
+ Ii(t),

LTM: ṁij(t) = −βi(t)mij(t) + yjEi(t)fi
(
xi(t)

)
,

(1)

where i, j = 1, . . . , n; xi(t) is the neuron current activity level; fj(xj(t)) is the output
of neurons; mij(t) is the synaptic efficiency; yi is the constant external stimulus; Dij(t),
Dτ
ij(t) represent, respectively, the connection weight and the synaptic weight of delayed

feedback between the ith and jth neurons; Bi(t) is the strength of the external stimulus;
Ei(t) denotes disposable scale; Ii(t) denotes the external inputs on the ith neuron at time
t; σ = max(τ̇ij(t)) < 1 for j = 1, . . . , n and t > t0, where σ is constant; αi, βi : R→ R
are continuous functions.

By setting Si =
∑n
j=1mij(t)yi = Y Tmi(t), where y = (y1, y2, . . . , yn)

T, mi =
(mi1,mi2, . . . ,min)

T and, without loss of generality, the input stimulus Y is assumed
to be normalized with unit magnitude |y|2 = 1, summing up the LTM over j, then the
above networks are simplified, and we get a state-space representation of the LTM and
STM equations of the networks:

STM: ẋi(t) = −αi(t)xi(t) +
n∑
j=1

Dij(t)fj
(
xj(t)

)
+Bi(t)Si(t)

+

n∑
j=1

Dτ
ij(t)fj

(
xj
(
t− τij(t)

))
+ Ii(t),

LTM: Ṡi(t) = −βi(t)Si(t) + Ei(t)fi
(
xi(t)

)
,

(2)

i = 1, . . . , n. In order to observe the synchronization behavior in the class of delayed
functional differential equations, we consider two delayed functional differential equa-
tions, where the drive system with state variable denoted by xi drives the response sys-
tem having identical dynamical equations denoted by state variable zi, and Si drives
the response system having identical dynamical equations denoted by state variable Wi.
However, the initial condition on the drive system is different from that of the response
system. The drive system is as follows:

STM: ẋi(t) = −αi(t)xi(t) +
n∑
j=1

Dij(t)fj
(
xj(t)

)
+Bi(t)Si(t)

+

n∑
j=1

Dτ
ij(t)fj

(
xj
(
t− τij(t)

))
+ Ii(t),

LTM: Ṡi(t) = −βi(t)Si(t) + Ei(t)fi
(
xi(t)

)
,

(3)
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i = 1, . . . , n, with the initial condition(
x1(t), . . . xn(t), S1(t), . . . , Sn(t)

)
=
(
ϕ1(t), . . . , ϕn(t), φ1(t), . . . , φn(t)

)
∈
(
C
(
[−τ∗, 0],R

))2n
.

In practice, the output signals of system (3) can be received by system (4). There-
fore, the goal of control is to design and implement an appropriate controller u+i (t) =
(ui(t), ũi(t)) for the second system such that the controlled response system can syn-
chronize with the drive system (3). The response system is as follows:

STM: żi(t) = −αi(t)zi(t) +
n∑
j=1

Dij(t)fj
(
zj(t)

)
+

n∑
j=1

Dτ
ij(t)fj

(
zj
(
t− τij(t)

))
+Bi(t)Wi(t) + Ii(t) + ui(t),

LTM: Ẇi(t) = −βi(t)Wi(t) + Ei(t)fi
(
zi(t)

)
+ ũi(t),

(4)

where ui and ũi are the control terms respectively for STM and LTM with the initial
condition(

z1(t), . . . zn(t),W1(t), . . . ,Wn(t)
)
=
(
ϕ̃1(t), . . . , ϕ̃n(t), φ̃1(t), . . . , φ̃n(t)

)
∈
(
C
(
[−τ∗, 0],R

))2n
,

where ϕ̃i(·) and φ̃i(·) are the real-valued bounded differentiable functions defined on
[−τ∗, 0], i = 1, . . . , n.

3 Preliminaries, notations and hypotheses

In this paper, we always consider the vectorial space Rn for n ∈ N∗ equipped with the
Euclidean norm (denoted by ‖·‖) in Rn. Let Rn be n-dimensional Euclidean space. In all
that follows, we denote be In ∈ Rn×n and On ∈ Rn×n identity matrix and zero matrix,
respectively. For all x, S, y, Z : R→ R, we define the zero norm by∥∥(x(t), S(t)), (y(t), Z(t))∥∥

0
= max

{∥∥x(t)− y(t)∥∥∞,∥∥S(t)− Z(t)∥∥∞}.
For convenience, we introduce the following notations:

B+
i = sup

t∈R

∣∣Bi(t)∣∣, E+
i = sup

t∈R

∣∣Ei(t)∣∣,
αmin(t) = min

i=1,...,n

{
αi(t)

}
, αmax(t) = max

i=1,...,n

{
αi(t)

}
,

αmin = inf
t∈R

{
αmin(t)

}
, αmax = sup

t∈R

{
αmax(t)

}
,

βmin(t) = min
i=1,...n

{
βi(t)

}
, βmin = inf

t∈R

{
βmin(t)

}
,

D+
ij = sup

t∈R

∣∣Dij(t)
∣∣, (

Dτ
ij

)+
= sup

t∈R

∣∣Dτ
ij(t)

∣∣,
τ∗ = max

i,j

(
sup
(
τij(t)

))
for i, j = 1, . . . , n.

Nonlinear Anal. Model. Control, 23(1):82–102
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Let us list some assumptions, which will be used throughout the rest of this paper:

(H1) The functions αi, βi : R→ R+ are continuous and positive.
(H2) The functions fj(·) are differential and satisfy the Lipschitz condition, i.e., there

are constants kj > 0 such that for all x, y ∈ R and for all 1 6 j 6 n, one has
|fj(x)− fj(y)| 6 kj |x− y| and fj(0) = 0.

Definition 1. Let Z∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t), S

∗
1 (t), S

∗
2 (t), . . . , S

∗
n(t))

T be solu-
tion of system (3) with the initial value ψ∗(t) = (ϕ∗1(t), ϕ

∗
2(t), . . . , ϕ

∗
n(t), φ

∗
1(t), φ

∗
2(t),

. . . , φ∗n(t))
T, and let Z(t) = (x1(t), x2(t), . . . , xn(t), S1(t), S2(t), . . . , Sn(t))

T be the
solution of uncontrolled system (4) with the initial valueψ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t),
φ1(t), φ2(t), . . . , φn(t))

T. If there exist constants ρ > 0 and M > 1 such that for every
solution Z(t) of system (4) with any initial value ψ(t),∥∥Z(t)− Z∗(t)∥∥

0
=
(
max

{∥∥x(t)− x∗(t)∥∥2∞,∥∥S(t)− S∗(t)∥∥2∞})1/2
6M exp

(
−ρ(t− t0)

)
‖ψ‖1

=M exp
(
−ρ(t− t0)

)
× sup
t∈[−τ∗,0]

(
max

{∥∥ϕ(t)− ϕ∗(t)∥∥2∞,∥∥φ(t)− φ∗(t)∥∥2∞})1/2
for all t > t0, then system (3) synchronizes exponentially with system (4).

Remark 1. The exponential synchronization problem considered here is to determine
the control inputs ui(t) and ũi(t) associated with the state-feedback for the purpose
of exponentially synchronizing the two identical chaotic nonlinear neural networks (3)
and (4) with the same system parameters except the differences in initial conditions.

4 Controller design

Let us define the synchronization error signal ei(t) = xi(t) − zi(t) and ẽi(t) = Si(t) −
Wi(t), where xi(t), Si(t) and zi(t), Wi(t) are the ith state variables of the drive and
response competitive neural networks, respectively. Therefore, the error dynamics be-
tween (3) and (4) can be expressed by

STM: ėi(t) = −αi(t)ei(t) +
n∑
j=1

Dij(t)fj
(
ej(t)

)
+

n∑
j=1

Dτ
ij(t)fj

(
ej
(
t− τij(t)

))
+Bi(t)ẽi(t)− ui(t), (5)

LTM: ˙̃ei(t) = −βi(t)ei(t) + Ei(t)fi
(
ei(t)

)
− ũi(t) (6)

for i = 1, . . . , n, where

fj
(
ej(t)

)
= fj

(
xj(t)

)
− fj

(
zj(t)

)
,

fj
(
ej
(
t− τij(t)

))
= fj

(
xj
(
t− τij(t)

))
− fj

(
zj
(
t− τij(t)

))
.
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From hypothesis (H2) we can have that fi(·) satisfies

0 6 ei(t)fi
(
ei(t)

)
6 kie

2
i (t), 0 6 ẽi(t)fi

(
ẽi(t)

)
6 kiẽ

2
i (t).

If the state variables of the drive system are used to drive the response system, then the
control input vector with state feedback is designed as follows:

u1(t)
...

un(t)

ũ1(t)
...

ũn(t)


=



∑n
j=1 ω1,j × (xj(t)− zj(t))

...∑n
j=1 ωn,j × (xj(t)− zj(t))∑n
j=1 ω̃1,j × (Sj(t)−Wj(t))

...∑n
j=1 ω̃n,j × (Sj(t)−Wj(t))



=

ω1,1 . . . ω1,n ω1,n+1 . . . ω1,2n

...
...

...
...

...
...

ωn,1 . . . ωn,n ωn,n+1 . . . ωn,2n




x1(t)− z1(t)
...

xn(t)− zn(t)
S1(t)−W1(t)

...
Sn(t)−Wn(t)


= Ωe(t),

where e(t) = (e1(t), . . . , en(t))
T, and Ω = (ωi,j)n×n ∈ Rn×2n is the gain matrix to be

determined for synchronizing both a drive system and response system.
Besides, if new errors are defined by êi(t) and ˆ̃ei(t) is defined by êi(t) = eρtei(t) and

ˆ̃ei(t) = eρtẽi(t), respectively, the dynamics of (5) and (6) can be transformed into the
following forms:

STM: ˙̂ei(t) = −αi(t)êi(t) + ρêi(t) +

n∑
j=1

Dij(t)Fj
(
êj(t)

)
+

n∑
j=1

Dτ
ij(t)Fj

(
êj
(
t− τij(t)

))
+Bi(t)ˆ̃ei(t)−

n∑
j=1

ωi,j êj(t), (7)

LTM: ˙̂
ẽi(t) = −βi(t)ˆ̃ei(t) + ρˆ̃ei(t) + Ei(t)Fi

(
êi(t)

)
−

n∑
j=1

ω̃i,j ˆ̃ej(t), (8)

where Fj(êj(t)) = eρtfj(ej(t)) and Fj(êj(t− τij(t))) = eρtfj(ej(t− τij(t))).

5 Main results

The exponential synchronization problem of systems (3) and (4) can be solved if the
controller gain matrix is suitably designed. The exponential synchronization condition is
established in the following main results.

Nonlinear Anal. Model. Control, 23(1):82–102
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Theorem 1. Let (H1)–(H2) hold. Assume that there exist two strictly positive constants ρ
and σ < 1 such that:

(i)
n∑
i=1

(
Dτ
ij

)+
<

e2ρτ
∗

1− σ
for all j = 1, . . . , n,

and there exist n strictly positive constants q1, q2, . . . , qn such that:

(ii)
2ρ

αmax
+ max

16i6n

n∑
j=1

D+
ij

αmin

+ max
16j6n

kj
∑n
i=1D

+
ij

αmin

− 2 max
16j6n

n∑
i=1

ωi,j
αmin

+ max
16i6n

(
B+
i

αmin

+
qi
αmin

kiE
+
i

)
< 2;

(iii)
1

2
max
16i6n

(
B+
i

αmin

+
qi
αmin

kiE
+
i

)
6 max

16i6n
qiβ

min + max
16j6n

n∑
i=1

qiω̃i,j .

Then the drive system (3) synchronizes exponentially with the response system (4).

Proof. To confirm that the origin of (7) is globally exponentially convergent, a continuous
Lyapunov functional V (t) is defined as follows:

V (t) =

n∑
i=1

1

αi(t)
ê2i (t) + 2

n∑
i=1

qi

ˆ̃ei(t)∫
0

sds+
e2ρτ

∗

1− σ

n∑
j=1

(
Dτ
ij

)+ t∫
t−τij(t)

F 2
j

(
êj(s)

)
ds.

It is easy to verify that V (t) is a nonnegative function over [−τ∗,+∞) and
limê(t)→+∞ V (t) = +∞. By the expression of fj(ej(t)), Fj(êj(t)) and assumption (H2)
we obtain ∣∣fj(ej(t))∣∣ 6 kj

∣∣ej(t)∣∣,∣∣Fj(êj(t))∣∣ = ∣∣eρtFj(ej(t))∣∣ 6 kj
∣∣eρtej(t)∣∣ = kj

∣∣êj(t)∣∣.
Evaluating the time derivative of V along the trajectory of (7) and (8)

V̇ (t) = 2

n∑
i=1

1

αi(t)
êi(t) ˙̂ei(t) + 2

n∑
i=1

qi ˆ̃ei(t)
˙̂
ẽi(t) +

e2ρτ
∗

1− σ

n∑
j=1

(
Dτ
ij

)+
F 2
j

(
êj(t)

)
− e2ρτ

∗

1− σ

n∑
j=1

(
Dτ
ij

)+
F 2
j

(
êj
(
t− τij(t)

))(
1− τ̇ij(t)

)
6 −2

n∑
i=1

ê2i (t) + 2ρ

n∑
i=1

1

αi(t)
ê2i (t) + 2

n∑
i=1

n∑
j=1

Dij(t)

αi(t)
êi(t)Fj

(
êj(t)

)
+ 2

n∑
i=1

n∑
j=1

Dτ
ij(t)

αi(t)
êi(t)Fj

(
êj
(
t− τij(t)

))
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+ 2

n∑
i=1

1

αi(t)
êi(t)Bi(t)ˆ̃ei(t)− 2

n∑
i=1

n∑
j=1

ωi,j
αi(t)

ê2j (t)

− 2

n∑
i=1

qi ˆ̃e
2
i (t) + 2

n∑
i=1

qi ˆ̃ei(t)Ei(t)Fi
(
êi(t)

)
− 2

n∑
i=1

n∑
j=1

qiω̃i,j ˆ̃e
2
j (t)

+
e2ρτ

∗

1− σ

n∑
j=1

(
Dτ
ij

)+
F 2
j

(
êj(t)

)
− e2ρτ

∗

1− σ

n∑
j=1

(
Dτ
ij

)+
F 2
j

(
êj
(
t− τij(t)

))
. (9)

Applying the inequality 2|a|b 6 a2 + b2, we have that

2

n∑
i=1

n∑
j=1

Dij(t)

αi(t)
êi(t)Fj

(
êj(t)

)
6

n∑
i=1

n∑
j=1

D+
ij

αmin
ê2i (t) +

n∑
i=1

n∑
j=1

D+
ij

αmin
F 2
j

(
êj(t)

)
, (10)

2

n∑
i=1

n∑
j=1

Dτ
ij(t)

αi(t)
êi(t)Fj

(
êj
(
t− τij(t)

))
6

n∑
i=1

n∑
j=1

(Dτ
ij)

+

αmin
ê2i (t) +

n∑
i=1

n∑
j=1

(Dτ
ij)

+

αmin
F 2
j

(
êj
(
t− τij(t)

))
(11)

and

2

n∑
i=1

(
Bi(t)

αi(t)
+

qi
αi(t)

kiEi(t)

)∣∣êi(t)∣∣ˆ̃ei(t)
6

n∑
i=1

(
B+
i

αmin
+

qi
αmin

kiE
+
i

)(
ê2i (t) + ˆ̃e2i (t)

)
. (12)

Substituting (10), (11) and (12) in derivative (9), we obtain easily

V̇ (t) 6

{
−2 + 2ρ

αmin
+ max

16i6n

n∑
j=1

D+
ij

αmin
+ max

16j6n

kj
∑n
i=1D

+
ij

αmin

− 2 max
16j6n

n∑
i=1

ωi,j
αmin

+ max
16i6n

(
B+
i

αmin
+ qikiE

+
i

)}∥∥ê(t)∥∥2
+

n∑
j=1

(
max
16j6n

n∑
i=1

(
Dτ
ij

)+ − e2ρτ
∗

1− σ

)
F 2
j

(
êj
(
t− τij(t)

))
+

{
max
16i6n

(
B+
i

αmin
+ qikiE

+
i

)
− 2 max

16i6n
qiβ

min − 2 max
16j6n

n∑
i=1

qiω̃i,j

}
×
∥∥ˆ̃e(t)∥∥2.

Nonlinear Anal. Model. Control, 23(1):82–102
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In addition, we have

1

αmax

∥∥ê(t)∥∥2 6 V (t)

6
1

αmin

∥∥ê(t)∥∥2 + qmax

αmin

∥∥ˆ̃e(t)∥∥2
+
τ∗e2ρτ

∗

1− σ
K2

max

∑n
j=1(D

τ
ij)

+

αmin

∥∥ê(t)∥∥2.
Besides,

qmin

αmax

∥∥ˆ̃e(t)∥∥2 6 V (t)

6
1

αmin

∥∥ê(t)∥∥2 + qmax

αmin

∥∥ˆ̃e(t)∥∥2
+
τ∗e2ρτ

∗

1− σ
K2

max

∑n
j=1(D

τ
ij)

+

αmin

∥∥ê(t)∥∥2.
Therefore, we have√

1 + qmin

αmax
max

{∥∥ê(t)∥∥, ˆ̃e(t)∥∥} 6
√

2V (t) 6
√
2V (t0).

For t = t0, we have

√
V (t0) 6

(√
1

qmin
+

√
qmax

αmin

+

√
τ∗e2ρτ∗

1− σ
K2

max

∑n
j=1(D

τ
ij)

+

αmin

)
exp(ρt0)

× sup
t∈[−τ∗,0]

max
{∥∥ϕ(t)∥∥,∥∥φ(t)∥∥}.

Then

max
{∥∥e(t)∥∥,∥∥ẽ(t)∥∥} 6M exp

(
−ρ(t− t0)

)
sup

t∈[−τ∗,0]

max
{∥∥ϕ(t)∥∥,∥∥φ(t)∥∥},

where

M =

√
αmax

(1 + qmin)αmin

+

√
αmaxqmax

(1 + qmin)αmin

+

√
τ∗e2ρτ∗

1− σ
K2

maxαmax

∑n
j=1(D

τ
ij)

+

(1 + qmin)αmin

> 1.

Therefore, system (3) synchronizes exponentially with system (4).

If q1 = q2 = · · · = qn = 1, we obtain the following result.
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Corollary 1. The drive system (3) synchronizes exponentially with the response sys-
tem (4) if there exist two strictly positive constants ρ and σ < 1 such that:

(i)
n∑
i=1

(
Dτ
ij

)+
<

e2ρτ
∗

1− σ
for all j = 1, . . . , n;

(ii)
2ρ

αmax
+ max

16i6n

n∑
j=1

D+
ij

αmin

+ max
16j6n

kj
∑n
i=1D

+
ij

αmin

+ max
16i6n

(
B+
i

αmin

+
1

αmin

kiE
+
i

)
< 2 + 2 max

16j6n

n∑
i=1

ωi,j
αmin

;

(iii)
1

2
max
16i6n

(
B+
i

αmin

+
1

αmin

kiE
+
i

)
6 max

16i6n
βmin + max

16j6n

n∑
i=1

ω̃i,j .

Remark 2. To the best of our knowledge, no paper in the literature has investigated the
synchronization problem of system (3) with system (4). Furthermore, this paper improves
and generalizes the outcomes in [10, 20].

6 Simulation results

Example 1. The parameters of a two-dimensional nonlinear competitive neural networks
with time-varying delays (3) and (4) is given by the following system of equations:

α1(t) = α2(t) = exp

(
− t

2

2

)
+ 0.5, β1(t) = β2(t) = 2 exp

(
− t

2

2

)
,

Ii(t) = 2 cos(
√
2t),

D(t) =
(
Dij(t)

)
2×2 =

(
2 exp(−t2) −0.3 cos t
−2 exp(−t2) 8 cos(

√
2t)

)
,

Dτ (t) =
(
Dτ
ij(t)

)
2×2 =

(
2 cos(

√
2t) 0.1 cos t

exp(−t2) −8 cos t

)
,

B(t) =

(
4 exp(−t2)
4 exp(−t2)

)
, E(t) =

(
2 exp(−t2)
1.5 exp(−t2)

)
.

The delays (τij(t))16i,j62 = 0.7exp t/(1 + exp t) satisfy

0 6 τij(t) 6 0.7 = τ∗, 0 6 τ̇ij(t) 6 0.7.

We choose the activation functions of competitive neural networks as the type of hyper-
bolic tangent function fj(x) = 0.3 tanh(x). Figures 1–10 show the oscillation of the
delayed competitive neural networks (3) and (4) with above coefficients and initial values
x1(θ) = −1, x2(θ) = −0.2, S1(θ) = −2, S2(θ) = −0.6 for θ ∈ [−0.7, 0].

The oscillation of solution of drive system is clearly presented in Figs. 1–4.
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Figure 1. Trajectory of x1 for t ∈ [0, 100].
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Figure 2. Trajectory of x2 for t ∈ [0, 100].
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Figure 3. Phase plot of x1, x2, S1 for t ∈
[0, 100].
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Figure 4. Phase plot of x1, x2, S2 for t ∈
[0, 100].

0 20 40 60 80 100
−500

0

500

S
1
(t
)

t

0 20 40 60 80 100
−500

0

500

S
2
(t
)

t

Figure 5. Trajectory of S1 and S2 for t ∈
[0, 100].
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Figure 6. Trajectory of z1 for t ∈ [0, 100].
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Figure 7. Trajectory of z2 for t ∈ [0, 100].
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Figure 8. Trajectory of W1 and W2 for t ∈
[0, 100].
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Figure 9. Phase plot of z1, z2, W1 for t ∈
[0, 100].
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Figure 10. Phase plot of z1, z2, W2 for t ∈
[0, 100].

It follows from the main theorem that if the controls input ui(t) and ũi(t) are chosen as

u1(t) = 9.2e1(t), u2(t) = 9.2e2(t),

ũ1(t) = 1.2ẽ1(t), ũ2(t) = 1.2ẽ2(t),

then the matrix of control is as follows:

Ω =

(
9.2 0 1.2 0
0 9.2 0 1.2

)
.

The oscillation of solution of response system with above coefficients and initial values
x1(θ) = −2, x2(θ) = −0.2, S1(θ) = −3, S2(θ) = −0.5 for θ ∈ [−0.7, 0] is clearly
presented in Figs. 6–10.
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It is evident that hypotheses (H1)–(H2) hold (k1 = k2 = 0.3). By choosing ρ = 0.5
and σ = 0.9 we have

2∑
i=1

(
Dτ
i1

)+
= 3 <

e2ρτ
∗

1− σ
= 14.1,

2∑
i=1

(
Dτ
i2

)+
= 8.1 <

e2ρτ
∗

1− σ
= 14.1.

Besides,

2ρ

αmax
+ max

16i62

2∑
j=1

D+
ij

αmin

+ max
16j62

kj
∑n
i=1D

+
ij

αmin

+ max
16i62

(
B+
i

αmin

+
1

αmin

kiE
+
i

)

=
1

1.5
+ max

{
2.3

0.5
,
10

0.5

}
+max

{
0.3

4

0.5
, 0.3

8.3

0.5

}
+max

{
4

0.5
+ 2

0.3

0.5
,

4

0.5
+ 1.5

0.3

0.5

}
= 0.66 + 20 + 4.98 + 9.2 < 2 + 2 max

16j62

2∑
i=1

ωi,j
αmin

= 38.8

and

1

2
max
16i62

(
B+
i

αmin

+
1

αmin

kiE
+
i

)
=

1

2
max

{
4

0.5
+ 2

0.3

0.5
,

4

0.5
+ 1.5

0.3

0.5

}
6 max

16i62
βmin + max

16j6n

2∑
i=1

ω̃i,j = 9.2.

Conditions (i), (ii) and (iii) of Corollary 1 are satisfied. Hence, by using Corollary 1,
the drive system (3) can be synchronized by the corresponding response system (4).
Figures 11–14 reveal the synchronization error of the state variables between the drive
system and the corresponding response system.

Remark 3. The major improvement over [20, 22] is that in our approach, it is very easy
to verify the criteria by simple algebraic calculus.

Remark 4. The competitive neural networks models investigated in [20] and [22] are
considered with constant coefficients. However, in this work, we study the model with
time-varying coefficients. Furthermore, our system include models in [20,22] and [23] as
special cases whenDij(t) = Dij ,Dτ

ij(t) = Dτ
ij ,Bi(t) = Bi,Ei(t) = Ei, Ii(t) = Ii and

Ji(t) = Ji. Hence, our results have been shown to be the generalization and improvement
of existing results reported recently in the literature.

Remark 5. For system (1), if there is no external stimulus, i.e., yj = 0, then system (1)
degenerates into general neural networks with time-varying delay, which contains neural
models studied in [4, 11, 16].
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Figure 11. Trajectory of e1 and x2 for t ∈
[0, 100].
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Figure 12. Trajectory of e2 for t ∈ [0, 100].
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Figure 13. Phase plot of e1, e2, ẽ1 for t ∈
[0, 100].
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Figure 14. Phase plot of e1, e2, ẽ2 for t ∈
[0, 100].
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Figure 15. Trajectory of ẽ1 and ẽ2 for t ∈
[0, 100].
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Example 2. The parameters of a two-dimensional nonlinear competitive neural networks
with time-varying delays (3) and (4) are almost some parameters of Example 1. The only
difference compared to Example 1 is about the activation functions. Furthermore, in this
example, we choose the activation functions as follows: fj(x) = 0.3 sin(0.5x), j =
1, . . . , n, and

D(t) =
(
Dij(t)

)
2×2 =

(
2 exp(−t2) −0.3 cos t
−2 exp(−t2) 5 cos(

√
2t)

)
,

Dτ (t) =
(
Dτ
ij(t)

)
2×2 =

(
2 cos(

√
2t) 0.1 cos t

exp(−t2) −5 cos t

)
.

The delays (τij(t))16i,j62 = 0.7 exp t/(1 + exp t) are time-varying and satisfy 0 6
τij(t) 6 0.7 = τ∗, 0 6 τ̇ij(t) 6 0.7.

Figures 16–19 show the oscillation of the delayed competitive neural networks (3) and
(4) with above coefficients and initial values x1(θ) = −1, x2(θ) = −0.2, S1(θ) = −2,
S2(θ) = 0.6 for θ ∈ [−0.7, 0]. The driver system’s oscillating solution is clearly presented
in Figs. 21–24.

It follows from the main theorem that if the controls input ui(t), ũi(t) are chosen as

u1(t) = 9.2e1(t) u2(t) = 9.2e2(t), ũ1(t) = 1.2ẽ1(t), ũ2(t) = 1.2ẽ2(t),

then the matrix of control is as follows:

Ω =

(
9.2 0 1.2 0
0 9.2 0 1.2

)
.

The responser system’s oscillating solution with above coefficients and initial values
x1(θ) = −2, x2(θ) = −0.2, S1(θ) = −3, S2(θ) = −0.5 for θ ∈ [−0.7, 0] is clearly
presented in Figs. 26–29.

It is evident that hypotheses (H1)–(H2) hold (k1 = k2 = 0.3). By choosing ρ = 0.5
and σ = 0.9, we have

2∑
i=1

(Dτ
i1)

+ = 3 <
e2ρτ

∗

1− σ
= 14.1,

2∑
i=1

(Dτ
i2)

+ = 5.1 <
e2ρτ

∗

1− σ
= 14.1.

Besides,

2ρ

αmax
+ max

16i62

2∑
j=1

D+
ij

αmin

+ max
16j62

kj
∑n
i=1D

+
ij

αmin

+ max
16i62

(
B+
i

αmin

+
1

αmin

kiE
+
i

)

=
1

1.5
+ max

{
2.3

0.5
,

7

0.5

}
+max

{
0.3

4

0.5
, 0.3

5.3

0.5

}
+max

{
4

0.5
+ 2

0.3

0.5
,

4

0.5
+ 1.5

0.3

0.5

}
= 0.66 + 14 + 3.18 + 9.2 < 2 + 2 max

16j62

2∑
i=1

ωi,j
αmin

= 38.8
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Figure 16. Trajectory of x1 for t ∈ [0, 100].
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Figure 17. Trajectory of x2 for t ∈ [0, 100].
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Figure 18. Phase plot of x1, x2, S1 for t ∈
[0, 100].
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Figure 19. Phase plot of x1, x2, S2 for t ∈
[0, 100].
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Figure 20. Trajectory of S1 and S2 for t ∈
[0, 100].
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Figure 21. Trajectory of z1 for t ∈ [0, 100].
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Figure 22. Trajectory of z2 for t ∈ [0, 100].
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Figure 23. Phase plot of z1, z2, W1 for t ∈
[0, 100].
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Figure 24. Phase plot of z1, z2, W2 for t ∈
[0, 100].
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Figure 25. Trajectory of W1 and W2 for t∈
[0, 100].
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Figure 26. Trajectory of e1 and x2 for t ∈
[0, 100].

0 20 40 60 80 100
−50

0

50

100

t

e
2
(t
)

Figure 27. Trajectory of e2 for t ∈ [0, 100].
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Figure 28. Phase plot of e1, e2, ẽ1 for t ∈
[0, 100].
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Figure 29. Phase plot of e1, e2, ẽ2 for t ∈
[0, 100].
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Figure 30. Trajectory of ẽ1 and ẽ2 for t ∈
[0, 100].
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and

1

2
max
16i62

(
B+
i

αmin

+
1

αmin

kiE
+
i

)
=

1

2
max

{
4

0.5
+ 2

0.3

0.5
,

4

0.5
+ 1.5

0.3

0.5

}
6 max

16i62
βmin + max

16j6n

2∑
i=1

ω̃i,j = 9.2.

Hence, using Corollary 1, the drive system (3) can be synchronized by the corresponding
response system (4). Figures 24–29 reveal the synchronization error of the state variables
between the drive system and the corresponding response system.

Remark 6. However, in most papers, the activation functions are assumed to be mono-
tonically nondecreasing. In this paper, from Theorem 1 the restriction is removed, and
thus, the results obtained here extend and improve those in [11, 16, 17]. However the
activation functions here are not monotonous in Example 2, the results in [11, 16, 17] are
not applicable.

Remark 7. The above examples show that the result of the proposed control law ensures
exponential synchronization of the competitive neural networks constituting of two or
multi-neurons with/without time delays.

7 Conclusion and future works

In the present work, we demonstrate that two different chaotic nonlinear competitive
neural networks with time-varying delays can be synchronized using active control. More
precisely, this paper has presented sufficient conditions to guarantee the exponential syn-
chronization of a class of chaotic nonlinear competitive neural networks with time-varying
delays. Moreover, the proposed criteria were dependent of the delay parameter, which
may possess important significance in the design of chaos of delayed competitive neural
networks. A numerical example and its simulation have been given to demonstrate the
effectiveness and advantage of the theory results. Furthermore, the synchronization degree
can be easily estimated. Finally, an illustrative example has been given to verify the
theoretical results. However, to the best of our knowledge, there are few results concerning
the exponential synchronization for competitive neural networks. This technique is appli-
cable for the high-order Hopfield neural networks [2]. Furthermore, there are no studies
investigating the problem of exponential synchronization of competitive neural networks
with mixed time-varying delays in the leakage terms [5] and the high-order competitive
neural networks with mixed time-varying delays in the leakage terms [1]. This is some
interesting problems and will become our future investigative direction. Besides, more
methods and tools should be explored and developed in this direction. Along, the future
work spawning from this paper would be to train this model that can be applied in various
areas including pattern recognition, associate memory, cryptography etc.
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