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Abstract. This work considers a second-order impulsive coupled system with full nonlinearities,
generalized impulse functions and mixed boundary conditions. This is the first time where such
coupled systems are considered with nonlinearities with dependence on both unknown functions
and their derivatives, together impulsive functions given by more general framework allowing jumps
on the both functions and both derivatives.

The arguments apply the fixed point theory, Green’s functions technique, L'-Carathéodory
functions theory and Schauder’s fixed point theorem.

An application to the transverse vibration system of elastically coupled double-string is presented
in the last section.
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1 Introduction

In this paper, we consider the second-order impulsive coupled system with mixed bound-
ary conditions

u'(x) = f(z,u(z), o (z),v(z), ' (z)),

v’ (x) = h(z,u(z), v (z),v(x),v'(z)), n
u(a) = Ay, ' (b) = By,
v(a) = Aa, v(b) = B,
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where f,h : [a,b] x R* — R are L!-Carathéodory functions, A1, Ao, By, Bs € R, with
the generalized impulsive conditions

Au(zr) = Tog (wr, w(zy), v (zx)),

A/ (z) = g (2, u(zp), v/ (2)), k=1,2,...,n,
Av(ry) = Joj (1, 0(7), V' (7)),

AV (15) = Jij(75,0(5),0'(75)), G=1,2,...,m,

(@)

where, fori = 0,1, Au®® () = u (z)) —u@ (), 20D () = v (1) =0 (7,7),
and being Ly, J;; € C([a,b] x R% R) with z, 7; fixed points such that a < 27 < x5 <
e <zp<banda<T <M < < Ty < b

The theory of impulsive differential equations describes processes in which a sudden
change of state occurs at certain moments. Several authors (see, for example, [1, 3, 6-8,
10-14, 17,20, 25]) have dealt with impulsive differential equations from different points
of view and using many techniques.

There are many phenomena and applications related to impulsive differential sys-
tems, for example, we can find biological models, population dynamics, neural networks,
models in economics, on time scales, on state-dependent delays, on delay-dependent
impulsive control, on electrochemical communication between cells in the brain (see for
instance, [2,4,5,9,15,16,19,22-24,26,27,29,30]), among others.

In [28], the author considers a sufficient conditions for the existence and uniqueness
of solutions to the following complex dynamical network in the form of a coupled system
of m + 2 point boundary conditions for impulsive fractional differential equations

) J J
) = Ii(v(ti)), A’U/( Z‘) = I_i(v(ti)), 1= 17 ceey Ny

where 1 < o, 3 < 2, 9,9 : [0,1] x R? — R are continuous functions, and g, h : X — R,
f,k Y — R are continuous functionals defined by

f) =) dw(&), k@) =) div(n),

fi,m,fj,ﬁj c (0,1) fori=1,...,qandj =1,...,q.
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In [18], it is studied the BVP for second-order singular differential system on the
whole line with impulse effects, i.e., consisting of the differential system

[0 (p(t)2' ()] = F(t,2(t),y(t)), ae.teR,
(04 (oY’ ()] = g(t,2(t),y(t)), ae.teR,

subjected to the boundary conditions

lim z(s) =0, lim y(s)=0

t—too t—+oo

and the impulse effects

Ax(ty) = I (t, (tr), y(t)), k€ Z,
Ay(tk) = Jk(tk7l'(tk),y(tk)), ke Z,

where

(i) p,0€ C°(R,[0,00)), p(t), o(t) > 0 forall t € R with fj:oo ds/p(s) < +oo and
fj;o ds/o(s) < 400,

(i) ¢p(z) = z|z|P72, ¢y(z) = x|x|?"2 with p > 1 and ¢ > 1 are Laplace operators,

(iii) f, g on R? are Carathéodory functions,

iv) - < tp < g1 < Tpgo < -+ with lim,_, _ . tx = —oc0 and hmkHJroo tr =
+o00, Az (ty) = u(ty) — z(t;;) and Ay(ty) = y(t}) — y(t,) (k € Z), Z is the
set of all integers,

v) {Ix}, {Jx}, with Iy, J;. : R® — R, are Carathéodory sequences.

Motivated by these works, we follow arguments applied in [21] to study prob-
lem (1)-(2). We point out that is the first time when second-order coupled differen-
tial equations systems include full nonlinearities. That is, they depend on the unknown
functions, and their first derivatives, together with generalized impulsive conditions with
dependence on the first derivative, too.

The paper is organized as it follows: Section 2 contains the preliminary results: defini-
tions and some auxiliary lemmas. Section 3 contains the main result: an existence solution
of the problem. In the last section, our main theorem is illustrated by an example and
applications to a real phenomena: the transverse vibrations system of elastically coupled
double-string model.

2 Definitions and auxiliary results

Define u(27) := lim,_, + u(x), consider the set
k

PCy([a,b]) = {w: [a,b] = R, uis continuous for z # z, u(zy) = u(zy ),
u(a:;i') exists fork =1,2,... ,n}

Nonlinear Anal. Model. Control, 23(1):103-119
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and the space X := PC}([a,b]) = {u: u/(t) € PC1([a,b])} equipped with the norm
l[ullx, = max{{jul], [|u'|[}, where

lw]| := sup ‘w(aj)|
z€la,b

Analogously, define the space Xo := PC3([a,b]) = {v: v'(z) € PC3([a,b])}, where

PCs(la,b]) = {v: vla,b] = R, v is continuous for 7 # 7;, v(7;) = v(7; v),

J
(% (T+

; )existsforj=1,2,-~-am}7

equipped with the norm ||v|| x, = max{||v]], [|v'] }.

Denoting X := X3 x X3 and the norm ||(u, v)||x = max{||u|x,, ||v]x,}, it is clear
that (X, ||-||x) is a Banach space.

A pair of functions (u, v) is a solution of problem (1)—(2) if (u,v) € X and verifies
conditions (1) and (2).
Definition 1. A function g : [a,b] x R* — R is L!-Carathéodory if

() foreach (t,y,z,w) € R*, 2+ g(x,t,y, z,w) is measurable on [a, b];
(i) forae. z € [a,b], (t,v, 2, w) — g(z,t,y, 2, w) is continuous on R*;
(iii) for each p > 0, there exists a positive function ¢, € L ([a, b]),
and for (t,y, z, w) € R* such that

max{[¢], |y, 2], [w]} < p,
one has

|9z, t,y, 2,0)| < @p(t), ae.x € [a,b].
Lemma 1. A pair of functions (u,v) € X is a solution of problem (1)—(2) if and only if
u(x) = A1+ Bi(z —a)

+ Z [Iok(xk,u(xk), u’(:ck)) + Iy, (xk,u(xk), u’(xk))(:zr - xk)]

zp<xT

—(z—a) Z L (wr, u(zk), v (k)

k=1
b

+/G1(:17,5) f(s,u(s),u'(s),v(s),v'(s)) ds

with G1(x, s) given by

’ 3)

https://www.mii.vu.lt/NA



Impulsive coupled systems with generalized jump conditions 107

and
v(z) = Az + Bz%jz(a: —a)
+ 37 [oj (1, 0(73),0 (7)) + i (75, 0(m), 0 (7)) (2 — 75)]
— T > [y (73, 0(13), 0 (1)) + g (7 0, () & = )]

b =1
—|—/Gg(x,s)h(s,u(s),u’(s),U(s),v’(s)) ds

with Gy (z, s) defined by

1 (a—s)(b—1x), a <0,
Go(w,s) = )
a—=b|(x—a)b—23s), a < b
The proof follows standard calculus and it is omitted.
A key tool is the Schauder’s fixed point theorem:

Theorem 1. (See [31].) Let Y be a nonempty, closed, bounded, and convex subset of
a Banach space X, and suppose that P : Y — Y is a compact operator. Then P has at
least one fixed pointin 'Y .

3 Main theorem

The main result will provide the existence of at least one solution of problem (1)—(2).

Theorem 2. Let f,h : [a,b] x R* — R be L-Carathéodory functions, and let Ly, J;; :
[a,b] x R?— R be continuous functions for i=0,1, k=1,2,....,n,and j=1,2,...,m.
Then there is at least one pair of functions (u,v) € X, which is a solution of (1)—(2).

Proof. Define the operators 77 : X — X3, T5: X — Xg,and T : X — X by

T(u,v) = (Tl (u,v), To(u, U)) (5)
with

(Tl(u, v)) (r) = A1+ Bi(z — a)

+ Z ok (zk, w(zr), v/ (zx)) + L (2, u(ag), o' (z)) (z — z)]

rp<x

—(z—a) th (k, u(zy), v ()
k=1

b
—|—/Gl(:c,s)f(s,u(s),u’(s),v(s),v'(s)) ds,

Nonlinear Anal. Model. Control, 23(1):103-119
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By — A

(Ta(u,0)) (2) = Az + = —(a — )
+ 3 [Jos (5, 0(m3), 0 (7)) + Juj (73, 0(m), 0 (7)) (2 = 75)]
- i:z 2 [Jo3 (73, 0(73), (7)) + s (75, 0(75), ' (7)) (2 = 75)]

b
+/Gg(x,s)h(s,u(s),u'(s),v(s),v’(s)) ds,

where G1(x, ) and Ga(z, s) are given by (3) and (4), respectively.
By Lemma 1, it is obvious that the fixed points of 7" are solutions of (1)—(2), so we
shall prove that 7" has a fixed point, following, for clearness, several steps.

Step 1. T is well defined and continuous in X.
As f,h : [a,b] x R* — R are L'-Carathéodory functions, then T} (u,v) € PC] and
Ty(u,v) € PCY. In fact, T'(u,v) = (T} (u,v), To(u,v)) is continuous and

(Tu(u,0)) (@) = Bi+ > L (wn, ulaw), o' (2x)) = > T (e u(zp) o (21
k=1

TE<T

—/f(s,u(s),u’(s),v(s),v’(s)) ds,

(Dol 0) (@) = 222 157 0 (ry0(m), 0 (7))
1

—a

D Lo (755 0(m), 0" (73)) + T (75, 0(7), 0 (7)) (& = 75)]

S

with

a < ) ©)
a <

0Go 1 s —a,
b—s,

Therefore, T (u,v) € X1, Ta(u,v) € Xs, and T'(u,v) € X.

https://www.mii.vu.lt/NA
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Step 2. T'B is uniformly bounded in B C X.
Let B be a bounded set of X. As f and h are L'-Carathéodory functions, there exists
bpy Y, € L' ([a, b]) with p; > 0 such that

max{ ||ullx,, [|[vllx, } < p1, (7)
we have
{f(x,u(ac),u'(x ),v(x), v (x))] < ¢p()
‘h(m,u(m%u'(w ),v(z),v'(z )’ <p(z), ae .z € [a,b].
For (u,v) € B, let
My(s):= sup |Gi(z,s)],  Ma(s):= sup |Ga(z,s)|. (8)
z€[a,b] z€a,b]

By the continuity of functions I, J;; for i = 0,1, £ = 1,2,...,n, and j =
1,2,...,m, there are positive constants ¢;j; and ;; such that

| Lik (zhs u(w), v (wr)) | < @ir and | Ji5 (75, 0(75),0(75)) | < @3-
Moreover,

(CROIC]

< sup <A1| + |Bi||lz — a

z€[a,b]

+ Z | Lor (2 w(@e), v/ (zk)) + T (wr, ulag), o' (z)) (@ — )] |

rE<T

+ |(m — a)| Z |Ilk (Ik,u(zk)aul(xk)”

k=1

b
+ / |G1(x,3)|’f(s,u(s),u’(s),v(s),v’(s))|ds)

n b
<|Ail+[Bil(b—a) + > [or +2(b— a)pur] + /Ml(s)(j)p(s)ds < +00,
k=1

a

(71 (u,0)) ()|
< sup <B1|+ Z |11k($k7u($k),ul($k))‘

z€[a,b] TR<w

" b
+Z’Ilk(xk,u(xk),u'(xk))’—|—/’f(s,u(s),u’(s),v(s),v’(s))’ds)
k=1 J

n b
<IBil+2) o +/¢p(s) ds < +o0,
k=1 p

Nonlinear Anal. Model. Control, 23(1):103-119
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|2 (e, ) @)

By, — A
< wp(Aﬂ+|zﬂMM
z€la,b] —a

+ 3 1705 (75, 0(7), ' (73)) + T (75, 0(75), 0" (7)) (@ = 75) ]

T <T

+ |Z:Z| Z ’J()j (ijv(Tj)vv/(Tj)) + Jlj (Tj,’U(Tj),’U/(Tj))(x _ Tj)|
=

b
+ / |G, 5)|[h(s, u(s), u'(s), v(s),v'(s))] ds)

b
< |Ag| + |By — Ag| + 2 Z (5 +¢1;(b—a)] + /Mg(s)wp(s) ds < +o0,

7 <t a

and, by (6),
[ (Ta(u,v)) (2|
By — Ay
< supb]<22+ Z ’Jlj 75, 0(75), v (TJ))|

—a
T <T

m

%a Z |Joj (15, v(7), V' (13)) + Juj (5, 0(75), 0" () (= — 75)|
+ % Z |1 (75, 0(75),' (7))

b
= [152e
b—a or s

< | Ba — Ay

I &, o, Gy
b—a +b—a;‘p°j+3;%j /7558

|h(s,u(s),u'(s),v(s),v'(s))| ds)

Pp(s)ds < +o0.

So, T'B is uniformly bounded on X.

Step 3. T is equicontinuous on each interval |xy, zk11]x]7;, 7;11], that is, Ty B
is equicontinuous on each interval |z, xp4+1] for & = 0,1,...,n with 2y = a and
Zp41 = b, and T>B is equicontinuous on each interval |7;, 7;41] for j = 0,1,...,m
with 79 = a and 7,41 = b.

Consider J Clxg, xg+1] and t1, o € J such that ¢; < ¢o.

https://www.mii.vu.lt/NA
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So, by the continuity of G1,
|71 (1, 0) (11) = T (w, 0) (12)]
= |Bi(tr —10) + w; Lok (e, u(we), v/ (z1)
+ L (g, ulp), u' (2n)) (01 — k)| = (1 = 22) kznzlflk(%u(xk)vu/(zk))
- 3 o sl ) + o s ), ) 2 — 1)
"
+ [ [6102:8) = Galia, )] (5o s) 0 51, 006), () s
=0 ' as u1 — Lo,
(T (w0) ()" = (T1(u,0)(22))|
— mg L (g, u(ay), o (z1)) 712 Ly (g, w(g), o ()
- / £ (5. u(s), (), 0(s), 0/ (5)) ds
— oLl as L1 — (o,
[T, 0)(12) — T, 0) 12)|
= 1B )b 3 gl ()
+ Jij (TJ,’U(TJ‘),’U (TJ)J)MEZI TJ)]
+L2_;1§;J0j(rj,v(fj), b_;iju (73, 0(r3), 0 (7)) (12 — 7;)
2 [J]oj- (73, 00730, 0/ (7)) + 1 (75, 0(73), (7)) (12 = 75)]
+ L;f ; Zm;Jlj(ijv(Tg)w (1)) (2 — 75)
)
+ [ [6a0:5) = Galua. )] (s.u(s) ' (5).v(5).(5) d

— 0 as L1 — L2,

Nonlinear Anal. Model. Control, 23(1):103-119
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and
|(T2(u,v)(L1))l — (TQ(U,’U)(LQ))/’
Z Jlj 75, (75), Z T], (15), (Tj))(Ll — l9)
T <t1 j=1
L1 - L2
Z‘]lj 75, 0(75), Z Jlj 75, 0(75),0'( J))
T <t2
1 8G
ty . 8—;(1“7 s)h(s,u(s),u'(s),v(s),v'(s)) ds
L1
— 0 as L1 — Lo,
and 0G5 /Ox given by (6).
Step 4. T'B is equiconvergent, that is, 77 B is equiconvergent at z = xk for k =
0,1,...,n,and T B is equiconvergent at 7 = 7']-+ forr=1,...,m.

[T (u,v) () = Ti (u,0) (2|

=|Bi(z—xf) + Z [Tok (ks u(zr), v’ (zx)) + T (2, u(@g), v (@) (2 — z4)]

—(z—a) th (@, uler), u'(zx))
k=1
= > ok (wr ulwr), ' (wx) + ik (s wlan), o (zx)) (27 — )]

o
—|—/ [G1(z,8) — Gr(z;f, 8)] f(s,u(s), u/(s),v(s),v/(s)) ds

— 0 uniformly as z — x|,

and
|(Ta(w,0)(@))" = (T 0) ()|
Z L (2, w(ag), ' (zr)) — Z I (2, u(wg), W' ()
rEp<T :vk<:vk+
~ [ #su(). 0 (5),0(5),0/(9) ds
fl
— 0 uniformly as x — xZ

So, T1 B is equiconvergent at © = x+ for k = 0,1,...,n.
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Similarly,

| Ta(u, 0)(7) = To(u,0) (7 )|

- M(T_Tf)

b—a J
+ 3 [Jog (73 0(). (1) + (7 0(73), 0/ (7)) (7 = 75)]
7.+_7_ m r—a m
+ 27 ZJOJ(TJ,’U(TJ),’U(TJ)) 3T ZJlj(Tj,v(Tj),v’(Tj))(T—Tj)
_ Z [Joj (5, v(75), V' (75)) + Juj (15, 0(75), V(7)) (Tj 75)]
:*Tia m
+ 2_@ ZJlj(Tj,’U(TJ),’U (Tj)) (Tj+ frj)

b
+/ (Ga(r,5) = Ga (757, 8) | h (s, u(s),u/(s), v(s),v'(s)) ds

— 0 uniformly as 7 — 7;",

and

(T2 (u, v)(7))" = (Ta(u,v) (r}))'|
> Ti(m (), () - ﬁ Z Jij (15, 0(75), 0" (7)) (1 = 7°)

Ti<T

)™
+szlj(7j’v(Tj)’vl(Tj))_ Z Jlj(Tj,U(Tj),U/(Tj))

. +
T <Tj

— 0 uniformly as 7 — 7;".

Then 75 B is equiconvergent at 7 = T;r forr=1,...,m.
Like this, 77 and T, maps bounded sets into relatively compact sets, that is, 77 :
X — Xjand Tb : X — Xy are compacts. Therefore, T : X — X is compact (for

details, see [18, Lemma 2.4]).

Nonlinear Anal. Model. Control, 23(1):103-119
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Step 5. T': X — X has a fixed point.

In order to apply Schauder’s fixed point theorem for operator T'(u, v), we need to
prove that T'D C D for some closed, bounded, and convex D C X.

Consider

D= {(u,v) € X: [|(u,0) | < p2}
with pa > 0 such that
n b

p2 1= max{pl, |A1] + |B1|(b —a) + Z [eor +2(b — a)p1k] + /M1(5)¢p(8) ds,

k=1 g

n b
\Bl|+22@1k+/¢p(s)ds

A +1Bs — As +2 3 [t + 9, (b — a)] /M2 Sy, (s) ds

T <T
|Bs—As| 1 []8Gs
- +fz%+32% ,a/ 2 (1, 5) | 5) ds

with p; given by (7) according to Step 2, and M, Ms are given by (8).
Following similar arguments as in Step 2, we obtain

||T(u,v)||X = |[(T1(u, ), To(u,v))

= max{ |3 ),

HX

}

:mwNﬂWWWWUH%vHLWMMWWWﬂuv)M

< p2
andTD C D.
By Schauder’s fixed point theorem, the operator 1" given by (5) has a fixed point
(ug, vp). Thus, problem (1)—(2) has at least one pair solution (u,v) € X. O
4 Example

Consider the coupled system of the second-order differential equations with the mixed
boundary conditions
2

u'(x) = sgn(m - ;)u(x)v(x) + (v (z)) "' (z), =z €]0,1],

" / 2 / 3 _wu(x
v (x)=—(z+ 1)(1} (x)) u(z) + (u (a:)) e (@), )

https://www.mii.vu.lt/NA
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and the generalized impulsive conditions
2
Au (.%'k) = ( (l‘k)) (1 — xk) + u’(xk),
A/ (z) kau (xp)u'(zr), k=1,2,3,

Av(rj) = Tj|U ;) !v (1),
A = Y- R wm) =12

j=1

where 0 < 21 <o <z23<1,0< 7 <70 <1.
This problem is a particular case of system (1)—(2) with

1
f(x7a7/677’6) = Sgn(x - 2)0554_7257
h(fﬂ,()é,ﬂ,’)/,é) = 7(1' + 1)52C¥ +73€757

Al:l7 B = A2:1, 32:27

1
2’
Iok(Ik,Oé,,B):OZZ(l—Ik)+’Y, Ilk Tg, ’ Zxka67

2
Joj(15:7,0) = 71816, Ju(m5,7,8) = > ( 1—TJ
Jj=1

In fact, f, h are L'-Carathéodory functions with p > 0 such that

max{|al, 8], 7], 18]} < p,

we have
|f(z, 0, 8,7,6)| < p° —<z5p()
|h(z, 0, B,7,6)| < (z+ 1)p® + p* := 1), ().
Moreover,
Iog(zp, 0, 8) = ®(1—xp) +7,  Lig(zg, 0,8 Zl’kaﬂ,

2
J0j<7—j7’7a )_T]|5|5 and Jlj Tj777 Z l_T]

Jj=1

are continuous functions in [0, 1] x R2.

Therefore, by Theorem 2, problem (9)—(10) has at least one solution (u,v) € X.

Nonlinear Anal. Model. Control, 23(1):103-119
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116 F. Minhds, R. de Sousa

S The transverse vibration system of elastically coupled double-string

Consider the transverse vibration system of elastically coupled double-string with damp-
ing. The strings have the same length L, are attached by a viscoelastic element, and
stretched at a constant tension according to Fig. 1.
By [26], the system of elastically coupled double-string stationary model is given by
the second-order nonlinear system of differential equations
S (x) — K (u(z) — v(z)) = —l(x), an
Sov"(x) — K (v(z) — u(z)) = —l2(),
where z € [0, L],

e u(z), v(x) are the transverse deflections of strings w and v, respectively;
e [1(x) and l3(z) are the exciting distributed load;

e K is the modulus of Kelvin—Voigt viscoelastic;

e 51, Ss are the string tensions of w and v, respectively.

Adding to system (11) the boundary conditions
u(0) =0, w'(L)=Bi, v(0)=0, »(L)=0, (12)

we remark that strings « and v have different behaviors at the end points. Moreover, we
consider impulsive conditions that may depend on the string deflections and on the slope
of the corresponding deflections:

vu(ay) + o’ (vx) + o,
su(zy) + v’ (z) + 2,
sv(7;) + 16V’ (15) + 75,
7u(75) + 180’ (1) + 75

IOk (xk, u(:ck), u'(zk
i (xk,u(xk),u’(xk
Joj (15, v(7),v

Jlj (Tj,’U(Tj),’U/

i
3 3

13)

33

Here B1,n; e R,t=1,...,8, k=1,...,n,and j = 1,...,m. In this way, we have
a particular case of (1)-(2).

Figure 1. Elastically coupled double-string.
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In system (11)—(13), it follows that

f(JC,OZ,,B,’Y,(S) = Sil[K(O‘_’Y) _ll(x)]a

(o, 0,8.7.6) = 5[+ K (3~ ) ~ a(a)],

and
Tor(zk, @, 7) = ma + 027, L (zg, o, y) = n3a+ a7y + o,
Joj (75, 8,9) = ns8 + ned, J1j(75,8,6) =078 + 180 + 75

withk=1,...,nandj=1,...,m.
Notice that f, h are L!-Carathéodory functions in [0, L] x R* with p > 0 and

max{al, 18], 111,31} < p,
£ (2,0, 8.7,8)| < ﬁ[ww ()] = 6, (2).

1
|h($,0&,ﬂ,’y,5)| g @[2|K|p+ |l2($)|] = d)p(z)'
As the impulsive conditions, I;;, fori = 1,2,k =1,...,nand J;; forj =1,...,m

are continuous functions on [0, L] x R?. Then the assumptions of Theorem 2 are satisfied,
and therefore, problem (11)—(13) has at least one solution (u,v) € X.

Acknowledgment. The authors thank the referees for suggestions and comments to
further improve this work.
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