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Abstract. In this paper, we derive and formulate many fixed point results of cyclic form under
contractive conditions based on implicit relations in the setting of Ω-distance. Our results improve
and generalize many existing results in the literature. Also, we introduce an example to show the
validity of our main result.
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1 Introduction

Fixed point theory plays an important role to solve many problems in applied analysis.
For this reason, many researchers work in the area of fixed point theory. Some authors
extended the notion of metric space to many notions such as a partial metric space, a cone
metric space and a D-metric space. After that, they extended and improved many fixed
point theorems in such spaces. Mustafa and Sims [22] introduced the notion of G-metric
space as a generalization of the standard metric space, and they studied the topological
structure of the G-metric space. Moreover, Mustafa and Sims [22] gave the definitions of
aG-convergent sequence, aG-Cauchy sequence and aG-complete space. Then after, they
utilized the notion of theG-metric space to establish and prove many fixed point theorems
in this space. Saadati et al. [27] initiated the notion of Ω-distance as a generalization of
the notion ofG-metric spaces. For some works in fixed and common fixed point theorems
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in the setting of G-metric space, see [8–11, 21, 23, 30, 35]. Also, for some fixed point
results based on distance mappings, see [1,6,7,15,28,29,31,33,34]. Recently, Ansari [4]
introduced the concept of a C-class function and studied some fixed point theorems. For
some works in a C-class function, we refer the reader to [5, 14, 16, 20]. In 2003, Kirk,
Srinivasan, and Veeramani [19] introduced the notion of a cyclic mapping and established
some fixed point theorems. Recently, many authors studied many fixed and common fixed
point theorems for mappings of cyclic form in different metric spaces. For more details,
we refer the reader to [2, 3, 12, 13, 17, 18, 24–26, 32, 36, 37]. In this paper, we utilize
the notions of Ω-distance and C-class function to formulate and prove many fixed point
theorems of cyclic form.

2 Preliminaries

We start this section by recalling the definition of a cyclic mapping.

Definition 1. Let A and B be two nonempty subsets of a space X . A mapping T :
A ∪B → A ∪B is called cyclic if T (A) ⊆ B and T (B) ⊆ A.

The notion of a G-metric space is given as follows:

Definition 2. (See [22].) Let X be a nonempty set, and let G : X × X × X → R+ be
a function satisfying the following conditions:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y,
(G3) G(x, y, y) 6 G(x, y, z) for all x, y, z ∈ X with y 6= z,
(G4) G(x, y, z) = G(p{x, y, z}) for each permutation of x,y,z (the symmetry), and
(G5) G(x, y, z) 6 G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then G is called a generalized metric space or, more specifically, G-metric on X , and the
pair (X,G) is called a G-metric space.

The notion of a convergent sequence in the setting of a G-metric space is given as
follows:

Definition 3. (See [22].) Let (X,G) be a G-metric space, and (xn) be a sequence in X .
We say that (xn) is G-convergent to x if for any ε > 0, there exists k ∈ N such that
G(x, xn, xm) < ε for all n,m > k.

The notion of a G-Cauchy sequence in the setting of a G-metric space is defined as
follows:

Definition 4. (See [22].) Let (X,G) be a G-metric space, and (xn) be a sequence in X .
We say that (xn) is a G-Cauchy sequence if for every ε > 0, there exists k ∈ N such that
G(xn, xm, xl) < ε for all n,m, l > k.

Definition 5. (See [23].) A G-metric space (X,G) is said to be G-complete if every
G-Cauchy sequence in (X,G) is G-convergent in (X,G).
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The definition of Ω-distance is given as follows:

Definition 6. (See [27].) Let (X,G) be a G-metric space. Then a function Ω : X ×X ×
X → [0,∞) is called an Ω-distance on X if the following conditions are satisfied:

(i) Ω(x, y, z) 6 Ω(x, a, a) +Ω(a, y, z) for all x, y, z, a ∈ X ,
(ii) for any x, y ∈ X , Ω(x, y, ·), Ω(x, ·, y) : X → X are lower semicontinuous, and

(iii) for each ε > 0, there exists a δ > 0 such that Ω(x, a, a) 6 δ and Ω(a, y, z) 6 δ
imply G(x, y, z) 6 ε.

Definition 7. (See [27].) Let (X,G) be a G-metric space and Ω be an Ω-distance on X .
Then we say that X is Ω-bounded if there exists M > 0 such that Ω(x, y, z) 6M for all
x, y, x ∈ X .

Moreover, Saadati et al. [27] proved the following important lemma in the setting of
Ω-distance.

Lemma 1. (See [27].) Let X be a G-metric space, and Ω be an Ω-distance on X . Let
(xn), (yn) be sequences in X , and (αn), (βn) be sequences in [0,∞) converging to zero,
and let x, y, z, a ∈ X . Then we have the following:

(i) If Ω(y, xn, xn) 6 αn and Ω(xn, y, z) 6 βn for all n ∈ N, then G(y, y, z) < ε
and hence y = z.

(ii) If Ω(yn, xn, xn) 6 αn and Ω(xn, ym, z) 6 βn for any m > n ∈ N, then
G(yn, ym, z)→ 0 and hence yn → z.

(iii) If Ω(xn, xm, xl) 6 αn for any m,n, l ∈ N with n 6 m 6 l, then (xn) is
a G-Cauchy sequence.

(iv) If Ω(xn, a, a) 6 αn for any n ∈ N, then (xn) is a G-Cauchy sequence.

The concept of C-class function is given as follows:

Definition 8. (See [4].) A continuous function F : [0,∞)2 → R is called a C-class
function if it satisfies following axioms:

(i) F (s, t) 6 s, and
(ii) F (s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0,∞).

Note that for some F , we have that F (0, 0) = 0.
We denote the set of C-class functions by C.

Example 1. (See [4].) For s, t ∈ [0,+∞), define the functions F : [0,∞)2 → R by

(a) F (s, t) = s− t.
(b) F (s, t) = ms for some m ∈ (0, 1).
(c) F (s, t) = s/(1 + t)r for some r ∈ (0,∞).
(d) F (s, t) = log(t+ as)/(1 + t) for some a > 1.
(e) F (s, t) = ln(1 + as)/2 for e > a > 1. Indeed, f(s, t) = s implies that s = 0.
(f) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).
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(g) F (s, t) = s logt+a a for a > 1.
(h) F (s, t) = s− (1 + s)/(2 + s) · t/(1 + t).
(i) F (s, t) = sβ(s), where β : [0,∞)→ [0, 1)is a continuous function.
(j) F (s, t) = s− t/(k + t).
(k) F (s, t) = s − ϕ(s), where ϕ : [0,∞) → [0,∞) is a continuous function such

that ϕ(t) = 0 if and only if t = 0.
(l) F (s, t) = sh(s, t), where h : [0,∞)× [0,∞)→ [0,∞) is a continuous function

with h(s, t) < 1 for all s, t > 0.
(m) F (s, t) = s− (2 + t)/(1 + t) · t.
(n) F (s, t) = n

√
ln(1 + sn).

(o) F (s, t) = φ(s), where φ : [0,∞) → [0,∞) is an upper semicontinuous function
such that φ(0) = 0 and φ(t) < t for t > 0.

(p) F (s, t) = s/(1 + s)r, r ∈ (0,∞).
(q) F (s, t) = s/Γ(1/2)

∫∞
0

e−x/(
√
x+ t) dx, where Γ is the Euler gamma function.

Then the above functions are elements of C.

Definition 9. (See [4].) Let ϕ : [0,∞) → [0,∞) be a continuous, nondecreasing func-
tion. Then ϕ is called an ultra altering distance function if ϕ(t) > 0 for all t > 0.

Remark 1. We denote the set of ultra altering distance functions by Φu.

3 Main result

In this section, we introduce some common fixed point results for mappings of cyclic
form by utilizing the notion of Ω-distance in the sense of Saddati et al. [27].

Theorem 1. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let A and B be two nonempty closed subsets of X such that
A ∩ B 6= ∅ and X = A ∪ B. Let f, g : A ∪ B → A ∪ B be two mappings such that
f(A) ⊆ B and g(B) ⊆ A. Suppose that there exist F ∈ C and φ ∈ Φu such that the
following conditions hold:

Ω(fx, gy, gz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x ∈ A, ∀y, z ∈ B, (1)

Ω(gx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀y, z ∈ A, ∀x ∈ B, (2)

and

Ω(fx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x, y, z ∈ A. (3)

Also, assume that if fu 6= u or gu 6= u, then

inf
{
Ω(fx, gfx, u): x ∈ X

}
> 0.

If f or g is continuous, then f and g have a unique common fixed point in A ∩B.
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Proof. Let x0 ∈ A. Since f(A) ⊆ B, then fx0 = x1 ∈ B. Also, since g(B) ⊆ A,
then gx1 = x2 ∈ B. Continuing this process, we obtain a sequence (xn) in X such that
fx2n = x2n+1 with x2n ∈ A and gx2n+1 = x2n+2 with x2n+1 ∈ B for all n ∈ N.

First, we want to show that

lim
n→∞

Ω(xn, xn+1, xn+1) = lim
n→∞

Ω(xn+1, xn, xn) = 0.

Let n ∈ N.
If n is even, then n = 2t, t ∈ N. By (2) we get

Ω(xn, xn+1, xn+1) = Ω(x2t, x2t+1, x2t+1)

= Ω(gx2t−1, fx2t, fx2t)

6 F
(
Ω(x2t−1, x2t, x2t), φ

(
Ω(x2t−1, x2t, x2t)

))
= F

(
Ω(xn−1, xn, xn), φ

(
Ω(xn−1, xn, xn)

))
. (4)

If n is odd, then n = 2t+ 1, t ∈ N. By (1) we get

Ω(xn, xn+1, xn+1) = Ω(x2t+1, x2t+2, x2t+2)

= Ω(fx2t, gx2t+1, gx2t+1)

6 F
(
Ω(x2t, x2t+1, x2t+1), φ

(
Ω(x2t, x2t+1, x2t+1)

))
= F

(
Ω(xn−1, xn, xn), φ

(
Ω(xn−1, xn, xn)

))
. (5)

From (4) and (5) we have

Ω(xn, xn+1, xn+1) 6 F (Ω(xn−1, xn, xn), φ
(
Ω(xn−1, xn, xn)

))
6 Ω(xn−1, xn, xn) ∀n ∈ N. (6)

This shows that {Ω(xn, xn+1, xn+1
)} is non-increasing. Thus, there exists r > 0 such

that
lim

n→∞
Ω(xn, xn+1, xn+1

) = r.

If r > 0, then φ(r) > 0. Letting n→∞ in (6), we obtain

F
(
r, φ(r)

)
= r.

So, r = 0 or φ(r) = 0. Since φ(r) > 0, we have r = 0, which is a contradiction. Hence,
r = 0 and so

lim
n→∞

Ω(xn, xn+1, xn+1
) = 0. (7)

In a similar, way we can show that

lim
n→∞

Ω(xn+1, xn, xn) = 0. (8)
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We claim that {x2n} is a G-Cauchy sequence. Suppose that {x2n} is not a G-Cauchy
sequence. Then there exists ε > 0 and subsequences {x2nk

} and {x2mk
} such that nk is

the smallest integer with 2nk > 2mk > 2k and

Ω(x2nk
, x2mk

, x2mk
) > ε and Ω(x2nk−2, x2mk

, x2mk
) 6 ε.

Then

ε 6 Ω(x2nk
, x2mk

, x2mk
)

6 Ω(x2nk
, x2nk−1, x2nk−1) +Ω(x2nk−1

, x2nk−2, x2nk−2)

+Ω(x2nk−2, x2mk
, x2mk

)

6 Ω(x2nk
, x2nk−1, x2nk−1) +Ω(x2nk−1

, x2nk−2, x2nk−2) + ε.

Letting k →∞ in above inequalities and using (8), we get

lim
k→∞

Ω(x2nk
, x2mk

, x2mk
) = ε. (9)

Also,

ε 6 Ω(x2nk
, x2mk

, x2mk
)

6 Ω(x2nk
, x2nk+1, x2nk+1) +Ω(x2nk+1

, x2mk+1, x2mk+1)

+Ω(x2mk+1, x2mk
, x2mk

).

By (3) we have

Ω(x2nk+1, x2mk+1, x2mk+1)

= Ω(fx2nk
, fx2mk

, fx2mk
)

6 F
(
Ω(x2nk

, x2mk
, x2mk

), φ
(
Ω(x2nk−1, x2mk

, x2lk)
))

6 Ω(x2nk
, x2mk

, x2lk).

So,

ε 6 Ω(x2nk
, x2nk+1, x2nk+1) +Ω(x2nk+1

, x2mk+1, x2mk+1)

+Ω(x2mk+1, x2mk
, x2mk

)

6 Ω(x2nk
, x2nk+1, x2nk+1) +Ω(x2nk

, x2mk
, x2mk

)

+Ω(x2mk+1, x2mk
, x2mk

).

As k→∞ in the above inequalities and using (7), (8) and (9), we get

lim
k→∞

Ω(x2nk+1
, x2mk+1, x2mk+1) = ε.

Again, by (3) we have

Ω(x2nk+1
, x2mk+1, x2mk+1)

= Ω(fx2nk
, fx2mk

, fx2mk
)

6 F
(
Ω(x2nk

, x2mk
, x2mk

), φ
(
Ω(x2nk

, x2mk
, x2mk

)
))
.
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As k →∞ in the above inequality, we have

ε 6 F
(
ε, φ(ε)

)
.

So, ε = 0 or φ(ε) = 0. Since φ(ε) > 0, we get ε = 0, which is a contradiction.
Hence, (x2n) is aG-Cauchy sequence. So, there exists u∈X such that limn→∞xn=u.

Since (xn) is G-convergent to u, then every subsequence of (xn) is also G-convergent
to u. So that the subsequences (x2n+1) = (fx2n) and (x2n+2) = (gx2n+1) are G-con-
vergent to u.

With out loss of generality, we assume that f is continuous. So,

lim
n→∞

fx2n = fu.

Since
lim
n→∞

x2n+1 = u,

then by uniqueness of the limit we have fu = u.
By the lower semicontinuity of Ω we get

Ω(xn, xm, u) 6 lim inf
p→∞

Ω(xn, xm, xp) 6 ε

for all m > n.
Now, suppose that gu 6= u, then we get

0 < inf
{
Ω(fx, gfx, u): x ∈ X

}
6 inf

{
Ω(xn, xn+1, u): n is odd

}
6 ε

for every ε > 0, which is a contradiction. Therefore, fu = gu = u.
Since (x2n) ⊆ A and A is closed, we have u ∈ A. Also, since (x2n+1) ⊆ B and B is

closed, we have u ∈ B. Hence, u is a common fixed point of f and g in A ∩B.
To prove the uniqueness of u, we assume that there exists v ∈ X such that fv =

gv = v. Then by (1) we have

Ω(u, v, v) = Ω(fu, gv, gv) 6 F
(
Ω(u, v, v), φ

(
Ω(u, v, v)

))
6 Ω(u, v, v).

So, Ω(u, v, v) = 0 or φ(Ω(u, v, v)) = 0. Thus, Ω(u, v, v) = 0. Also,

Ω(v, u, v) = Ω(fv, gu, gv) 6 F
(
Ω(v, u, v), φ

(
Ω(v, u, v)

))
6 Ω(v, u, v).

So, Ω(u, v, v) = 0 or φ(Ω(u, v, v)) = 0. Thus, Ω(v, u, v) = 0. According to the
definition of the Ω-distance, we conclude that G(u, u, v) = 0 and hence u = v. Thus,
f and g have a unique common fixed point in A ∩B.

By choosing A = B = X in Theorem 1, we get the following result:

Nonlinear Anal. Model. Control, 22(6):739–752
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Corollary 1. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let f, g : X → X be two mappings. Suppose that there exist
F ∈ C and φ ∈ Φu such that the following condition holds for all x, y, z ∈ X:

max
{
Ω(fx, gy, gz), Ω(gx, fy, fz), Ω(fx, fy, fz)

}
6 F

(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
.

Moreover, assume that if fu 6= u or gu 6= u, then

inf
{
Ω(fx, gfx, u): x ∈ X

}
> 0.

If f or g is continuous, then f and g have a unique common fixed point.

Corollary 2. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let A and B be two nonempty closed subsets of X such that
A ∩ B 6= ∅ and X = A ∪ B. Let f, g : A ∪ B → A ∪ B be two mappings such that
f(A) ⊆ B and g(B) ⊆ A. Suppose that there exists α ∈ [0, 1) such that the following
conditions hold:

Ω(fx, gy, gz) 6 αΩ(x, y, z) ∀x ∈ A, ∀y, z ∈ B,
Ω(gx, fy, fz) 6 αΩ(x, y, z) ∀y, z ∈ A, ∀x ∈ B,

and

Ω(fx, fy, fz) 6 αΩ(x, y, z) ∀x, y, z ∈ A.

Also, assume that if fu 6= u or gu 6= u, then

inf
{
Ω(fx, gfx, u): x ∈ X

}
> 0.

If f or g is continuous, then f and g have a unique common fixed point in A ∩B.

Proof. Define F : [0,+∞) × [0,+∞) → R by F (s, t) = αs. Note that F ∈ C. The
result follows from Theorem 1.

By choosing A = B = X in Corollary 2 we get the following result:

Corollary 3. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let f, g : X → X be two mappings. Assume that there exists
α ∈ [0, 1) such that the following condition holds for all x, y, z ∈ X:

max
{
Ω(fx, gy, gz), Ω(gx, fy, fz), Ω(fx, fy, fz)

}
6 αΩ(x, y, z).

Moreover, assume that if fu 6= u or gu 6= u, then

inf
{
Ω(fx, gfx, u): x ∈ X

}
> 0.

If f or g is continuous, then f and g have a unique common fixed point in X .
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It is worth mentioning that the condition: If fu 6= u or gu 6= u, then

inf
{
Ω(fx, gfx, u): x ∈ X

}
> 0

in Theorem 1 can be dropped if g is replaced by f . So, we have the following result:

Theorem 2. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let A and B be two nonempty closed subsets of X such that
A ∩B 6= ∅ and X = A ∪B. Let f : A ∪B → A ∪B be a cyclic mapping. Suppose that
there exist F ∈ C and φ ∈ Φu such that the following conditions hold:

Ω(fx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x ∈ A, ∀y, z ∈ B,

Ω(fx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀y, z ∈ A, ∀x ∈ B,

and

Ω(fx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x, y, z ∈ A.

If f is continuous, then f has a unique fixed point in A ∩B.

Proof. Following the proof of Theorem 1 word by word, we can deduce the proof of this
theorem.

By choosing A = B = X in Theorem 2 we get the following result:

Corollary 4. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let f : X → X be a mapping. Suppose that there exist F ∈ C
and φ ∈ Φu such that the following condition holds for all x, y, z ∈ X:

Ω(fx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
.

If f is continuous, then f has a unique fixed point.

Corollary 5. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let A and B be two nonempty closed subsets of X such that
A∩B 6= ∅ and X = A∪B. Let f : A∪B → A∪B be a cyclic mappings. Assume that
there exists α ∈ [0, 1) such that the following conditions hold:

Ω(fx, fy, fz) 6 αΩ(x, y, z) ∀x ∈ A, ∀y, z ∈ B,
Ω(fx, fy, fz) 6 αΩ(x, y, z) ∀y, z ∈ A, ∀x ∈ B,

and

Ω(fx, fy, fz) 6 αΩ(x, y, z) ∀x, y, z ∈ A.

If f is continuous, then f has a unique fixed point in A ∩B.

Proof. Define F : [0,+∞) × [0,+∞) → R by F (s, t) = αs. Note that F ∈ C. So, the
result follows from Corollary 4.

Nonlinear Anal. Model. Control, 22(6):739–752
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By choosing A = B = X in Corollary 5 we have the following result:

Corollary 6. Let (X,G) be a complete G-metric space, and Ω be an Ω-distance on X
such that X is Ω-bounded. Let f : X → X be a mapping. Suppose that there exists
α ∈ [0, 1) such that the following condition holds for all x, y, z ∈ X:

Ω(fx, fy, fz) 6 αΩ(x, y, z).

If f is continuous, then f has a unique fixed point in X .

We introduce the following example to support our main result:

Example 2. LetX = [−1, 1]. DefineG : X×X×X → [0,∞) byG(x, y, z) = |x−y|+
|y− z|+ |x− z|, and define Ω : X×X×X → [0,∞) by Ω(x, y, z) = |x−y|+ |x− z|.
Let A = [−1, 0], B = [0, 1], and define f, g : A ∪ B → A ∪ B by fx = −x/10 and
gx = −x/5. Also, define φ : [0,∞) → [0,∞) and F (s, t) : [0,∞)2 → R by φ(x) = 4
and F (s, t) = s/(1 + t). Then

(a) (X,G) is a complete G-metric space.
(b) Ω is an Ω-distance on X , and X is Ω-bounded.
(c) A and B are closed subsets of X with respect to the topology induced by G.
(d) f and g are continuous.
(e) f(A) ⊆ B and g(B) ⊆ A.
(f) φ ∈ Φu and F ∈ C.
(g) f and g satisfy the following inequalities:

Ω(fx, gy, gz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x ∈ A, ∀y, z ∈ B,

Ω(gx, fy, fz) 6 F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀y, z ∈ A, ∀x ∈ B,

and
Ω(fx, fy, fz) 6 F

(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
∀x, y, z ∈ A.

(h) If fu 6= u or gu 6= u, then inf{Ω(fx, gfx, u): x ∈ X} > 0.

Proof. The proof of (a)–(f) is clear. To prove (g), let x ∈ A and y, z ∈ B. Then

Ω(fx, gy, gz) = Ω

(
− x

10
,−y

5
,−z

5

)
=

∣∣∣∣− x

10
− y

5

∣∣∣∣+

∣∣∣∣− x

10
− z

5

∣∣∣∣
=

∣∣∣∣− x

10
+
y

5

∣∣∣∣+

∣∣∣∣− x

10
+
z

5

∣∣∣∣ 6 ∣∣∣∣−x5 +
y

5

∣∣∣∣+

∣∣∣∣−x5 +
z

5

∣∣∣∣
6
|x− y|+ |x− z|

5
=
Ω(x, y, z)

1 + 4
=

Ω(x, y, z)

1 + φ(Ω(x, y, z))

= F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
.
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Again, let x ∈ B and y, z ∈ A. Then

Ω(gx, fy, fz) = Ω

(
−x

5
,− y

10
,− z

10

)
=

∣∣∣∣−x5 − y

10

∣∣∣∣+

∣∣∣∣−x5 − z

10

∣∣∣∣
6

∣∣∣∣−x5 +
y

5

∣∣∣∣+

∣∣∣∣−x5 +
z

5

∣∣∣∣ 6 |x− y|5
+
|x− z|

5

6
|x− y|+ |x− z|

5
=

Ω(x, y, z)

1 + φ(Ω(x, y, z))

= F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
.

Finally, let x, y, z ∈ A. Then

Ω(fx, fy, fz) = Ω

(
− x

10
,− y

10
,− z

10

)
=

∣∣∣∣− x

10
− y

10

∣∣∣∣+

∣∣∣∣− x

10
− z

10

∣∣∣∣
=
|x− y|

10
+
|x− z|

10
=
|x− y|+ |x− z|

10

6
|x− y|+ |x− z|

5
=

Ω(x, y, z)

1 + φ(Ω(x, y, z))

= F
(
Ω(x, y, z), φ

(
Ω(x, y, z)

))
.

To prove (h), assume that fu 6= u or gu 6= u. Then u 6= 0. Therefore,

inf
{
Ω(fx, gfx, u): x ∈ X

}
= inf

{
Ω

(
− x

10
,
x

50
, u

)
: x ∈ X

}
= inf

{∣∣∣∣− x

10
− x

50

∣∣∣∣+

∣∣∣∣− x

10
− u
∣∣∣∣: x ∈ X}

= inf

{
6|x|
50

+

∣∣∣∣ x10
+ u

∣∣∣∣: x ∈ X} = |u| > 0.

The above example satisfies all the hypotheses of Theorem 1. Hence, f and g have
a unique common fixed point inA∩B. Here 0 is the unique common fixed point of f and
g in A ∩B.

4 Conclusion

In their research [27], Saadati et al. introduced the notion ofΩ-distance as a generalization
of a G-metric space in the sense of Mustafa and Sims [22] and studied many interesting
fixed and common fixed point theorems. While, Ansari [4] introduced the notion of the
C-class function and studied some fixed point theorems. In this paper, we utilized the
notion of C-class function to formulate and prove a common fixed point theorem for two
mappings of cyclic form under some contractive conditions. Also, we utilized our main

Nonlinear Anal. Model. Control, 22(6):739–752
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theorem to derive a fixed point theorem for a cyclic mapping under some contractive
conditions. Moreover, we derived many fixed and common fixed point results from our
main theorems.

Acknowledgment. We would like to express our sincere thanks for the reviewers for
their valuable comments on this paper that made this paper complete and significant.
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