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Abstract. We consider Riemann–Liouville fractional differential equations with fractional-order
derivative in the impulsive conditions. We study the existence of the mild solution by applying
the Laplace transform method and (a, k)-regularized resolvent operator. We use the contraction
mapping principle and fixed point theorem for condensing map to prove our existence results.
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1 Introduction

In recent years, fractional differential equations have been considered to be valuable
tools in the modeling of many phenomena in various fields of science and engineering.
Since the definition of fractional derivative exhibits the past history of the functions,
fractional-order derivative has been found as an excellent mathematical tool for char-
acterizing memory and hereditary properties of complex systems such as viscoelastic
deformation, anomalous diffusion, signal processing, stock market, and so on. This is the
main advantage of using fractional-order derivatives to real world problems in compari-
son with integer-order derivatives. For more detailed work, see [5, 7, 17, 21, 23] and the
references therein.
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Impulsive differential equations have more consideration because of its extensive
applications in physics, biology, medical, engineering, and technology [1, 2, 11]. Im-
pulsive differential equations are suitable model for describing processes, which change
their state abruptly at a certain moment. In most of the study on fractional impulsive
differential equations, the Caputo derivative is used to define the system, and integer-
order derivative is used in the impulsive conditions [4, 6, 18, 20, 22]. In [9], Podulbny
shown that it is possible to attribute physical meaning to initial conditions defined in the
form of Riemann–Liouville fractional derivatives in the field of viscoelasticity. In [10],
Kosmatov introduced the fractional-order derivative in the impulsive conditions to study
the existence of solutions of fractional impulsive differential equations using both Caputo
and the Riemann–Liouville derivatives.

In [4], Fec̆kan et al. cited some papers in which the mild solutions are defined inap-
propriatly. But in [19], Wang et al. refuted Fec̆kan’s argument and shown that the example
framed by Fec̆kan in [4] was wrong. But we observed that Fec̆kan’s arguments are correct
if the lower limit is taken as zero in equation (1.14) of [19]. The above dispute will not be
arised if the lower bound is taken as same in the statement of the problem, definition of
fractional derivative and the definition of solution. These comments are also justified by
Fec̆kan et al. in [3] and Liu et al. in [12].

In [8], Hernández et al. have shown that the definition of mild solutions is not appro-
priate in some recent papers. To make it more appropriate, he introduced the resolvent
operator for integral equations to define the mild solutions in [8].

But in [14], Lizama et al. studied that not all the fractional equation can be formulated
as an integral equation, so that the concept proposed in [8] fails in the general case. He
also derived a suitable variation of constant formula for a large class of fractional differ-
ential equations using Laplace transform and with the help of (a, k)-regularized resolvent
families. The advantage of this approach is that the domain of A is not necessarily dense
in Z [13].

In the present work, in order to overcome the above disputes, we study the existence
of mild solution for Riemann–Liouville fractional differential equations with fractional-
order impulsive conditions of the form

Dα
0+u(t) = Au(t) + f

(
t, u(t)

)
, t ∈ I := (0, 1] \ {t1, . . . , tm}, (1)

Dβ
0+u

(
t+k
)
−Dβ

0+u
(
t−k
)

= Jk

(
u(tk)

)
, k = 1, . . . ,m, (2)

I1−α
0+ u(0) = u0, (3)

where u0 ∈ Z , 0 < β < α < 1, the operator A generates an (tα−1/Γ(α), 1)-regularized
resolvent family {Sα(t)}t>0 on a Banach space Z , 0 = t0 < t1 < · · · < tk < · · · <
tm < tm+1 = 1 are prefixed numbers. The functions f : I × R → R, Jk : R → R are
continuous, and f(tk±, x) exist for all x ∈ R, k = 1, . . . ,m.

Here we derive the mild solution of the above problem (1)–(3) by using the Laplace
transform method and (tα−1/Γ(α), 1)-regularized resolvent operator. The existence re-
sults of Riemann–Liouville fractional differential equations with fractional-order impul-
sive conditions is established by means of a fixed point theorem for condensing map, and
the uniqueness result is verified via contraction mapping principle.

https://www.mii.vu.lt/NA



Mild solutions of Riemann–Liouville fractional differential equations 755

2 Preliminaries

Let L(Z ) be the space of bounded linear operators from Banach space Z into Z with
norm ‖·‖L(Z ). The domain ofA is provided with the graph norm ‖·‖D(A) = ‖u‖+‖Au‖,
and denote by Br(u,Z ) the closed ball with center at u and distance r in Z . The space
C([0, 1]; Z ) symbolizes the space of continuous functions with norm ‖·‖C([0,1];Z ) =
supt∈[0,1] ‖u(t)‖Z .

We consider the space PC(Z ), which is formed by all the functions u : [0, 1] → R
such that u(·) is continuous at t 6= tj , u(t−j ) = u(tj) and u(t+j ) exists for all j =
1, 2, . . . , N . The space PC(Z ) is a Banach space with respect to the norm ‖u‖PC(Z ) =
supt∈[0,1] ‖u(t)‖.

Here we use the (a, k)-regularized resolvent family, which was initialized in [13] and
analyzed in some recent papers [14].

The operator {Sα(t)}t>0 is of type (M, ω) if there exist constantM > 1 and ω ∈ R
such that ‖Sα(t)‖ 6Meωt for all t > 0. Suppose if ω = 0, then ‖Sα(t)‖L(Z ) 6M,
t > 0.

In [13, Prop. 3.1], Lizama established that the Laplace transform of strongly contin-
uous family R̂α(λ) in L(Z ) exists for λ > ω. It follows that the Laplace transform of
(tα−1/Γ(α), 1)-regularized resolvent family {Sα(t)}t>0 is

Ŝα(λ) = λα−1
(
λα −A

)−1
,

see [14].
The Riemann–Liouville fractional integral of a function u ∈ Lp(0, 1), 1 6 p <∞, of

order α > 0 is

Iα0+u(t) =
1

Γ(α)

t∫
0

(t− s)α−1u(s) ds.

The fractional derivative of order α > 0 is defined in the Riemann–Liouville sense as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

t∫
0

(t− s)n−α−1u(s) ds, n = dαe.

In general, Riemann–Liouville derivative is a left inverse of the operator Iα0+ but
not a right inverse. That is, we have Dα

0+Iα0+u(t) = u(t) and Iα0+Dα
0+u(t) = u(t) −

−(I1−α
0+ u(0)/Γ(α))tα−1 for 0 < α < 1.
We also recollect the formula for the Laplace transform of Riemann–Liouville deriva-

tive given by

D̂α
0+u(λ) = λαû(λ)−

n−1∑
k=0

λkDα−k−1
0+ u(0),

and when 0 < α 6 1,

D̂α
0+u(λ) = λαû(λ)−Dα−1

0+ u(0).

Nonlinear Anal. Model. Control, 22(6):753–764
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Now we derive the mild solution of equations (1)–(3).
First, we split u(·) as p(·) + q(·) in problem (1)–(3), where p is the continuous mild

solution for

Dα
0+p(t) = Ap(t) + f

(
t, u(t)

)
, t ∈ I, (4)

I1−α
0+ p(0) = u0, (5)

and q is the PC-mild solution for

Dα
0+q(t) = Aq(t), t ∈ I, (6)

Dβ
0+q(t+k )−Dβ

0+q(t−k ) = Jk

(
u(tk)

)
, k = 1, . . . ,m, (7)

I1−α
0+ q(0) = 0. (8)

Note that p is continuous, so p(t+k ) = p(t−k ), k = 1, . . . ,m, and any solution of (1)–(3)
can be decomposed to the solutions of (4)–(5) and (6)–(8).

Applying Laplace transform and inverse Laplace transform technique to (4), the mild
solution of (4)–(5) can be written as

p(t) =
1

Γ(α− 1)

t∫
0

Sα(t− s)sα−2u0 ds

+
1

Γ(α− 1)

t∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds (9)

on I.
Next, we rewrite (6)–(8) into the equivalent integral equation. For that, we operate

fractional integral operator Iα0+ on each side of (6), which gives

q(t) = Iα0+Aq(t), t ∈ (0, t1].

Now,
Dβ

0+q(t) = Iα−β0+ Aq(t), t ∈ (0, t1].

In particular,

Dβ
0+q
(
t−1
)

= Iα−β0+ Aq(·)(t1), t ∈ (0, t1].

Since the impulsive condition (7) is a discontinuity condition, we have

q(t) = c1t
α−1 + Iα0+Aq(t), t ∈ (t1, t2].

Then, for t ∈ (t1, t2], we get

Dβ
0+q(t) =

c1Γ(α)

Γ(α− β)
tα−β−1 + Iα−β0+ Aq(t), t ∈ (t1, t2].

https://www.mii.vu.lt/NA
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So that

Dβ
0+q(t+1 ) =

c1Γ(α)

Γ(α− β)
tα−β−1
1 + Iα−β0+ Aq(·)(t1), t ∈ (t1, t2].

From (7) we obtain

c1 =
Γ(α− β)

Γ(α)
t1+β−α
1 J1

(
u(t1)

)
.

Hence,

q(t) =
Γ(α− β)

Γ(α)
t1+β−α
1 J1

(
u(t1)

)
tα−1 + Iα0+Aq(t), t ∈ (t1, t2].

Proceeding in this way, we can derive for the remaining interval I, and we get the integral
equation as

q(t) =
Γ(α− β)

Γ(α)

( ∑
0<tk<t

t1+β−α
k Jk

(
u(tk)

))
tα−1 + Iα0+Aq(t), t ∈ I. (10)

Taking Laplace transform on both sides, we get

q̂(λ) = Γ(α− β)

( ∑
0<tk<t

t1+β−α
k Jk

(
u(tk)

))(
λα −A

)−1

= Ŝα(λ)λ1−α
∑

0<tk<t

t1+β−α
k Jk

(
u(tk)

)
Γ(α− β),

where Ŝα(λ) = λα−1(λα −A)−1.
Taking the inverse Laplace transform on each side of the above equation, we get the

mild solution of (6)–(8) as

q(t) = Γ(α− β)
∑

0<tk<t

t1+β−α
k Jk

(
u(tk)

) t∫
0

Sα(t− s)
Γ(α− 1)

sα−2 ds, t ∈ I. (11)

Finally, from (9) and (11) we can obtain the mild solution of problem (1)–(3) as

u(t) =
1

Γ(α− 1)

t∫
0

Sα(t− s)sα−2u0 ds

+ Γ(α− β)
∑

0<tk<t

t1+β−α
k Jk

(
u(tk)

) t∫
0

Sα(t− s)
Γ(α− 1)

sα−2 ds

+
1

Γ(α− 1)

t∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds, t ∈ I. (12)
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Definition 1. A function u in PC(Z ) is a mild solution of problem (1)–(3) if

u(t) =
1

Γ(α− 1)

t∫
0

Sα(t− s)sα−2u0 ds

+ Γ(α− β)
∑

0<tk<t

t1+β−α
k Jk

(
u(tk)

) t∫
0

Sα(t− s)
Γ(α− 1)

sα−2 ds

+
1

Γ(α− 1)

t∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds, t ∈ I, (13)

is satisfied.

3 Existence and uniqueness results

We assume the hypotheses given below:

(H1) f : I × R → R is continuous, and there exists a function Lf ∈ C([0, 1];R+)
such that ‖f(t, u)− f(t, v)‖ 6 Lf (t)‖u− v‖, t ∈ I and u, v in R.

(H2) There exists a non-decreasing function W ∈ C([0,∞) → (0,∞)) and mf ∈
C([0, 1];R+) such that ‖f(t, u)‖ 6 mf (t)W(‖u‖), t in I and u in R.

(H3) The function Jk : R → R is continuous, and the constants K,Kc > 0 such
that ‖Jk(u) −Jk(v)‖ 6 K‖u − v‖ and ‖Jk(u)‖ 6 Kc‖u‖, u, v ∈ R,
k = 1, . . . ,m.

Theorem 1. Assume that (H1) and (H3) are satisfied and that

Γ(α− β)

Γ(α)
KM

∑
0<tk<t

t1+β−α
k +

M
Γ(α+ 1)

∥∥Lf (t)
∥∥ < 1.

Then there exists a unique mild solution of (1)–(3).

Proof. Define the fixed point operator T : PC(Z )→ PC(Z ) by

T u(t) =

t∫
0

Sα(t− s) sα−2

Γ(α− 1)
u0 ds

+ Γ(α− β)
∑

0<tk<t

t1+β−α
k Jk

(
u(tk)

) t∫
0

Sα(t− s) sα−2

Γ(α− 1)
ds

+
1

Γ(α− 1)

t∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds, t ∈ I.

https://www.mii.vu.lt/NA
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From the assumption we easily conclude that T is well defined. Now we prove that T is
contraction.

Let u and v in PC(Z ) and t ∈ I, we get∥∥T u(t)− T v(t)
∥∥

6 Γ(α− β)
∑

0<tk<t

t1+β−α
k

∥∥Jk

(
u(tk)

)
−Jk

(
v(tk)

)∥∥ t∫
0

∥∥Sα(t− s)
∥∥ sα−2

Γ(α− 1)
ds

+
1

Γ(α− 1)

t∫
0

∥∥Sα(t− s)
∥∥ s∫

0

(s− τ)α−2
∥∥f(τ, u(τ)

)
− f

(
τ, v(τ)

)∥∥dτ ds

6 KMΓ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k tα−1‖u− v‖PC

+
M

Γ(α)

t∫
0

sα−1 ds‖Lf‖‖u− v‖PC

6

(
KMΓ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k +

M
Γ(α+ 1)

‖Lf‖
)
‖u− v‖PC ,

which shows that T is contraction and there exists a unique mild solution of (1)–(3).

The accompanying theorem provides the existence results by means of fixed point
criterion for condensing map.

Theorem 2. Assume that conditions (H2)–(H3) are satisfied and {Sα(t)}t>0 is compact.
If

MKc
Γ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k +

M
Γ(α+ 1)

‖mf‖ lim sup
r→∞

1

r
W(r) < 1,

then problem (1)–(3) has a mild solution u in PC(Z ).

Proof. Take r > 0 such that

M‖u0‖
Γ(α)

+ sMKc
Γ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k +

M
Γ(α+ 1)

‖mf‖W(s) < s

for all s > r.
Here we prove that the operator T introduced in the previous Theorem 1 is a condens-

ing map from Br(0,PC(Z )) into Br(0,PC(Z )).
We first show that T has values in Br(0,PC(Z )), that is T Br(0,PC(Z )) ⊂ Br(0,

PC(Z )).

Nonlinear Anal. Model. Control, 22(6):753–764
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For u ∈ Br(0,PC(Z )) and t ∈ I, we get

‖T u(t)‖ 6 1

Γ(α− 1)

t∫
0

∥∥Sα(t− s)
∥∥sα−2‖u0‖ ds

+
Γ(α− β)

Γ(α− 1)

∑
0<tk<t

t1+β−α
k

∥∥Jk

(
u(tk)

)∥∥ t∫
0

∥∥Sα(t− s)
∥∥sα−2 ds

+
1

Γ(α− 1)

t∫
0

∥∥Sα(t− s)
∥∥ s∫

0

(s− τ)α−2
∥∥f(τ, u(τ)

)∥∥dτ ds,

6
Mtα−1

Γ(α)
‖u0‖+

Γ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k tα−1MKc

∥∥u(tk)
∥∥

+
M

Γ(α)

t∫
0

sα−1‖mf‖W
(
‖u‖
)

ds

6
M‖u0‖

Γ(α)
+ rMKc

Γ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k +

M‖mf‖
Γ(α+ 1)

W(r),

which implies that ‖T u(t)‖ 6 r and T Br(0,PC(Z )) ⊂ Br(0,PC(Z )).
To continue the remainder of the proof, we introduce the decomposition operator T

by T1 + T2, where

T1 =
1

Γ(α− 1)

t∫
0

Sα(t− s)sα−2u0 ds

+
Γ(α− β)

Γ(α− 1)

∑
0<tk<t

t1+β−α
k Jk

(
u(tk)

) t∫
0

Sα(t− s)sα−2 ds,

T2 =
1

Γ(α− 1)

t∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds.

Step 1. The map T1 is contraction on Br(0,PC(Z )).
For u, v ∈ Br(0,PC(Z )), t ∈ I, from Theorem 1 it is easy to see that∥∥T1u(t)− T1v(t)

∥∥
6

Γ(α− β)

Γ(α− 1)

∑
0<tk<t

t1+β−α
k

∥∥Jk

(
u(tk)

)
−Jk

(
v(tk)

)∥∥ t∫
0

∥∥Sα(t− s)
∥∥sα−2 ds

6 KMΓ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k ‖u− v‖PC .

https://www.mii.vu.lt/NA
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Hence, T1 is contraction on Br(0,PC(Z )) since KM(Γ(α − β)/Γ(α)) ×∑
0<tk<t

t1+β−α
k < 1.

Step 2. The map T2 is completely continuous on Br(0,PC(Z )).
First, we show that T2 is a continuous operator.
Let the sequence (un) in Br(0,PC(Z )) and u ∈ Br(0,PC(Z )). Assume un → u as

n→∞. Then we have

‖T2un − T2u‖

6
1

Γ(α− 1)

t∫
0

∥∥Sα(t− s)
∥∥ s∫

0

(s− τ)α−2
∥∥f(τ, un(τ)

)
− f

(
τ, u(τ)

)∥∥dτ ds.

Since f is continuous, so ‖T2un − T2u‖ → 0 as n → ∞. From this we know T2 is
continuous.

Further, we prove that T2 is a compact operator.
In continuation to this, we show that {T2u(t): u ∈ Br(0,PC(Z ))} is relatively com-

pact in Z for every t ∈ I.
Let 0 < ε < t 6 1. For u ∈ Br(0,PC(Z )), we obtain the result via the mean value

theorem, see [16, Thm. II.3.2],

T2u(t) =
1

Γ(α− 1)

ε∫
0

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds

+
1

Γ(α− 1)

t∫
ε

Sα(t− s)
s∫

0

(s− τ)α−2f
(
τ, u(τ)

)
dτ ds

∈ Br1(0,Z ) + (t− ε)co{Sα(t− s)y: s[ε, t], y ∈ V̄ },

where r1 = (Mεα/(αΓ(α)))‖mf‖W(r), and the set V := {
∫ t

0
((t− s)α−2/Γ(α− 1))×

f(s, u(s)) ds: s ∈ [0, 1], u ∈ Br(0,PC(Z ))} is relatively compact in Z .
Hence, {T2u(t): u ∈ Br(0,PC(Z ))} ⊂ Kε + Br1(0,Z ), where Kε is compact and

diam(Br1(0,Z ))→ 0 as ε→ 0. From this concept the set {T2u(t): u ∈ Br(0,PC(Z ))}
is relatively compact in Z .

Finally, we prove that {T2u(t): u ∈ Br(0,PC(Z ))} is equicontinuous on I.
Let 0 < t < 1 and ε > 0. For u ∈ Br(0,PC(Z )) and 0 < l < ε such that t < t+ l,

we obtain∥∥T2u(t+ l)− T2u(t)
∥∥

6

t∫
0

∥∥Sα(t+ l − s)−Sα(t− s)
∥∥ s∫

0

(s− τ)α−2

Γ(α− 1)

∥∥f(τ, u(τ)
)∥∥dτ ds

+

t+l∫
t

∥∥Sα(t+ l − s)
∥∥ s∫

0

(s− τ)α−2

Γ(α− 1)

∥∥f(τ, u(τ)
)∥∥dτ ds

Nonlinear Anal. Model. Control, 22(6):753–764
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6
εtα

Γ(α+ 1)
‖mf‖W(r) +M

t+l∫
t

sα−1

Γ(α)
‖mf‖W

(
‖u‖
)

ds

6
(ε+Mlα)

Γ(α+ 1)
‖mf‖W(r),

which proves that T (Br(0,PC(Z ))) is right equicontinuous at the point t in (0, 1). Like-
wise, it shows that T (Br(0,PC(Z ))) is right equicontinuous at 0 and left equicontinuous
at t ∈ (0, 1]. Then the set T (Br(0,PC(Z ))) is equicontinuous on I.

From Step 2 we deduce that T2 is completely continuous.
Therefore, we conclude that T =T1+T2 is a condensing operator from Br(0,PC(Z ))

into Br(0,PC(Z )), and from [16, Thm. IV.3.2] we infer that problem (1)–(3) has a mild
solution.

4 Application

We consider the partial fractional differential equations with fractional impulsive con-
ditions

Dα
0+x(t, y) =

∂2

∂y2
x(t, y) + a1(t)x(t, y), α ∈ (0, 1), y ∈ [0, π], t ∈ I, (14)

x(t, 0) = x(t, π) = 0, (15)
x(0, y) = x0(y) ∈ Z , (16)

Dβ
0+x

(
t+k
)
−Dβ

0+x
(
t−k
)

= Jk

(
x(tk)

)
, k = 1, . . . ,m. (17)

Here, the space Z = L2[0, π] and the function a1 ∈ C(I × R;R), 0 = t0 6 t1 6
· · · < tm+1 = 1 are prefixed numbers in [0, 1].

The operator A : D(A) ⊂ Z → Z is determined by Ax = x′′ with domain
D(A) := {x ∈ Z : x′′ ∈ Z , x(0) = x(π) = 0}. The class of operator {T (t)}t>0

is an analytic semigroup in Z with the infinitesimal generator A. Here A has a discrete
spectrum with eigenvalues −n2, n ∈ N, and the corresponding normalized eigenfunction
is defined by un(ζ) = (2/π)1/2 sin(nζ). The value T (t)x =

∑∞
n=1 e−n

2t〈x, un〉un for
x ∈ Z , and the set {un: n ∈ N} is an orthonormal basis for Z . From these expressions
it follows that {T (t)}t>0 is a compact, so that (λ − A)−1 is a compact operator for all
λ ∈ ρ(A).

The operatorA generates an (tα−1/Γ(α), 1)-regularized resolvent family {Sα(t)}t>0,
where

Sα(t) =
1

2πi

∫
ΓR

eλtλα−1
(
λαI −A

)−1
dλ,

ΓR refers the path consisting of the rays {reiϑ} and {re−iϑ} with r > R and for some
ϑ ∈ (π, π/2). Since (λ − A)−1 is compact, from this result {Sα(t)}t>0 is a compact
operator. In [15], the compactness properties about (tα−1/Γ(α), 1)- resolvent operators
are described.

https://www.mii.vu.lt/NA
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We reformulate the fractional partial differential equations (14)–(17) in the abstract
form (1)–(3) by choosing the appropriate functions f . We define the function f :
C(I × R;R)→ R by f(t, x) = a1(t)x(t, y) and Jk ∈ C(R), k = 1, 2, . . . ,m.

If the subsequent condition is satisfied

MΓ(α− β)

Γ(α)

∑
0<tk<t

t1+β−α
k

∥∥Jk

(
u(tk)

)∥∥+
M

Γ(α+ 1)
‖a1‖C(I×R;R) < 1,

then, as per Theorem 2, problem (14)–(17) has at least one mild solution onBr(0,PC(Z )).
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