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On the areas under the oscillatory curves
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Abstract. We prove that the third-order Emden–Fowler-type equation has oscillatory non-extend-
able solutions with specific behavior of antiderivative.
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1 Introduction

Behavior of antiderivatives of solutions plays an important role in the theory of boundary
value problems with integral conditions (see [6,8] and references therein). Results on the
estimation of the number of solutions to boundary value problems with integral conditions
often are related with the oscillatory properties of solutions and its antiderivatives [5].
Interest in nonlocal boundary value problems for differential equations involving integral
boundary conditions is due to the fact that they often appear in physics and in various
branches of applied mathematics. Integral conditions are connected not only with the
values of a solution on the boundary, but also with the values inside the domain. Let us
begin with an example.

Example 1. Consider the function f(t) = t sin t2 for t > 0. Function f(t) is not periodic
and has zeros at the points t0 = 0, t1 =

√
π, t2 =

√
2π, . . . , tk =

√
kπ, . . . . As

we can see, the distances (tk − tk−1) between two consecutive zeros form decreasing
sequence, but the absolute values of the function in extreme points increase (see Fig. 1).
If we consider the areas between the curve and axis, we get

Sk =

∣∣∣∣∣
tk∫

tk−1

t sin t2 dt

∣∣∣∣∣ = |− cos kπ| = 1.

Thus, S1 = S2 = · · · = Sk = · · · .
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Figure 1. Function f(t) = t sin t2.

Definition 1. We say that the continuous function f(t) has property (A) if:

(i) There exists t = t0 such that f(t0) = 0 and f(t) has infinitely many simple zeros
tk (k = 1, 2, . . .) for t > t0;

(ii) The distances (tk − tk−1) between two consecutive zeros form decreasing se-
quence, and the absolute values of the function in extreme points increase;

(iii) S1 = S2 = · · · = Sk = · · · , where Sk = |
∫ tk
tk−1

f(t) dt|.

It is our goal to prove that the third-order Emden–Fowler-type equation

x′′′ = −|x|p signx, (1)

where p > 1, has a solution with property (A).
Also we will show that equation (1) has non-extendable solutions of oscillatory type.

Similar result on non-extendable solutions for the third-order Emden–Fowler-type equa-
tion was obtained in [1]. The example of the second-order equation with oscillatory
solution that has “finite escape time” was constructed in [4].

Equation (1) is a generalization of the second-order Emden–Fowler equation

u′′ + tν |u|µ signu = 0, (2)

where ν, µ are real constants. Such equations appear in the problems of polytropic gas
spheres of finite radius or finite mass [3,7]. The study of Emden–Fowler equation (2) has
been one of the main objects in the field of nonlinear analysis in recent years since the
appearance of the Bellman monograph [2].

The paper is organized as follows. In Section 2, we establish the results, which de-
scribe the oscillatory behavior of solutions of equation (1). In Section 3, we consider
conditions of the self-similar solutions. Section 4 is devoted to the comparison of the
areas, and in this section, we provide our main result.

2 Oscillatory behavior of solutions

Proposition 1. If x(t) is a nontrivial solution of (1), x(t0) = 0, then for t > t0,

x(t)x′′(t)− 1

2
x′(t)2 +

1

2
x′(t0)

2 < 0. (3)
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Proof. In view of equation (1), x(t)x′′′(t) 6 0, and since x(t) is a nontrivial solution
of (1), we get

0 >

t∫
t0

xx′′′ ds = x(t)x′′(t)−
t∫

t0

x′x′′ ds

= x(t)x′′(t)− 1

2
x′(t)2 +

1

2
x′(t0)

2.

Proposition 2. If x(t) is a nontrivial solution of (1), x(t0) = x(t1) = 0 (x(t) 6= 0 for
t ∈ (t0, t1)), then x′(t1) 6= 0.

Proof. If x′(t1) = 0, in view of inequality (3), we have the contradiction x′(t0)2 < 0.

Remark 1. For a nontrivial solution of (1), a simple zero cannot exist on the left of
a double zero.

Proposition 3. If x(t) is a nontrivial solution of (1), x(t0) = x′(t1) = 0 (x(t) 6= 0 for
t ∈ (t0, t1)), then x(t1)x′′(t1) < 0.

Proof. The proof follows from inequality (3) if t = t1.

Proposition 4. If x(t) is a nontrivial solution of (1), x(t0) = x′(t1) = 0 (x(t) 6= 0 for
t ∈ (t0, t1)), then there exists t = a > t1 such that x(a) = 0.

Proof. First, note that in view of Proposition 2, x(t1) 6= 0. Without loss of generality,
let x(t) > 0 for t > t1. Since x(t1) 6= 0, then x(t) > 0 for t > t0. Therefore, by
Proposition 3 we have x′′(t1) < 0. Since x(t) > 0, then x′′′(t) < 0 and x′′(t) is strictly
decreasing for t > t0. Since x′′(t1) < 0, then we have x′′(t) < 0 and x′(t) is strictly
decreasing for t > t1. Since x′(t1) = 0, then we have x′(t) < 0 and x(t) is strictly
decreasing for t > t1. If the first and the second derivatives of x(t) are negative for
t > t1, then x(t) must eventually be negative. Hence the proof.

Proposition 5. If x(t) is a nontrivial solution of (1), x(t0)=0, then there exists t=a>t0
such that x(a) = 0.

Proof. Without loss of generality, let x(t) > 0 for t > t0. If there exists t1 > t0 such
that x′(t1) = 0, then the proof follows from Proposition 4 above. Therefore, assume that
x′(t) does not vanish for t > t0. Since x′(t) > 0 for t immediately to the right of t0,
it follows that x′(t) > 0 for t > t0. As x(t) > 0, then x′′′(t) < 0 and x′′(t) is strictly
decreasing for t > t0.

First, suppose there exists t2 > t0 such that x′′(t2) = 0, then x′′(t) < 0 for t > t2. If
two consecutive derivatives of x′(t) are negative, then x′(t) must ultimately be negative.

Now assume that x′′(t) > 0 for t > t0. So, x′(t) is strictly increasing for t > t0.
Integrating equation (1) between b > t0 and t, we obtain

t∫
b

x′′′(s) ds = −
t∫
b

∣∣x(s)∣∣p signx(s) ds,
Nonlinear Anal. Model. Control, 22(6):785–792
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or eliminating nonnegative term and taking into account our assumption that x(t) > 0 for
t > t0, we get

x′′(b) = x′′(t) +

t∫
b

x(s)p ds >

t∫
b

x(s)p ds.

The left side is independent of t, and thus, the integral on the right-hand side must
converge as t→ +∞. This contradiction proves the proposition.

Corollary 1. If x(t) is a nontrivial solution of (1), x(t0) = 0, then x(t) has an infinity of
simple zeros in (t0,+∞). Moreover, if x′(t0) = 0, then x(t) does not vanish in (−∞, t0).

Proposition 6. Let x(t) be a nontrivial solution of (1) and x(t0) = 0. If t′1 and t′2 are
arbitrary consecutive extreme points of x(t), then |x(t′2)| > |x(t′1)|.

Proof. Let t′1 and t′2 be arbitrary consecutive extreme points. Consider

t′2∫
t′1

x′x′′′ dt = −
t′2∫
t′1

(x′′)2 dt < 0.

We obtain the last inequality because x(t) is a nontrivial solution. On the other hand,

t′2∫
t′1

x′x′′′ dt = −
t′2∫
t′1

x′|x|p signxdt

= − 1

p+ 1

(∣∣x(t′2)∣∣p+1 −
∣∣x(t′1)∣∣p+1)

< 0.

Thus, |x(t′2)| > |x(t′1)|.

Proposition 7. If x(t) is a nontrivial solution of (1) and x(t0) = x(t1) = 0 (t0 < t1),
then |x′(t1)| > |x′(t0)|.

Proof. Consider

0 >

t1∫
t0

xx′′′ dt = −
t1∫
t0

x′ dx′ = −x
′(t1)

2

2
+
x′(t0)

2

2
.

Thus, |x′(t1)| > |x′(t0)|.

Proposition 8. If x(t) is a nontrivial solution of (1) and x(t0) = x(t1) = 0 (t0 < t1),
then |x′′(t1)| > |x′′(t0)|.

Proof. Consider
t1∫
t0

x′′x′′′ dt = −
t1∫
t0

x′′|x|p signxdt =
t1∫
t0

p|x|p−1(x′)2 dt > 0.
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On the other hand,
t1∫
t0

x′′x′′′ dt =
x′′(t1)

2

2
− x′′(t0)

2

2
.

Thus, |x′′(t1)| > |x′′(t0)|.

Proposition 9. If x(t) is a nontrivial solution of (1), x(t0) = x(t2) = 0 (x(t) 6= 0 for
t ∈ (t0, t2)), then x′(t2)x′′(t2) > 0.

Proof. Let t1 ∈ (t0, t2) be such that x′(t1) = 0. Multiplying equation (1) by x′ and
integrating from t1 to t2, we get

t2∫
t1

x′x′′′ ds = −
t2∫
t1

x′|x|p signxds,

x′(t2)x
′′(t2)−

t2∫
t1

(x′′)2 ds = − 1

p+ 1

(∣∣x(t2)∣∣p+1 −
∣∣x(t1)∣∣p+1)

,

x′(t2)x
′′(t2) =

t2∫
t1

(x′′)2 ds+
1

p+ 1

∣∣x(t1)∣∣p+1
> 0.

Corollary 2. If x(t) is a nontrivial solution of (1), x(t0) = x(t2) = 0 and x(t) > 0 for
t ∈ (t0, t2), then x′(t2) < 0 and x′′(t2) < 0.

Remark 2. Let x(t) be a nontrivial solution of (1) with initial data

x(t0) = 0, x′(t0) = α0, x′′(t0) = β0, (4)

where α0β0 > 0. In view of Proposition 5, there exists t = t1 such that x(t1) = 0.
Let us denote x′(t1) = α1 and x′′(t1) = β1. Obviously, α1 and β1 depend on α0 and
β0 or α1 = α1(α0, β0) and β1 = β1(α0, β0). Moreover, in view of Propositions 7–9,
α1 = −lα0 and β1 = −mβ0, where l > 1 and m > 1 are some constants.

Proposition 10. There exists a nontrivial solution of initial value problem (1), (4) such
that if −α1 = lα0 (l > 1), then −β1 = l(2p+1)/(p+2)β0.

Proof. Consider the function

ϕ(α0, β0) = −β1α(2p+1)/(p+2)
0 − (−α1)

(2p+1)/(p+2)β0

for α0 > 0 and β0 > 0.
If α0 = 0, then ϕ(α0, β0) 6 0, and if β0 = 0, then ϕ(α0, β0) > 0. Thus, there exist

α0 and β0 such that ϕ(α0, β0) = 0 or

−β1α(2p+1)/(p+2)
0 = (−α1)

(2p+1)/(p+2)β0.

Nonlinear Anal. Model. Control, 22(6):785–792
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Therefore,

−β1 =

(
−α1

α0

)(2p+1)/(p+2)

β0.

Let −α1/α0 = l, then −β1 = l(2p+1)/(p+2)β0.

Definition 2. We say that the solution of initial value problem (1), (4) has property (A0)
if for −α1 = lα0 (l > 1), we have −β1 = l(2p+1)/(p+2)β0. We denote this solution by
x(t).

Remark 3. In view of Corollary 1, x(t) has an infinity of simple zeros in (t0,+∞).

3 Self-similar solutions

Proposition 11. If x(t) is a solution of equation (1), then the function

y(t) = ±B3/(p−1)x(Bt+ C), (5)

where B > 0 and C are arbitrary constants, is also a solution of equation (1).

Remark 4. A similar statement for higher-order Emden–Fowler-type equation can be
found in [1].

Proof. The proposition can be proved by direct substitution. So,

y′′′ = ±B3/(p−1)+3x′′′(Bt+ C),

|y|p sign y =
∣∣±B3/(p−1)x(Bt+ C)

∣∣p sign y.
Then

±B3/(p−1)+3x′′′(Bt+ C) = −
∣∣±B3/(p−1)x(Bt+ C)

∣∣p sign y.
We get

B3/(p−1)+3 = B3p/(p−1) or B3p/(p−1) = B3p/(p−1).

Corollary 3. Let x(t) be a solution of initial value problem (1), (4). Every solution of
initial value problem (1), x(t1) = 0, x′(t1) = α, x′′(t1) = β with α, β sat-
isfying α = B(p+2)/(p−1)α0, β = B(2p+1)/(p−1)β0 (or α = −B(p+2)/(p−1)α0,
β = −B(2p+1)/(p−1)β0), where B > 0 is a constant, can be expressed via solution x(t)
as (5).

Corollary 4. If the solution of initial value problem (1), (4) x(t) has property (A0), then
the distances (tk − tk−1) between two consecutive zeros generate geometric sequence
with quotient less then one.

Proof. Let t0, t1, and t2 be three arbitrary consecutive zeros of x(t). Since x(t) has prop-
erty (A0), then −x′(t1) = lx′(t0) and −x′′(t1) = l(2p+1)/(p+2)x′′(t0). Now consider

y(t) = −B3/(p−1)x(Bt+ C)

https://www.mii.vu.lt/NA
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with C = −Bt1 + t0. In view of Corollary 3,

y(t) = −B3/(p−1)x(Bt−Bt1 + t0)

is also a solution of (1) with initial data y(t1) = 0, y′(t1) = −B(p+2)/(p−1)x′(t0),
y′′(t1) = −B(2p+1)/(p−1)x′′(t0).

Let l = B(p+2)/(p−1), then x′(t1) = y′(t1) and x′′(t1) = y′′(t1). It means that
y(t) = x(t). Since y(t) = −B3/(p−1)x(Bt − Bt1 + t0), then t2 − t1 = (t1 − t0)/B,
where B > 1. Hence, the distances (tk − tk−1) between two consecutive zeros of x(t)
generate geometric sequence with quotient less then one.

Remark 5. Since the distances (tk − tk−1) between two consecutive zeros of x(t) gen-
erate geometric sequence with quotient less then one, then

+∞∑
k=1

(tk − tk−1) < +∞.

It means that x(t) is not defined for all t > t0. Thus, equation (1) has non-extendable
solutions of oscillatory type.

4 On the matching of the areas

Corollary 5. If x(t) is a solution of initial value problem (1), (4), which has prop-
erty (A0), p = 4, then S1 = S2 = · · · = Sk = · · · , where Sk = |

∫ tk
tk−1

x(t) dt|.

Proof. Let t0, t1, and t2 be three arbitrary consecutive zeros of x(t). Since y(t) =
−B3/(p−1)x(Bt−Bt1 + t0), we have∣∣∣∣∣

t2∫
t1

x(s) ds

∣∣∣∣∣ =
∣∣∣∣∣
t2∫
t1

B3/(p−1)x(Bs−Bt1 + t0) ds

∣∣∣∣∣
= B3/(p−1)−1

∣∣∣∣∣
t2∫
t1

x(Bs−Bt1 + t0) d(Bs−Bt1 + t0)

∣∣∣∣∣
= B(4−p)/(p−1)

∣∣∣∣∣
t1∫
t0

x(s) ds

∣∣∣∣∣.
If p = 4, we have ∣∣∣∣∣

t1∫
t0

x(s) ds

∣∣∣∣∣ =
∣∣∣∣∣
t2∫
t1

x(s) ds

∣∣∣∣∣.
Remark 6. If 1 < p < 4, then S1 < S2 < · · · < Sk < · · · . If p > 4, then S1 > S2 >
· · · > Sk > · · · .

Nonlinear Anal. Model. Control, 22(6):785–792
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Theorem 1. If x(t) is a solution of initial value problem (1), (4), which has property (A0),
p = 4, then x(t) has property (A).

Proof. (i) In view of Corollary 1, x(t) has an infinity of simple zeros in (t0,+∞).
(ii) In view of Corollary 4 and Proposition 6, the distances (tk − tk−1) between two

consecutive zeros form decreasing sequence, and the absolute values of the function in
extreme points increase.

(iii) In view of Corollary 5, S1=S2= · · ·=Sk= · · · , where Sk= |
∫ tk
tk−1

x(t) dt|.

Conclusions:
• We have shown that the third-order Emden–Fowler-type equation has oscillatory

non-extendable solutions.
• If degree of nonlinearity p = 4, then S1 = S2 = · · · = Sk = · · · , where Sk are the

areas under the curve between two consecutive zeros.
• If 1 < p < 4, then S1 < S2 < · · · < Sk < · · · .
• If p > 4, then S1 > S2 > · · · > Sk > · · · .
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